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Olli-Pekka Hämäläinen Alessandro Mattavelli Jean-Yves Tissot

October 21, 2009





Contents

1 Introduction 2
1.1 Introductory finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 A simplified model 2

3 Forecasting spot prices 3
3.1 Weighted moving average . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Exponentially weighted moving average . . . . . . . . . . . . . . . . . . . 4
3.3 ”Last minute hedging” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Static model: Scheduling from Monday to Saturday 6

5 Convex optimization approach 9

6 Conclusions and further directions 11
6.1 Modelling stochastic demand . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.2 Options and long-term future contracts . . . . . . . . . . . . . . . . . . . 11
6.3 Improving forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11





Abstract

This paper on financial optimization is the result of a project carried out during the Eu-
ropean Consortium for Mathematics in Industry’s Modelling Week in Wroclaw, Poland
2009.

During the last two decades the Scandinavian electricity market has been progres-
sively deregulated: Whereas 20 years ago governmental institutions were handling the
distribution of electricity, this is now managed by private companies who buy and sell
electricity at the Nord Pool Exchange. The exchange price is highly volatile, and market
participants are exposed to a significant price risk.

In this project we present and model strategies of how an electricity retailer company
can optimize profit while minimizing risk when allowed to make daily future contracts.



1 Introduction

In the followings of the deregulation of the energy markets in Norway and Sweden in
the early 90’s, the first multinational energy exchange, Nord Pool, was created in 1996
as a market place for both Swedish and Norwegian trading of energy [1]. Since then it
has grown to include the energy markets of Finland, Denmark and northern parts of
Germany [2].

As on any other exchange participants use mathematical methods to minimize the
price risk while maximizing gain. However, unlike most other commodities, electricity
cannot be stored. This affects some earlier established theories [3]. We have tried to
model optimal trading portfolios for electricity retailer companies dealing on the Nord
Pool Exchange.

1.1 Introductory finance

As this paper is written in context of ECMI’s Modelling Week in Wroclaw 2009, we
present to readers not familiar with the subject a few facts on finance.

An exchange is a market where buyers and sellers of some asset or financial contract
meet to operate. Everyone deals with everyone. You simply decide if you would like to
buy or sell for the market price, known formally as the spot price. The spot price is set
by the laws of supply and demand. If more participants buy than sell, the price goes up,
and vice verca. Nord Pool is an exchange market where electricity is the main asset.

A derivative is a financial instrument whose price derives from some other underlying
variable. Most typically this will be the price of an asset, but it could also be other vari-
ables such as weather, expectations of the market etc. Two commonly used derivatives
are futures and options. An electricity future contract is an agreement between two
parties to buy or sell electricity for a certain price at a certain date. There is no cost for
entering into a futures contract. The price is called the future-price, and the execution
date is known as the maturity of the contract. At an exchange the future price for
futures with different maturities could depend on many different variables, for example
the expectations on the development of the spot price [4], [3]. An electricity option gives
the holder the option to buy/sell electricity for a certain price at a certain date. The
price for which the holder can buy/sell electricity is the strike price, and option price is
the price the holder pays to enter into a contract.

Entering into future and option contracts in order to lower ones exposure to risk is
known as hedging.

2 A simplified model

We are seeking an optimal strategy for a company dealing on the Nord Pool Exchange.
That is, we wish to find a way of buying assets and contracts such that expected gain
is maximized given a certain risk, or risk is minimized given a certain expected gain.
Due to the complexity of this task, we make certain simplifications. First, we eliminate
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Symbol Description
St Spot price on day t
D Demand
F Tt Forward price at time t for a contract with execution day T
fTt Size of corresponding forward contract
K Price for consumers
X Profit on day T

Table 1: Model parameters and variables

option contracts, and only consider futures. It is possible to make daily, monthly, quar-
terly or yearly future contracts. However, we restrict our attention to daily contracts.
Furthermore, we consider the daily demand of our customers to be known and constant.
Table 1 lists the model variables and parameters.

To summarize, we find ourselves in the following situation: On day t we wish to
determine how to meet the demand of electricity D on day T . Should we buy a future
contract for the entire demand D today? Should we take the risk of waiting, and buy
everything at the spot price on day T? Or is there perhaps some optimal day between
t and T on which we should enter into a future contract? Three different approaches
suggest answers to these questions, and are presented in Sections 3, 4, and 5.

3 Forecasting spot prices

As the spot price is highly volatile, it is challenging to forecast its behavior. A long-term
forecast (i.e. 6 months forward) is virtually impossible to produce, as it can change
drastically for no apparent reason. However, a short-term forecast with a decent level
of accuracy can be constructed using simple averaging methods. We will take a look at
two slighty different methods for deriving an estimate for the spot price tomorrow.

3.1 Weighted moving average

A weighted moving average (WMA) gives different weights to different data points. The
general formula for a weighted moving average is

X̂t+1 =
∑n

i=0 ωiXt−i∑n
i=0 ωi

.

We assume that including the spot prices of today and six previous days is enough to
produce a decent forecast for tomorrow (n = 6). Most recent spot prices, such as that of
today, are given the most weight. More specifically, our WMA estimate of tomorrow’s
spot price is given by

Ŝt+1 =
1
28

7∑
i=1

i ·Xt−7+i.

3



Figure 1: Spot prices and corresponding WMA estimates. Used data is Nord Pool spot
prices in Helsinki 2007.

Taking this further, we could make estimates of the spot price two or three days ahead
by assuming Ŝt+1 = St+1 and Ŝt+2 = St+2, yielding the formulas

Ŝt+2 =
1
28

(
6∑
i=1

i ·Xt−6+i + 7Ŝt+1

)
and

Ŝt+3 =
1
28

(
5∑
i=1

i ·Xt−5+i + 6Ŝt+1 + 7Ŝt+2

)
.

Figure 1 shows these three estimates, and the true spot price, plotted over a year.

3.2 Exponentially weighted moving average

Alternatively, an exponentially weighted moving average (EWMA) can be used to es-
timate tomorrow’s spot price. For an EMWA, weights reduce exponentially with time,
and the general formula is

X̂t+1 = α

(
Xt +

n∑
i=1

(1− α)iXt−i

)
, 0 ≤ α ≤ 1,

where α is a constant smoothing factor. For our data set α = 0.7 seems to be a good fit,
and again we assume that averaging over the previous week (n=6) suffices for a decent
approximation. The resulting estimate of tomorrow’s spot price is given by

Ŝt+1 = 0.7

(
St +

n∑
i=1

(1− 0.7)iSt−i

)
.

Similarly to what was done in section 3.1, we can extend this to approximate spot prices
two or three days ahead by formulae

Ŝt+2 = 0.7

(
Ŝt+1 +

n∑
i=1

(1− 0.7)iSt+1−i

)
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Figure 2: Spot prices and EWMA estimates. Used data is Nord Pool spot prices in
Helsinki 2007.

and

Ŝt+3 = 0.7

(
Ŝt+2 + (1− 0.7)Ŝt+1 +

n∑
i=2

(1− 0.7)iSt+2−i

)
.

Figure 2 shows these estimates, and the true spot price, plotted over a year.

3.3 ”Last minute hedging”

Say we find ourselves in the following situation: We know our customers will require D
units of electricity tomorrow, and we have not yet made a future contract to meet this
demand. This means that we must either enter into a future contract today to cover
the remaining demand, or we will have to buy the remaining units of electricity at the
spot price tomorrow. From the estimates found in Sections 3.1 and 3.2, we find a simple
decision rule to apply in this situation: If Ŝt+1 ≥ F t+1

t , we make a future contract for
the remaining demand of tomorrow today. If Ŝt+1 < F t+1

t , we wait and buy at spot
price. As Nord Pool is closed on weekends, the decision of what to do for Sunday and
Monday is made on Friday, comparing F t+2

t with Ŝt+2 and F t+3
t with Ŝt+3, respectively.

Figure 3 shows the cumulative profit over a year (for a company in Helsinki, 2007)
using three different stategies; 1) always making future contracts, 2) always buying at
spot price, or 3) using the given decision rule. We see that this ”last minute hedging”
allows us to make close to maximal profit (that of always buying at the spot price), with
the additional benefit of sometimes knowing beforehand how the demand of tomorrow
will be met.

Our decision rule of how to meet tomorrow’s electricity demand seems to work well.
The EMWA method gives slightly better estimates of the spot price than the MWA
method, particularly at times when the spot price is most volatile. However, whichever
method we use, we are not lowering a company’s risk significantly. Such short-sighted
forecastings are unable to incorporate the seasonality components that characterize the
behaviour of the spot price and, moreover, are subject to gross errors during periods
when the market volatility is higher than usual. In order to truly obtain a reduced risk,
we must look further into the future.
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Figure 3: Cumulative profits using three different strategies: Buying everything at spot
price (SP), always making a future contract (FP), and the ”last minute hedging” strategy,
calculated using either WMA or EWMA estimates for the spot price.

4 Static model: Scheduling from Monday to Saturday

Now consider the following task: Given a certain risk threshhold, our electricity retailer
company asks for the optimal strategy over the week in order to maximize income on
Saturday. That is, starting on Monday, we must determine how many future contracts
for Saturday to buy or sell on each day of the week. As a simplification, we say that
this strategy is nailed on Monday, and is not changed depending on developments in the
market through the week.

Our income on Saturday will be given by the formula

X = (K − ST )D +
5∑
i=1

(ST − F Ti )fTi .

If we decide to measure the risk of our position as the standard deviation of our income,
it is now possible to model our problem as

max E(X) subject to StDev(X) ≤ α.
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With a fixed demand D, the expressions for E(X) and StDev(X) are given by

E(X) = (K − E(ST ))D + (E(ST )− F T1 )fT1 +
5∑
i=2

(E(ST )− E(F Ti ))fTi ,

StDev(X)2 = (
5∑
i=1

fTi −D)5V ar(ST ) +
5∑
i=2

4∑
j=2

fTi f
T
j Cov(F Ti , F

T
j )

+ 2
5∑
i=2

Cov(ST , F Ti )fTi (
5∑
j=1

fTj −D) .

Thus, we need to find reliable estimates for the expected values, variances and covariances
in these formulae.

How do we find such estimates? From qualitative observations on the historical
data, we detect seasonal components in the behaviour of the spot and future prices. In
particular, we observe strong daily seasonality (electricity is cheaper during night and the
price increases during working hours) and weekly seasonality (the price decreases over the
weekend). The yearly seasonality is less evident and often confounded by other real world
events that influence the price of energy (e.g. wars, catastrophes, economical crisis).
Since we are scheduling over a single week we ignore the yearly and daily components,
while the weekly seasonality is accounted for. Furthermore, we observe that in general,
the price of the future contracts is almost constant at the beginning of the week and
shows fluctuations only on the 2-3 days before their execution date. According to these
observations we decide to use the following estimates

Ê(ST ) = mean{Si : i = Saturday},
̂E(FSati ) = FSatMon + E(FSati − FSatMon) = FSatMon +mean{FSati − FSatMon} ,

and we compute the sample covariance matrix for the data setsXj
i = (FSati )j−(FSatMon)j , i =

1, ..., 5, and Xj
6 = {Sj : j = Sat}, using the maximum-likelihood estimators

Σ = 1/(n− 1)
∑
j

(Xj − X̄)(Xj − X̄)T ,

where X̄ is the mean vector [mean(X1), ...,mean(X6)].
This model is analysed using spot price data from 2005, where all prices are given

in Norwegian Kroner (NOK). The demand on Saturday is set at 300 MWh, and our
customers are paying 350 NOK/MWh. We assume that future contracts are bought and
sold in clusters of 50 units, and we only allow ourselves to sell future contracts bought
in the same week. Under these assumptions, we are able to compute the expected gain
and corresponding standard deviation for all strategies we might adopt. The results are
shown in Figure 4. We can now set a risk level that our company considers acceptable,
and for any such level determine a corresponding optimal strategy (i.e. we select the
strategy that yelds the greatest expected gain among those whose risk is lower than our
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Figure 4: Expected gain and standard deviation for a set of different strategies.

Figure 5: Optimal strategies, marked red, for 20 different risk levels.
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α level E(X) Mon Tue Wed Thu Fri X
1000 29150 150 0 50 50 50 30758
1842 30338 150 0 0 50 50 30275
2895 31665 0 0 0 100 150 32442
3947 32810 0 150 -150 0 200 30972
5000 33766 0 50 -50 0 150 31189

Table 2: Optimal strategies and true gains for 5 different risk levels

X > E(X) E(X) > X > E(X)− σ E(X)− σ > X > E(X)− 2σ X < E(X)− 2σ
0.36 0.35 0.17 0.12

Table 3: Results of backtesting on the data from year 2005, σ = StDev(X).

risk level threshold). A graphical representation of chosen strategies is shown in Figure
5. Table 2 displays optimal strategies for a few specific risk levels.

Table 2 shows that the calculated expected gains are quite consistent with the cor-
responding true gains when using the selected market strategies. In order to check
the reliability of this method, we perform more backtesting: When computing optimal
strategies for 20 different risk levels for 18 weeks in the second half of 2005, and then
comparing expected and true gains using these strategies, we get the results presented in
Table 3. The results are quite encouraging: The actual gain is greater than our expecta-
tion in 36% of all cases, while it is within one standard deviation in 35% of the cases. In
17% of all cases the actual gain is between one and two standard deviations lower than
expected, and in only 12% of all cases is the true gain more than two standard deviation
lower than expected. Overall we find these to be decent results. It should be fairly easy
to further enhance them using better estimates for the spot and future prices, and by
introducing mechanisms that let the strategy change in the following days according to
the new market situation.

5 Convex optimization approach

In this section, we present an enhancement of the model presented in Section 4. We still
only consider daily future contracts, and we let the demand of our customers D remain
constant. Let t be the date from which we are planning our strategy (say today) and
n be the date for which we are buying electricity. This means we have n − t days with
the option of buying future contracts for day n. Our goal is to find a buying strategy
ξn = (fnt , f

n
t+1, · · · , fnn−1, sn), where sn is the amount of energy we buy at the spot price

on day n.
The demand D must be satisfied, hence we have to require

∑n−1
i=t f

n
i + sn ≥ D. The

expected price we will have to pay for this amount of electricity is given by

E[Cn] = fnt F
n
t +

n−1∑
i=t+1

fni E[Fni ] + snE[Sn] ,
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and we seek to minimize this E[Cn]. Clearly, E[Cn] is minimized by buying D units of
energy on the date with the lowest expected price, which is often the spot price on day
n. Thus, we need a second constraint to avoid the risk that this choice involves. As in
Section 4 we let the standard deviation of our income be a risk measure, and bound this
risk by some α, i.e. V ar(Cn) < α.

Combining goals and constraints gives the following program

min
ξn

E[Cn] = min
ξn

(
fnt F

n
t +

n−1∑
i=t+1

fni E[Fni ] + snE[Sn]

)

s.t.
n−1∑
i=t

fni + sn ≥ D ,

V ar(Cn) = ξnΣξTn ≤ α

(1)

where Σ is the covariance matrix for the random variables Fnt , · · · , Fnn−1, S
n. Note that

the variance of Fnt is zero, as it is known. As a solution of this program we obtain the
optimal strategy vector ξn of how many future contracts to buy on each day. The energy
trader can now choose to buy fnt future contracts today and solve the problem again on
day t+ 1 with adjusted values for the estimates.

The program (1) has several nice properties. Its objective function is linear, while
the feasible region is a convex set. As the expected energy prices are non-negative the
optimal solution will not exceed the demand D. Thus, enforcing an equality on the
second constraint will not exclude an optimal solution, and we can reduce the feasible
region to a compact set. Then we know there exists an optimal solution within this
compact set as the objective function is linear. We can find this solution by using an
algorithm for convex optimization (e.g. SPDT3 [5]). Such algortihms usually give good
results and have polynomial complexity. Hence, larger versions of the problem can be
solved without increasing the computation time too much, making the method fitted for
large scale real life applications.

To actually run the given program, estimates for future and spot prices, and their
respective covariances are needed. The quality of the solution depends heavily on the
quality of these estimates. Note that the solution of (1) can involve negative values for
the fni ’s, and if this kind of price speculation is not wanted ξn ≥ 0 can be added as an
extra constraint.

To show how the convex optimization approach works we calculate an optimal strat-
egy for an example case. Assume we are on the 30.1.2007 and we want to buy energy
for 1.2.2007. This means that we can buy future contracts for that day either today
or tomorrow, or we will have to buy energy at the spot price. Today’s future con-
tract price is F 1.2.2007

30.1.2007 = 29.25, and further we find the estimates F 1.2.2007
31.1.2007 = 27.48

and S1.2.2007 = 27.33. For simplicity assuming independence, we obtain the covariance
matrix

Σ =
(

77.49 0
0 2.1

)
,
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and as the demand we choose D1.2.2007 = 1000. Finally, we set the risk threshhold at
α = 10002. In this case, the described program will return the strategy

ξ1.2.2007 = (300.71, 679.32, 19.96) .

That is, we are told to buy a future contract for 301 units of energy today, a contract
for 679 units tomorrow, while not hedging 20 units and buying these at the spot price.
Accordingly, we buy a future contract for 301 units of energy today, and tomorrow we
rerun our program with the updated demand D1.2.2007 = 699 and a new estimate of the
spot price S1.2.2007.

6 Conclusions and further directions

With a simplified model of the electricity market, we have successfully implemented
models that find optimal short-term strategies for electricity retailer companies seeking
to lower risk while keeping a decent profit. Backtesting shows that our models are making
good predictions on a company’s gain, and are suggesting decent strategies. However,
our models can still be expanded in a number of ways, and we finish off by discussing
some of these.

6.1 Modelling stochastic demand

An interesting model improvement to start with would be the modelling of stochastic
demand. The demand is far from constant, as we have considered it, and is positively
correlated with the spot price. During EMCI’s Modelling Week, the demand data we
were given were inaccessible to us due to the size of the data. However, with these
data at hand one could easily forecast the demand in similar ways as we did the future
contract and spot prices.

6.2 Options and long-term future contracts

As an assumption we have been working only with daily future contracts. A natural
next step would be to work weekly, monthly or yearly future contracts, or options, into
our model. With these derivatives at hand, an electricity retailer company would be able
to reduce its risk significantly. In particular, under stochastic demand, entering into an
option contract would be a safe way to deal with a forecasted peak in the demand.

6.3 Improving forecasts

All attempts of optimizing the trade strategy depend heavily on our ability to make
accurate forecasts on the development of the derivative and spot prices, and of the
demand. Hence, it would be favourable to improve our current estimates of these. A
vast number of methods of forecasting are available and should be experimented with;
time series analysis, neural networks or advanced econometric models to name a few.
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