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1 Description of the Problem

Biologists are interested in the biological activity in sea-floor sediment. Nutri-
ents, for example Nitrogen and Oxygen, in the sediment are consumed by various
organisms that live there. Thus we define biological activity as the rate of con-
sumption of nutrients in the sea-floor sediment. In this report we are concerned
with determining the rate at which organisms in the sediment consume nutrients.
Biologists can measure the concentration of nutrients in the sea water and the sea-
floor sediment. However, it is quite difficult to experimentally measure the rate of
consumption of nutrients by organisms in the sediment. In this report we pose a
model to determine the consumption rate of a given nutrient in the sediment by
two biological organisms, sea-worms and microbes.

Sediment is a porous medium consisting of impermeable rock and water. The
sediment lies on-top of a layer of impermeable rock. Nutrients can dissolve in wa-
ter but not rock. The microbes can move only through the water and they consume
nutrients. The sea-worms are found to inhabit canals channeled vertically through
the sediment. The worms irrigate the sea-floor sediment i.e. they control the am-
mount of nutrient in the sediment. They do this by a pumping mechanism; they
pump water into the sediment if the concentration at the sediment-sea interface is
above the concentration of nutrient at the bottom of their canals and they pump
water out of the sediment if the concentrations are reversed. This mechanism is
called bio-irrigation [6]. A schematic diagram for this system is shown in Figure 1.

Figure 1: Schematic diagram
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2 Derivation of the Model
We consider a simple one dimensional model for the concentration of nutrient in
both the water and sediment. We set the z-axis pointing vertically downwards into
the water-sediment-rock layers as shown in Figure 1. The sediment water interface
is at z = 0 and the sediment-rock interface is at z = L where L is the known depth
of the sediment in m. We denote the concentration of nutrient in the sediment and
water by C(z, t) and Cw(z, t) respectively. Both have dimensions mol m−3 (or M).
We assume that the nutrient can diffuse through the water and we write down the
diffusion equation for Cw(z, t),

∂Cw
∂t

= Dw
∂2Cw
∂z2

in z < 0, (1)

where Dw is the constant diffusion coefficient of nutrient in the water with dimen-
sion m2s−1. Both the microbes and worms in the sediment consume nutrient and
we assume they do so at an unknown rate R(z, t) with dimension mol m−3 s−1.
Once the model has been derived we will try to determine the form of R(z, t) using
both analytical and numerical approaches. We assume that the worms irrigate the
sediment (i.e. they control the level of nutrient concentration in the sediment) by
the following mechanism;

• if C < Ccrit then the worms pump water into the sediment to increase the
total concentration of nutrient in the sediment,

• if C > Ccrit then the worms pump water out of the sediment to lower the
total concentration of nutrient in the sediment.

Where Ccrit is the known critical concentration of nutrient in the sediment. We
define Ccrit to be the concentration of nutrient in a small boundary region of O(ε)
near the sediment-water interface i.e. Ccrit = Cw(ε, t). Thus we mathematically
model this process as a source/sink term,

k (Ccrit − C(z, t)) , (2)

where k is the irrigation constant. It is worth noting here that biologists are still
unsure as to why the worms use this mechanism for irrigation. The sediment is
a porous medium in order to model this we introduce a porosity function, a(z),
which we assume to be independent of time and dependent on depth only. We
also assume that the nutrient can diffuse through the sediment with a constant
diffusion coefficient D. We now write down the diffusion equation for C(z, t) in
the sediment with contribution terms for the consumption rate and irrigation,

∂C

∂t
= D

∂

∂z

(
a(z)

∂C

∂z

)
−R(z, t) + ka(z) (Ccrit − C) in 0 < z < L. (3)
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At the sediment-water interface we assume that the nutrient concentration is
equal and also that the flux of nutrients through the interface is conserved. Thus,

Cw = C and Dw
∂Cw
∂z

= D
∂C

∂z
on z = 0. (4)

The rock is assumed to be impermeable so we have no flux of nutrient through the
sediment-rock interface. We also assume that the concentration at the sediment-
rock interface is a constant and from experiment this constant is taken to be zero,
[1]. Thus,

C = 0 and D
∂C

∂z
= 0 on z = L. (5)

Given experimental data for the nutrient concentration in the sediment we wish
to determine a model for the consumtion rate R(z, t). The experimental data we
will use in this report was obtained from a system in steady state. Thus, we drop
the time-dependence from equations (1)–(5) and obtain the reduced model for the
system,

d2Cw
dz2

= 0 in z > 0, (6)

D
d

dz
(a(z)

dC

dz
) = R(z)− ka(z) (Ccrit − C) in 0 < z < L, (7)

with boundary conditions

Cw = C and Dw
dCw
dz

= D
dC

dz
on z = 0, (8)

C = 0 and D
dC

dz
= 0 on z = L. (9)

We leave the equations in dimensionless form for this report.
To simplify the numerical computation we later ignore the water concentration

Cw and simply assume that the concentration at the sediment-water interface is
known and given. Together with Neumann boundary condition at z = L this
yields the simpler model equation (8) plus

D
dC

dz
= 0 at z = L and C = Ccrit at z = 0. (10)

3 Analytical Solution

For simplicity, we consider an experiment with constant porosity, we take a(z) = 1
(w.lo.g). Then equation (6) and equation (7) can be integrated analytically. The
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solutions for Cw(z) and C(z) for are given by,

Cw(z) = A1 +B1z, (11)

C(z) = e
√
K/Dz

(
A2 +

∫ z

0

1√
Dk

e−
√
k/Ds (R(s)− kCcrit) ds

)
+ e−
√
k/Dz

(
B2 −

∫ z

0

1√
Dk

e
√
K/Ds (R(t)− kCcrit) ds

)
, (12)

where A1, A2, B1, B2 are constants determined by boundary conditions (8) and
(9). To do this we must know the form of the consumption rate, R(z). In order
to determine the consumption rate we could make an ansatz for the form of R(z)
and see whether the function C(z) produced matches with the experimental data.
From experiments we know that the concentration profile of the nutrient in the
sediment decreases monotonically with depth so it is logical to assume R(z) is a
decreasing function also. We consider a gaussian of the form R(z) = R0e

−γz2 .
Where R0 and γ are the fitting parameters. We omit the full analytical solution
for the case R(z) = R0e

−γz2 as it is a trivial exercise to do. Instead we plot the
solution for C(z) and Cw(z) in Figure 2.

Figure 2: Plot of nutrient consumption rate R(z) = R0e
−γz2 against depth. The

parameters values used were, Dw = 1.2 × 10−5cm2 s−1, D = 9 × 10−6 cm2 s−1,
L = 1cm, ε = −0.05 cm, k = 3.75× 10−6 s−1, γ = 3 cm−1/2, R0 = 0.01µM s−1.
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Figure 3: Plot of nutrient concentration in the water (z < 0) and the sediment
(0 < z < 1) against depth. Nutrient consumption rate is given by R(z) = R0e

−γz2 .
The parameters values used were, Dw = 1.2× 10−5cm2 s−1, D = 9× 10−6 cm2 s−1,
L = 1cm, ε = −0.05 cm, k = 3.75× 10−6 s−1, γ = 3 cm−1/2, R0 = 0.01µM s−1.

Figure 3 shows the qualitative behaviour observed in experiments for the concen-
tration of nutrient in the water and the sediment. With this choice of R(z) we
have two degrees of freedom to enable us to fit the analytical solutions Cw(z) and
C(z) to some given data. This report does not compare actual experimental data
with the analytical solutions but it would be an interesting extension of the work
to do.

4 Numerical Simulation
We discretize our model using a finite difference method with a central difference
scheme. We define the grid points:

zj = (j − 1)4z, at j = 1, 2, ...,M (13)

where 4z = 1
M−1

= h. Let C(zj) = Cj, and let C = (C2, C3, ..., CM)T be the
nutrient concentration vector by excluding the first entry into the calculation since
it is already known and let R = (R2, R3, ..., RM)T be the consumption rate at the
same grid points. From now on we also assume that Cw = Ccrit.

4.1 Discretization with constant diffusion and irrigation co-
efficients

First we assume constant constant porosity i.e. a(z) = 1. The model now simply
becomes

D
d2C

dz2
+ k(Ccrit − C(z))−R(z) = 0 (14)
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The central difference scheme of this model is
D

h2
(Cj−1 − 2Cj + Cj+1) + k (Ccrit − Cj)−Rj = 0

D

h2

(
Cj−1 −

(
2 + k

h2

D

)
Cj + Cj+1

)
= Rj − kCcrit, for j = 2, 3, ...,M

(15)

By applying the boundary condition to the scheme (15), we have:

D
h2

(
−
(
2 + k h

2

D

)
C2 + C3

)
= R2 −

(
k + D

h2

)
Ccrit,

D
h2

(
Cj−1 −

(
2 + k h

2

D

)
Cj + Cj+1

)
= Rj − kCcrit, for j = 3, ...,M − 1

D
h2

(
2CM−1 −

(
2 + k h

2

D

)
CM

)
= RM − kCcrit,

where C1 = Ccrit, from the Dirichlet boundary condition of equation (8), and
the Neumann boundary condition of equation (9), gives us CM+1 = CM−1. This
system of equations can be written in the matrix form as follows:

A C = R− P
where:

A = D
h2



−
(
2 + k h

2

D

)
1

1 −
(
2 + k h

2

D

)
1

. . . . . . . . .

1 −
(
2 + k h

2

D

)
1

2 −
(
2 + k h

2

D

)


,

C =


C2

C3
...

CM

, R =


R2

R3
...

RM

, and P =



(
k + D

h2

)
Ccrit

kCcrit
...

kCcrit



4.2 Discretization with general diffusion and irrigation func-
tions

We now consider a system with non-constant porosity, a(z). We are now looking at
equation (7). We will now discretize it. Again we apply finite difference methods
and get
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D

h2

(
a(z +

h

2
)(C(z + h)− C(z))− a(z − h

2
)(C(z)− C(z − h))

)
+ka(z)(Ccrit − C(z))−R(z) = 0 (16)

Finally the boundary conditions give us the system of equations

D

h2

(
−(a2+ 1

2
+ a2− 1

2
+
h2

D
ka2)C2 + a2+ 1

2
C3

)
=

R2 − ka2Ccrit −
D

h2
a2− 1

2
Ccrit

D

h2

(
−(aj+ 1

2
+ aj− 1

2
+
h2

D
kaj)Cj + aj+ 1

2
Cj+1 + aj− 1

2
Cj−1

)
=

Rj − kajCcrit forj = 3...M − 1

D

h2

(
−(aM+ 1

2
+ aM− 1

2
+
h2

D
kaM)CM + (aM+ 1

2
+ aj− 1

2
)CM−1

)
=

RM − kaMCcrit

(17)

If we define αj = aj+ 1
2
+aj− 1

2
+ D
h2kaj and again write (17) in the form ofAC = R−P

we get

A =
D

h2


−α2 a2+ 1

2

a3− 1
2
−α3 a3+ 1

2

. . . . . . . . .
aM−1− 1

2
αM−1 aM−1+ 1

2

aM− 1
2

+ aM+ 1
2

αM

 ,

C =


C2

C3
...
CM

 and R− P =


R2

R3
...
RM

−

ka2Ccrit + D

h2a2− 1
2
Ccrit

ka3Ccrit
...

kaMCcrit

 .

5 Inverse problem
A mathematical model is a mapping

A : X −→ Y
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from the set of causes X to the set of effects Y. So, the inverse problem is when
the values of some model parameter must be obtained from the observed data. We
can formulate it as follows

Data −→ Model parameter

Inverse problems are typically ill-posed (in the sense of Hadamard). It means that
if the solution exist we don’t know if it is unique. It also could be that the solution
depends not continuously on the data. The inverse problems are often formulated
in infinite dimensional spaces and they are typically ill-conditioned. We have to
solve

B ·R = Cnoise

where Cnoise is given. Perhaps Cnoise /∈ Im(B) That’s why we reformulate our
problem to

R = argmin
T
||B · T − Cnoise||

It is equivalent to solve the following system

BTB ·R = BT · Cnoise

This equation is ill-conditioned. As shown in Figure 4a we have chosen exact R.
With this we derive an "exact" concentration, C, with the direct solver.

(a) Exact R (b) C noisy

Figure 4: R(z) = sin(10z) and the solution for C using the direct solver. Small
noise is added to the solution of C

Then we put noise on C. Cnoise is now simulated data with noise and shown in
Figure 4b. Figure 5 shows the solution of BTB · R = BT · Cnoise. We can now
easily see that if we slightly disturb C we get huge oscillations in the solution.
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Figure 5: Solution of BTB ·R = BT · Cnoise

This is why we need to use regularization methods like Tikhonov or Landweber to
solve the inverse problems.

5.1 Regularisation by Tikhonov-Method

In the Tikhonov-Regularization we solve instead of

min
R
||BR− C||2

a slightly disturbed problem [5], namely

min
R
||BR− C||2 + α||MR||2 (18)

where

C discretised concentration of nutrients depending on the depth z
R discretised consumption rate depending on the depth z
B operator which maps R to C. Has the form BR = B · (R− P ) = C
B matrix
P constant vector
α Regularization Parameter
M Tikhonov-Matrix

Solving equation (18) is equivalent to solve

(B?B + αM?M)Rα = B?C

⇔ (BTB + αMTM) ·Rα = BT · (C +B · P )

The choice of the parameter α is really important for the regularized solution. If
you choose a very small α the truncated problem is almost the original problem,
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but errors in the data are amplified. The bigger the parameter is chosen, the fewer
are the two problems comparable, but the fewer is the influence of the data error.
If the data error is known (||Rexact −Rmeasured|| < ε) the apriori parameter choice
has to fulfill:

α(ε) −→ 0 for ε→ 0 and
ε/
√
α(ε) −→ 0 for ε→ 0.

With this parameter choice the regularized solution converges to the exact solution
as ε → 0 [5]. The matrix M has essential influence on the shape of the solution.
Putting just M = Id we are looking for a solution with minimal norm. There are
also other choices for M . We will use the two matrices M1 and M2 defines as

M1 =


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2


and

M2 =


1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 .

M1 minimizes the second derivative of the solution. If you desire additionally that
the derivative on the boundarie(s) is zero you have to change the first and/or
last entry to 1. We call the matrix with 1 in the first diagonal entry M2. We
tested this method with the same consumption rate as for Landweber iteration,
R(z) = sin(10z). To regularize the solution, we need to have some number of
non-zero α. Its value is defined by simulation which depends on the solution we
would like to have. As examples, we gave two different values of α = 10−3, 10+3.
Figures 6a and 6a show the results for these choices of α.
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(a) Tikhonov-regularize solution with
α = 10, M = M1 and simulated noise on
output from direct problem

(b) Tikhonov-regularize solution with α = 10+5,
M = M1 and simulated noise on output from
direct problem

Figure 6: Results of the Tikhonov method

With a α small and α = 10, we get a disturbed sinusoidal profile. This means that
we are in the right way, only need to define the most suitable Tikhonov parameter
α. Once we apply a bigger parameter, α = 10+5, then we get smoother sinusoidal
graph but with some error in its boundaries. This happens since we know that the
bigger Tiknonov parameter the further the problem is from the original problem.
Hence, smoothness and exactness compensate each other.

5.2 Regularisation by Landweber-Method

The Landweber-Method is an iteration to find the solution of an inverse problem.
It needs the operator B of the direct problem, that means

C = B ·R

where

C discretised concentration of nutrients depending on the depth z
R discretised consumption rate depending on the depth z
B operator which maps R to C. Has the form BR = B · (R− P ) = C
B matrix
P constant vector

Solving the inverse problem means looking for a solution of the normal equations

B?B ·R = B? · C

or here
BTB ·R = BT · (C +B · P )
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To regularize we use the Richardson-Method for this equation [5](∼= Landweber-
Method):

Rn+1 = (Id− ωBTB) ·Rn + ωBT · (C +B · P )

For convergence we require that ω as 0 < ω < 2
||B||2 . You can change the method

(and the result) by some wishes on the shape of the solution. It is expressed in
terms of a matrixM with which we change the iteration. The changed Landweber
method is then:

Rn+1 = (Id− ωM−1BTB) ·Rn + ωM−1BT · (C +B · P )

For some choices of M it is not possible to compute the inverse, so you have to
change it slightly. We now require that 0 < ω < 2

||M−1BTB|| to guarantee conver-
gence. Like in the method of Tikhonov there is also a regularization parameter
which you have to choose well-thought-out. Here the number of iterations plays
the role of this parameter. If you do many steps the stabilized problem will be
near the original one, but the noise will be amplified. If you do few iterations noise
is not amplified but perhaps you solve a problem that is too far away from the
original. So you have to find the right one. For example, if you know the noise
level ε (||Rexact − Rmeasured|| < ε) then your stopping rule has to behave in the
following way:

m(ε) −→ ∞ for ε→ 0 and
ε
√
m(ε) −→ 0 for ε→ 0

where m(ε) is the number of iterations where we stop (apriori). Another way to
find the right stopping is discrepancy principle. It is an aposteriori parameter
choice because it uses the given data. It says: stop at iteration m? if it fulfills

||BRm? − Cmeasured|| < τε < ||BRm − Cmeasured|| ∀ m ≤ m? with τ > 1

For testing the programm Landweber_fd, we use the same example as in Figure
4. We gave an exact R(z) = sin(10 · z) and with the direct solver we computed an
exact C(z), and then disturbed it by Cnoise = C + 1∗randn(size(C)). In Figure
7 show results of the Landweber method with different numbers or iterations m
and different choices of M .



5.2 Regularisation by Landweber-Method 13

(a) Landweber Method with 60000
Iterations an M = M1

(b) Landweber Method with 10000 Iter-
ations an M = M1

(c) Landweber Method with 60000
Iterations an M = M2

(d) Behavior of the approximation er-
ror, that decides when to stop the itera-
tion, Landweber Method with 60000 It-
erations an M = M1

Figure 7: Results of the Landweber method

Figure 7a that with 60000 iterations and M = M1 the Landweber method almost
finds the exact solution. The 2-norm of the error is 1.01. 10000 iterations are
too few to find the right solution (error is 2.175). The problem we solve is too far
away from the original problem. If you would take much more iterations you would
amplify the data error. The choice of M depends on the result which you expect.
In this case it is better to choose M = M1 because 2-norm of the error with M1 is
1.01 and with M2 is 5.011. In the Landweber method we use as stopping rule the
discrepancy principle. In picture 7d you see that this error goes to zero but very
slowly. The methods never stopped because of the discrepancy principle, because
this would mean to do much more than 60000 iterations, and this takes too long.
That’s why the error of the Landweber-solutions is bigger than the solution to the
non-regularized problem. We should have to do more iterations. We have seen
that choosing 60000 iterations leads to good-agreement in the results. So truly the
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slow computational time of the Landweber-method is a disadvantage.

6 Results

Now we will use the method on two given data sets ’dmeas’ and ’dsim’, shown
in Figure 8. The paramater values we used were obtained from [1]. They are
D= 9 × 10−6 cm2 s−1, k= 3.75 × 10−6 s−1, Cs = 1.8 × 10−7 mol cm−3. We are
assuming a(z) = Ae−βz according to [2]. In the function a(z) we used β = 0.98 [3]
and the value of A was chosen from [4].

(a) Data Set ’dmeas’ (b) Data Set ’dsim’

Figure 8: The two datasets

In Figure 9 we observe that if we use matrix M1 in Tikhonov- as well as in
Landweber-Method then the consumption rate at the top and the bottom goes
to zero for both the datasets.
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(a) Tikhonov-regularize solution with
α = 10+5 on ’dmeas’

(b) Landweber on ’dmeas’

(c) Tikhonov-regularize solution with
α = 10+8 on ’dsim’

(d) Landweber on ’dsim’

Figure 9: Results on the two data sets using M = M1

This result was for us unreal. That’s why we decided to change the matrix and
use Neumann’s boundary conditions, that is use M = M2. In Figure 10 we see the
results.
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(a) Tikhonov-regularize solution with
α = 10+6 on ’dmeas’

(b) Landweber on ’dmeas’

(c) Tikhonov-regularize solution with
α = 10+8 on ’dsim’

(d) Landweber on ’dsim’

Figure 10: Results on the two data sets using M = M2

We notice the difference between results with matrix M1 and M2. We think that
the solution derived with M2 are those which agree best with reality.

7 Conclusion
In this report we have looked at solving an inverse problem applied to a biological
system. In the sediment there are nutrients such as Nitrogen and Oxygen that
are consumed by organisms. In this report we proposed models to estimate the
rate of consumption of nutrients by organisms in the sediment. First we predicted
a form of the consumption rate so that we could then use this to determine the
concentration of nutrient in the sediement. Although we did not match the results
directly with experimentla data in this report we have shown that is possible to
do so. The second method we applied to determine the consumption rate lead us
to solving an inverse problem numerically. We modelled the biological system as
a PDE and showed how it could be discretized using finite difference methods.
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Due to the ill-posedness of the inverse problem we needed to use regularization
methods to get a good solution. We implemented both Tikhonov and Landweber
and compared this results. Landweber seems to give the most accurate results,
but Tikhonov is by far the most computational efficient method.
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