Trivariate Models for Stochastic Episodes with Applications to Hydrology, Climate and Finance

Wrocław University of Technology

21 February, 2011

Anna K. Panorska
University of Nevada Reno, USA
with
Tomasz J. Kozubowski and Fares Qeadan
"From the tropics to the arctic, climate and weather have powerful direct and indirect impacts on human life. Extremes of heat and cold can cause potentially fatal illnesses, Other weather extremes, such as heavy rains, floods, and hurricanes, also have severe impacts on health. Approximately 600000 deaths occurred worldwide as a result of weather-related natural disasters in the 1990s."
The WHO, 12 November, 2008

Outline

- Motivation: Extreme hydroclimatic and weather events, e.g. drought, flood, or heat waves; Financial modeling.
- Examples: (1) Paris heat wave, August 2003.
- (2) Great Drought of the 1930s in the USA, THE "DUST BOWL",
- Financial modeling - stability "with respect to growth period"
- Stochastic Models: First joint model for duration N, magnitude X and maximum Y of events: (N, X, Y)

- Mathematical Results: The model for (N, X, Y):
-Stochastic representation, pdf;
-Marginals: one dimensional and bivariate; conditionals;
-Correlation structure
-Distribution of the ratio max/sum.
- Examples: Back to the "DUST BOWL", heat wave, and financial modeling.
- Summary

Motivation: Climate and hydrology - drought

"DUST BOWL" - Great drought of the 1930s in the USA, the setting of John Steinbeck's "Grapes of Wrath".

Motivation - drought, contd.

Original precipitation data in standard deviation units plotted as difference from a threshold.

Precipitation "events" or "episodes".

Episodes: wet and dry

An episode is a period with the process staying consecutively above/below threshold: e.g. "dry", "wet" year, drought, flood, etc.

Threshold for "dry" or "wet" depends on the definition of the episode (e.g. drought).

Motivation: Climate and weather - heat waves

- In August 2003, France experienced an extreme heat wave, that resulted in an estimated 14,802 deaths*.
- Hot event: consecutive observations above the $33^{\circ} \mathrm{C}$.

What are the chances that a large heat wave will happen again?

What are the chances of a hot event with duration equal to this one, 11 days?

What are the chances that a heat wave longer than 6 days and larger than current $98^{\text {th }}$ percentile of heat waves' magnitudes?
*Dhainaut et al. 2004.

Motivation: Financial growth/decline episodes

Daily exchange rates between Japanese Yen and British pound quoted in UK pound, Jan. 2, 1980-May 21, 1996.

Process Xi: Daily log returns $n=4274$,
$\mathrm{X}_{\mathrm{i}}=\log ($ Rate_day_i/Rate_day_i-1)

Episodes: consecutive days when the exchange rates were growing/declining, i.e.:
Growth $X_{i}>0$, Decline $X_{i}<0$.

$\mathrm{N}=$ length of a growth period, $\mathrm{X}=\Sigma \mathrm{Xi}=$ cumulative \log return over a growth period,
$Y=$ maximum log return over the growth period.

Motivation - theoretical: Peak over Threshold theory

Take a process X_{i}, with $\operatorname{cdf} F$, and a threshold u. Compute excesses X_{i} - \mathbf{u}. Interested in the distribution of the excesses when the threshold u increases.

Theorem: Balkema-deHaan(1974)Pickands(1975). If the cdf $\mathrm{F}^{[\mathrm{ul}}\left(\mathrm{b}_{\mathrm{u}}+\mathrm{a}_{\mathrm{u}}\right.$ x) of the excesses has a continuous limit as u increases, then the limit is one of three types of distributions: cdf's (in standard forms):
threshold

$$
\text { Exponential: } \mathrm{G}(\mathrm{x})=1-\mathrm{e}^{-x}, x \geq 0
$$

$$
\text { Pareto: } G(x)=1-\frac{1}{x^{\alpha}}, x \geq 1, \alpha>0
$$

$$
\text { Beta: } G(x)=1-\frac{1}{(-x)^{\alpha}},-1 \leq x \leq 0, \alpha>0
$$

For "light tailed" distribution of X_{i}, the limiting distribution of the excesses will be exponential.

Summary up to now

Start with a process:
$X_{1}, X_{2}, \ldots, X_{k}$,

DURATION = the number of years/time periods in one event: random $=\mathbf{N}$.
Duration=N

MAGNITUDE = area of the shaded region $=$ random sum of the series values for one event.
Magnitude $=\mathrm{X}=\sum_{i=1}^{N} X_{i}$

MAXIMUM = max observation during an event = random maximum of the series values for one event.

Max $/$ Peak $=\mathrm{Y}=\max _{i=1 \ldots N} X_{i}$

Random vector
 $$
\left(N, \sum_{i=1}^{N} X_{i}, \max _{1 \leq i \leq N} X_{i}\right)=(N, X, Y)
$$

GOAL: Construct a mathematically natural model for the JOINT distribution of (duration, magnitude X and maximum Y) of events.

Notable properties of the random vector (N, X, Y):

- All components are related/dependent, the joint behavior of X and Y is not trivial,
- The sum and maximum are of random number of random observations.

Hierarchical approach:
$\begin{array}{ll}\text { 1. } & \text { Specify distribution of } \mathbf{N} \\ \text { 2. } & \text { Given } \mathbf{N}=\mathbf{n} \text {, find conditional distr. } f(x, y \mid n) \text { of }(\mathbf{X}, \mathrm{Y} \mid \mathbf{N}=\mathbf{n})=\left(\sum_{i=1}^{n} X_{i}, \max _{i=1, \ldots, n} X_{i}\right)\end{array}$
3. Get the joint distribution of (N, X, Y) as

$$
f(n, x, y)=f(x, y \mid n) f_{N}(n)
$$

$$
\text { Joint Distribution of }\left(\sum_{i=1}^{n} X_{i}, \max _{i=1, \ldots, n} X_{i}\right)=(X, Y)
$$

History: Start with $\mathbf{X 1}, \ldots, \mathrm{Xn}$ iid random variables, and known (nonrandom) n
GOAL: Find the joint distribution of (X, Y)
Only asymptotics for large n were available: $\mathrm{X}_{\mathrm{i}} \mathrm{iid}, \mathrm{X}$ in sum DoA of Normal, Y in max DoA of some EV distribution, then

Main tool for limit theory is the hybrid characteristic -distribution function:

$$
\psi_{(X, Y)}(t, v)=E\left\{\left(e^{i t X} I(Y \leq v)\right\}=\left(\frac{1-e^{(i t-\beta) v}}{1-i t / \beta}\right)^{n}, t \in R, v \geq 0\right.
$$

Anderson and Turkman (1991ab, 1992, 1995), Chow, T.L. and Teugels, J.L. (1979), Haas (1992), Ho and \mathcal{H} §ing (1996), Hsing (1995ab), Mathew and McCormick (1998), Mori (1981).

Intuitive understanding for the vector (X, Y)

$\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$ iid $\exp (\beta)$
Consider $\mathrm{n}=3$. Take order statistics $\mathrm{X}_{(1)}, \mathrm{X}_{(2)}, \mathrm{X}_{(3)}$, and spacings
$\mathrm{D}_{(1)}=\mathrm{X}_{(1)}, \mathrm{D}_{(2)}=\mathrm{X}_{(2)}-\mathrm{X}_{(1)}, \mathrm{D}_{(3)}=\mathrm{X}_{(3)}-\mathrm{X}_{(2)}$.

$X=\Sigma X i=3 D(1)+2 D(2)+D(3), Y=\max X i=X(3)=D(1)+D(2)+D(3)$.
Take $\mathbf{W i = (n - i + 1)}$ Di iid $\exp (\beta)$, and
$\mathrm{Di}=\mathrm{Wi} \mathrm{i}(\mathrm{n}-\mathrm{i}+1)$ are independent exponential, but not identically distributed.
$X=\Sigma X i=\Sigma \mathbf{W i}, Y=\operatorname{maxXi}=\Sigma(W i / i)$, so
$(X, Y)=\Sigma[W i(1,1 / i)]$.

Stochastic Representation

Theorem. For any $n \geq 1$ and every $i=1,2, \ldots, n$, let $a_{i}=(1,1 / i)$. Then a BGGE(β, n) random vector (X, Y) admits stochastic representation

$$
(X, Y)^{d}=\left(\sum_{i=1}^{n} W_{i}, \sum_{i=1}^{n}\left(W_{i} / i\right)\right)=\sum_{i=1}^{n} a_{i} W_{i}, \quad \begin{aligned}
& \text { only sums } \\
& \text { in bivariate } \\
& \text { case! }
\end{aligned}
$$

where the $\left\{\mathrm{W}_{\mathrm{i}}\right\}$ are IID exponential random variables with parameter β.
This shows that (X, Y) is infinitely divisible.

KEY NEW RESULT: PDF of the Bivariate Distribution of the

 Random Sum and Max for any n- Domain of the pdf

$$
x / n \leq y \leq x
$$

- PDF formula $f_{n}{ }^{(k)}$ will depend on the sector k of the plane.
- There are ($\mathrm{n}-1$) sectors:
$S_{0}=\{(x, y): x=y>0\}$ and

$S_{k}=\left\{(x, y) \in R^{2}: 0 \leq \frac{1}{k+1} x \leq y<\frac{1}{k} x\right\}, k=1,2, \ldots, n-1$.

KEY NEW RESULT: PDF of the Bivariate Distribution of the Random Sum and Max for any \mathbf{n} - contd.
Let $\mathbf{X}_{\mathbf{i}}, \mathbf{i}=1, \ldots, \mathbf{n}, \mathbf{n} \geq \mathbf{2}$, be iid $\exp (\beta)$. The joint pdf of $(\mathbf{X}, \mathbf{Y})=\left(\sum_{i=1}^{n} X_{i}, \max _{i=1, \ldots, n} X_{i}\right)$
is given explicitly by

$$
f(x, y)=\beta^{n} e^{-\beta x} H(x, y, n), \text { where }
$$

$$
H(x, y, n)=\left\{\begin{array}{cl}
\sum_{s=1}^{k} \frac{n(n-1)}{(s-1)!(n-s)!}(x-s y)^{n-2}(-1)^{s+1} & \text { for } n \geq 2,(x, y) \in S_{k} \\
1 & \text { for } n=1,(x, y) \in S_{0} \\
0 & \text { otherwise }
\end{array}\right.
$$

This new distribution is called BGGE (β, n) for bivariate distribution with gamma and generalized exponential marginals.

Qeadan, Kozubowski, Panorska (2010), Communication in Statistics: Theory and Methods.

Densities

$\mathbf{n}=\mathbf{2}$	$\mathbf{n}=\mathbf{5}$	$\mathbf{n}=\mathbf{2 5}$	

Marginal Distributions

Univariate

Marginal distribution of the sum X is $\operatorname{Gamma}(n, \beta)$.
Marginal distribution of the maximum Y is generalized exponential $G E(n, \beta)$, (Gupta and Kundu, 2007) with cdf

$$
F(y)=\left(1-e^{-\beta y}\right)^{n}, \quad \mathrm{y}>0 .
$$

Bivariate
Marginal distributions of (\mathbf{N}, X) and (\mathbf{N}, Y).

$$
(N, \mathrm{X})=\underbrace{\left(N, \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}\right)}_{\operatorname{BEG}(\beta, \mathrm{p})}
$$

$$
(\mathrm{N}, \mathrm{Y})=\underbrace{\left(N, \max _{1 \leq \mathrm{i} \leq \mathrm{i}}\right.}_{\operatorname{BTLG}(\beta, \mathrm{p})})
$$

BEG: Bivariate distribution with exponential and geometric marginals

BTLG: Bivariate distribution with truncated logistic and geometric marginals

[^0]
Conditional Distributions

Covariance Structure

$(X, Y) \sim \operatorname{BGGE}(\beta, n) . E X=n / \beta, E Y=(\Psi(n+1)+\gamma) / \beta, \operatorname{corr}(X, Y)$ is

$$
\rho_{n}=\frac{\psi(n+1)+\gamma}{\sqrt{\frac{n \pi^{2}}{6}-n \psi^{\prime}(n+1)}},
$$

where ψ and ψ ' are the digamma and polygamma functions, respectively, and Y is the Euler constant.

NOTE: $\rho_{\mathrm{n}} \rightarrow \mathbf{0}$, but very slowly.
Thus, approximation of (X, Y) with independent X and Y is not good even for large n . E.g. $\rho_{500}=0.24$

Distribution of the Ratio Y/X

History. Only limiting results were done for the ratio
New Results.
Theorem. If (X, Y) is $\operatorname{BGGE}(\beta, n)$, then

$$
(X, Y) \stackrel{d}{=}(X, R X),
$$

where X and R are independent random variables, X has $\operatorname{Gamma}(n, \beta)$ distribution, and R has pdf of the ratio Y/X.

Theorem. Distribution of the ratio is parameter free, with density:

$$
h_{n}(t)=n(n-1) \sum_{s=1}^{k}\binom{n-1}{s-1}(1-s t)^{n-2}(-1)^{s+1}, \text { for } \frac{1}{k+1} \leq t \leq \frac{1}{k}, \mathrm{k}=1,2, \ldots, \mathrm{n}-1 .
$$

Morrison and Tobias 1965, O'Brien 1980, Maller and Resnick 1984, Haas 1992, Kesten and Maller 19949

Trivariate Model: Joint Distribution of (X, Y, N)

N-random \mathbf{N}-Geo(p), Xi's iid $\exp (\beta)$ ind. of \mathbf{N}.

$$
(\mathrm{X}, \mathrm{Y}, \mathrm{~N})=\underbrace{\left(\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}, \max _{1 \leq i \leq N} Y_{i}, N\right)}_{\operatorname{TETLG}(\beta, \mathrm{p})}
$$

Trivariate distribution with exponential, truncated logistic and geometric marginals ${ }^{1}$.

The pdf of $(\mathbf{X}, \mathbf{Y}, \mathbf{N})$ is $\quad f(x, y, n)=\beta^{n} e^{-\beta x} p(1-p)^{n-1} H(x, y, n)$,
where function H is given in the pdf of the ($X, Y \mid N=n$)

Estimation of Parameters

MLEs for β and p exist in explicit forms.
$\left(\mathrm{X}_{1}, Y_{1}, N_{1}\right), \ldots,\left(\mathrm{X}_{m}, Y_{m}, N_{m}\right)$ random sample from $\operatorname{TETLG}(\boldsymbol{\beta}, \mathbf{p})$ distribution.

The MLE's of $\boldsymbol{\beta}$ and \mathbf{p} are: $\quad \hat{\beta}_{m}=\bar{N}_{m} / \bar{X}_{m}$ and $\hat{p}=\frac{1}{\bar{N}_{m}}$.

The vector MLE is consistent, asymptotically normal, and asymptotically efficient. The asymptotic covariance matrix is known.
Note: The MLEs do not depend on Y_{i} 's.

Application 1: Financial Data

For the exchange rates data constructed data set of episodes.
Growth $\mathrm{Xi}>0$, decline $\mathrm{Xi}<0$

For analysis, considered episodes of growth: $\mathrm{Xi}>0$.

Our data were 1902 triples (X, Y, N) of growth episodes.
We checked that:

- Positive returns come from exponential distribution;
- Magnitudes of growth periods also come from exponential distribution;
- The fit of all bivariate marginals is quite reasonable;
- Fit of conditional distributions is reasonable

Stability of the returns wrt growth periods: Cumulative positive returns have the same distribution as the returns.

Modeling financial data

Daily positive log-returns X_{i} fit with exponential distribution

Cumulative positive log-returns
$X=\Sigma X_{i}$ fit with exponential model

Modeling financial data: Fit of BEG model to $\left(\mathrm{N}, \mathrm{X}=\Sigma \mathrm{X}_{\mathrm{i}}\right)$

Modeling financial data: Fit of BTLG model to ($\mathrm{N}, \mathrm{Y}=\max _{\mathrm{i}}$)

Marginal distribution of the maximum fit.
Fit of conditional distr. $\mathrm{X} \mid \mathrm{N}=\mathrm{k}$

k=3 day max log-returns

Fit of TETLG model to Exchange data

All tests on 0.05 significance level. Checking bivariate fit.
Is the ratio independent from the sum?
Checked Pearson's correlation between ratio and sum;
Ho: $\rho=0 \quad$ Ha: $\rho \neq 0$
$r=0.179, p$-value $=0.1749$
Conclusion: Ratio and sum are not correlated, so BGGE model OK
Bivariate Kolmogorov-Smirnov goodness of fit test.
Ho: data comes from BGGE distribution Ha: data does not come from BGGE
Test stat=1.346, p-value=0.45
Conclusion: BGGE model OK
Bivariate Kolmogorov-Smirnov goodness of fit tests for conditional distributions of (X,Y) GIVEN $n=N$.

Test results below.
OVERALL CONCLUSION: REASONABLE FIT of all the bivariate models (BEG, BTLG, and BGGE) for the growth episodes

Example 2: Climate and Hydrology: The "Dust Bowl"

The great drought of the 1930s in the US (and Canada), the 'Dust Bowl' impacted millions of people in many states. It had terrifying effects on the economy and the natural environment.

The data: Dendroclimatic (western juniper) reconstruction of precipitation from 300 BC to AD 2001 in the Walker River watershed (California/Nevada). California Climate Division

Total annual precipitation (full reconstruction) plotted as deviation from the overall median in standard deviation units.

EXAMPLE 2: THE "DUST BOWL" contd.

- Probability of a drought longer or larger than the 'Dust Bowl' is 0.08 ;
- Probability of a drought longer and larger than 'Dust Bowl' is 0.06 .
- Conditional probability of a drought with at least 'Dust Bowl's magnitude given that duration is $\mathbf{1 1}$ years is $\mathbf{0 . 4 6}$

EXAMPLE 3: Paris heat wave of the 2003

In August 2003, France experienced an extreme heat wave, that resulted in an estimated 14,802 deaths*.

Definition of a hot event: consecutive observations above the $33^{\circ} \mathrm{C}$.

-Probability of a hot event with the same duration of 11 days is $\mathbf{0 . 0 0 0 0 7 5 ;}$
-Conditional probability of a heat wave with at least that magnitude given that duration is 11 days is about 5.5e-4.
-Probability of a heat wave longer than 6 days and larger than 100 (98th percentile of magnitudes) is 0.005 .

Note: Maximum $\mathrm{Y}=64 \mathrm{deg} \mathrm{C} * 10$ (really 39.4oC)
*Dhainaut et al. 2004., Data from http://eca.knmi.nl/, station ID 104969

SUMMARY

Given a process X1, X2, X3, fluctuating around a threshold.

Suppose Xi's are iid $\exp (\beta)$, and the process
fluctuates according to a geometric model.

$$
(\mathrm{X}, \mathrm{Y}, \mathrm{~N})=\underbrace{\left(\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}, \max _{1 \leq i \leq N} Y_{i}, N\right)}_{\operatorname{TETLG}(\beta, \mathrm{p})}
$$

NEW stochastic model for the joint distribution of duration, magnitude, and maximum of the events.

[^0]: Kozubowski, Panorska (2005) (2008), Biondi, Kozubowski, Panorska (2005), Saito, Biondi, Kozubowskil, 6 Panorska (2008)

