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“From the tropics to the arctic, climate and weather 

have powerful direct and indirect impacts on human life.

Extremes of heat and cold can cause potentially fatal 

illnesses, .... Other weather extremes,  such as heavy 

rains, floods, and hurricanes, also have severe impacts 

on health. Approximately 600 000 deaths occurred 

worldwide as a result of weather-related natural 

disasters in the 1990s.”

The WHO, 12 November, 2008
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Outline

• Stochastic Models: First joint model for duration N, magnitude X and 

maximum Y of events: (N, X, Y)

• Mathematical Results: The model for (N, X, Y): 

•Stochastic representation, pdf;

•Marginals: one dimensional and bivariate; conditionals;

•Correlation structure

•Distribution of the ratio max/sum.

• Examples: Back to the  “DUST BOWL”, heat wave, and financial modeling. 

• Summary

• Motivation: Extreme hydroclimatic and weather events, 
e.g. drought, flood, or heat waves; Financial modeling.

• Examples: (1) Paris heat wave, August 2003.

– (2) Great Drought of the 1930s in the USA, THE “DUST 
BOWL”, 

– Financial modeling – stability “with respect to growth 
period”
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Motivation: Climate and hydrology - drought

"DUST BOWL" - Great drought of the 1930s in the USA, the setting of John 

Steinbeck's "Grapes of Wrath". 

What are the chances 

that “Dust Bowl” will 

happen again? 

Dust storms

Abandoned farms

Farmland turned to 
sand dunes

(Kozubowski, Panorska (2005, 2007), Biondi et al. (2007), Saito et al. (2008))

What are the chances 

of a drought with 

duration exceeding 

10 years?
What are the chances that a 5 years long drought will have 

magnitude exceeding “Dust Bowl’s” and a large maximum?
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Motivation – drought, contd.

Original precipitation data in 

standard deviation units plotted as 

difference from a threshold.

Precipitation “events” or 

“episodes”.

Episodes: wet and dry
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An episode is a period with the process staying consecutively above/below threshold: 
e.g. “dry”, “wet” year, drought, flood, etc. 

Threshold for “dry” or “wet” depends on the definition of the episode (e.g. drought).  

Threshold
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Motivation: Climate and weather  – heat waves

What are the chances that a heat wave longer than 6 days and 

larger than current 98th percentile of heat waves’

magnitudes?

• In August 2003, France experienced an extreme heat wave, that resulted in an 

estimated 14,802 deaths*. 

• Hot event: consecutive observations above the 33oC.

*Dhainaut et al. 2004.
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Hot events

What are the chances 

that a large heat wave 

will happen again? 

What are the chances 

of a hot event with 

duration equal to  

this one, 11 days?
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Motivation: Financial growth/decline episodes

Daily exchange rates between Japanese Yen and 

British pound quoted in UK pound, Jan. 2, 1980-May 21, 1996.

Process Xi: Daily log returns n=4274, 

Xi=log(Rate_day_i/Rate_day_i-1)

Episodes: consecutive days when the exchange rates were growing/declining, i.e.:    
Growth Xi >0, Decline Xi <0.

Nolan 2001, Kozubowski and Podgorski 2001, Kozubowski and Panorska 2004, 2007, 2011

N = length of a growth period, X=ΣXi=cumulative log return over a growth period, 

Y=maximum log return over the growth period.

Xi

i

Decline episodes

Growth 

episodes
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Motivation – theoretical: Peak over Threshold theory

Take a process Xi , with cdf F,  and a 

threshold u. Compute excesses Xi-u. 

Interested in the distribution of the 

excesses when the threshold u 

increases. 

Theorem: Balkema-deHaan(1974)-

Pickands(1975). If the cdf F [u] (bu +au
x) of the excesses has a continuous 

limit as u increases, then the limit is 

one of three types of distributions: 

cdf’s (in standard forms):

For “light tailed” distribution of Xi, the limiting distribution of the excesses will 

be exponential.

Exponential: G(x)=1-e ,  0,

1
Pareto: ( ) 1 ,  1,  >0,

1
Beta: ( ) 1 ,  1 0,  >0.

( )

x x

G x x
x

G x x
x

α

α

α

α

− ≥

= − ≥

= − − ≤ ≤
−

threshold

u
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Summary up to now

Start with a process:

1 2, , , ,kX X XK

threshold

Positive events

Negative events

Duration=N

1

Magnitude=X=
N

i

i

X
=
∑

1
Max/Peak=Y=max i

i N
X

= K

1 2, , , ,kX X XK

MAGNITUDE = area of the 

shaded region = random 

sum of the series values 

for one event.

DURATION = the 
number of years/time 
periods in one event : 
random = N.

MAXIMUM = max observation 

during an event = random 

maximum of the series values 

for one event. 

Kozubowski and Panorska (2005), (2008), Biondi, Kozubowski and Panorska (2005), Biondi et al. (2008).
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Random vector
1

1

( , ,max ) ( , , )
N

i i
i N

i

N X X N X Y
≤ ≤

=

=∑
GOAL: Construct a mathematically natural model for the JOINT distribution of 
(duration, magnitude X and maximum Y) of events.

Notable properties of the random vector (N, X, Y):

• All components are related/dependent, the joint behavior of X and Y is not trivial,

• The sum and maximum are of random number of random observations.

Hierarchical approach:

1. Specify distribution of N

2. Given N=n, find conditional distr.                         of (X, Y|N=n) =

3.  Get the joint distribution of (N, X, Y) as

)|,( nyxf
1, ,

1

( , max )
n

i i
i n

i

X X
=

=
∑

K

)()|,(),,( nfnyxfyxnf N=
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Joint Distribution of

Only asymptotics for large n were available: Xi iid, X in sum DoA of Normal, Y in max 
DoA of some EV distribution, then  

independent










≤≤=
∑

ni
i

n

i

i XX
11

max ,
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Normal Extreme value

Appropriate normalization

Anderson and Turkman (1991ab, 1992, 1995), Chow, T.L. and Teugels, J.L. (1979), Haas (1992), Ho and Hsing

(1996), Hsing (1995ab), Mathew and McCormick (1998), Mori (1981). 

Main tool for limit theory is the hybrid characteristic -distribution function:

GOAL: Find the joint distribution of  (X, Y)

History: Start with X1 , …, Xn iid random variables, and known (nonrandom) n

1, ,
1
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Intuitive understanding for the vector (X, Y)

X1, X2, X3 iid exp(β)

Consider n=3. Take order statistics X(1), X(2), X(3), and spacings

D(1)= X(1), D(2)= X(2) -X(1), D(3)= X(3) - X(2).

X=ΣXi= 3D(1)+2 D(2)+ D(3), Y=maxXi= X(3)= D(1)+ D(2)+ D(3). 

Take Wi=(n-i+1) Di iid exp(β), and 

Di=Wi/(n-i+1)  are independent exponential, 

but not identically distributed. 

X=ΣXi= Σ Wi, Y= maxXi = Σ (Wi/i), so 

(X, Y)= Σ [Wi(1, 1/i)]. 

1

1

1/2

1/3

X(1) X(2) X(3)

D (1) D (2)
D (3)
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Stochastic Representation

Theorem. For any n ≥ 1 and every i = 1, 2, …, n, let ai=(1, 1/i). Then a BGGE(β,n) random 

vector (X, Y) admits stochastic representation

where the {Wi} are IID exponential random variables with parameter β.

( ) ,)/( ,,
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n
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d
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No max, 

only sums 

in bivariate

case!

This shows that (X, Y) is infinitely divisible.
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KEY NEW RESULT: PDF of the Bivariate Distribution of the 

Random Sum and Max for any n

• Domain of the pdf

x/n ≤ y ≤ x

• PDF formula fn
(k) will depend 

on the sector k of the plane.

• There are (n-1) sectors:

( ) 
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
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= ≤≤

n

i ni
ii XXYX

1 1

max,,
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KEY NEW RESULT: PDF of the Bivariate Distribution of the 

Random Sum and Max for any n – contd.

Let Xi, i=1, …, n, n ≥ 2, be iid exp(β). The joint pdf of  (X, Y)=
1, ,

1

( , max )
n

i i
i n

i

X X
=

=
∑

K
is given explicitly by 

This new distribution is called BGGE(β, n) for bivariate distribution with 

gamma and generalized exponential marginals.

Qeadan, Kozubowski, Panorska (2010), Communication in Statistics: Theory and Methods.
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Densities

n=25n=5n=2
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Marginal Distributions

Univariate

Marginal distribution of the sum X is Gamma(n, β).

Marginal distribution of the maximum Y is generalized exponential GE(n, β), (Gupta 
and Kundu, 2007) with cdf

( ) (1 ) ,   y > 0.y nF y e β−= −
Bivariate

Marginal distributions of (N, X) and (N, Y).

( ) ( )
443442143421

p),BTLG(

ni1
i

p),BEG(

N

1i

i maxX  ,   Y N,                      X  ,X ,

ββ
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
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


=

≤≤=
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BEG: Bivariate distribution 

with exponential and 

geometric marginals

BTLG: Bivariate distribution with 

truncated logistic and geometric 

marginals

Kozubowski, Panorska (2005) (2008), Biondi, Kozubowski, Panorska (2005), Saito, Biondi, Kozubowski, 

Panorska (2008)
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Conditional Distributions
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Covariance Structure

(X, Y)~ BGGE(β, n). EX=n/ β, EY=(ψ(n+1)+γ)/ β,  corr(X, Y) is 

Thus, approximation of (X, Y) with independent X and Y is not good even for 

large n.  E.g. ρ500 =0.24

2

( 1)
,

'( 1)
6

n

n

n
n n

ψ γ
ρ

π
ψ

+ +
=

− +

where ψ and ψ’ are the digamma and 

polygamma functions, respectively, 

and γ is the Euler constant.

NOTE: ρn→0, but very slowly.
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Distribution of the Ratio Y/X

2 1

1

1 1 1
( ) ( 1) (1 ) ( 1) ,   for ,   k=1, 2, , n-1.

1 1
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Theorem. Distribution of the ratio is parameter free, with density:

History. Only limiting results were done for the ratio

New Results.

Theorem. If (X, Y) is BGGE(β,n), then

( , ) ( , ),
d

X Y X RX=
where X and R are independent random variables, X has Gamma(n, β) distribution, and 

R has pdf of the ratio Y/X.

Morrison and Tobias 1965, O’Brien 1980, Maller and Resnick 1984, Haas 1992, Kesten and Maller 1994.
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Trivariate Model: Joint Distribution of (X, Y, N)

N-random N-Geo(p), Xi’s iid exp(β) ind. of N.

( )
N

i
1

i 1

TETLG( ,p)

X, Y, N X ,max ,i
i N
Y N

β

≤ ≤
=

 
=  
 
∑
144424443

Trivariate distribution with exponential, truncated logistic and geometric 

marginals1.

The pdf of (X, Y, N) is 

1 Kozubowski, Panorska, Qeadan (2011), JSPI, in press.

),,,()1(),,( 1 nyxHppenyxf nxn −− −= ββ

where function H is given in the pdf of the (X,Y|N=n)
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Estimation of Parameters

MLEs for β and p exist in explicit forms.

( ) ( )1 1 1 X , , ,  , X , ,m m mY N Y NK random sample from TETLG(β, p) distribution. 

The MLE’s of β and p are:
1ˆ ˆ/  and .mm m
m

N X p
N

β = =

The vector MLE is consistent, asymptotically normal, and asymptotically 

efficient. The asymptotic covariance matrix is known.

Note: The MLEs do not depend on Yi’s.
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Application 1: Financial Data

For the exchange rates data constructed data set of episodes.

Growth Xi >0, decline Xi <0

For analysis, considered episodes of growth: Xi >0.  

Our data were 1902 triples (X, Y, N) of growth episodes. 

We checked that:

• Positive returns come from exponential distribution;

• Magnitudes of growth periods also come from exponential 

distribution;

• The fit of all bivariate marginals is quite reasonable;

• Fit of conditional distributions is reasonable

Nolan 2001, Kozubowski and Podgorski 2001, Kozubowski and Panorska 2004, 2008, 2011.

Stability of the returns wrt growth periods: Cumulative positive returns have the 

same distribution as the returns.
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Modeling financial data
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Modeling financial data: Fit of BEG model to (N, X=ΣXi)

Geometric fit to 
durations

Growth period in days
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Modeling financial data: Fit of BTLG model to (N, Y=maxXi)

maxima of log-returns
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Fit of TETLG model to Exchange data

All tests on 0.05 significance level.  Checking bivariate fit. 

Is the ratio independent from the sum?

Checked Pearson's correlation between ratio and sum;

Ho: ρ=0                  Ha: ρ≠0 

r = 0.179, p-value = 0.1749 

Conclusion: Ratio and sum are not correlated, so  BGGE model OK

Bivariate Kolmogorov-Smirnov goodness of fit test. 

Ho: data comes from BGGE distribution   Ha: data does not come from BGGE 

Test stat=1.346, p-value=0.45

Conclusion:    BGGE model OK

Bivariate Kolmogorov-Smirnov goodness of fit tests for conditional distributions 
of (X, Y) GIVEN n=N. 

Test results below.

0.7700.3350.806P-value=0.293

543N=2

OVERALL CONCLUSION: 

REASONABLE FIT of all the 

bivariate models (BEG, BTLG, 

and BGGE) for the growth 

episodes
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The data: Dendroclimatic (western juniper) 
reconstruction of precipitation from 300 BC to 
AD 2001 in the Walker River watershed 
(California/Nevada). California Climate Division 
3.

Total annual precipitation (full reconstruction) plotted as deviation from the 
overall median in standard deviation units.

Example 2: Climate and Hydrology: The “Dust Bowl”

The great drought of the 1930s in the US (and 
Canada), the 'Dust Bowl' impacted millions of 
people in many states. It had terrifying effects 
on the economy and the natural environment.
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EXAMPLE 2: THE “DUST BOWL” contd. 

• Probability of a drought longer or larger than the 'Dust Bowl' is 0.08;

• Probability of a drought longer and larger than 'Dust Bowl' is 0.06. 

• Conditional probability  of a drought with at least 'Dust Bowl'’s magnitude 

given that duration is 11 years is 0.46 

Maximum=Y=  1.04

Magnitude=X=7.76

Maximum=Y=  1.04
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EXAMPLE 3: Paris heat wave of the 2003

In August 2003, France experienced an extreme heat wave, 
that resulted in an estimated 14,802 deaths*. 

Definition of a hot event: consecutive observations above 
the 33oC.

N=11 days

•Probability of a hot event 
with the same duration of 11 
days is 0.000075;

•Conditional probability  of a 
heat wave with at least that 
magnitude given that 
duration is 11 days is about 
5.5e-4.

•Probability of a heat wave 
longer than 6 days and 
larger than 100 (98th 
percentile of magnitudes) is 
0.005. 

Magnitude=479

Max=64

*Dhainaut et al. 2004., Data from http://eca.knmi.nl/, station ID 104969

Note: Maximum Y = 64deg C*10 (really 39.4oC)

Zero level=330C
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SUMMARY

Suppose Xi’s are iid exp(β),
and the process 
fluctuates according to a 
geometric model.

Given a process X1, X2, X3, …. fluctuating around a threshold.
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NEW stochastic model for the joint distribution of duration, magnitude, 

and maximum of the events.
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NEVADA: A STATE OF EXTREMES

Thank You

WHY IMPORTANT FOR NEVADA and OTHER WESTERN STATES ?

We have to deal with lots of extremes.


