
SELECTED METHODS OF POTENTIAL THEORY
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KRZYSZTOF BOGDAN (LECTURES) AND KAROL SZCZYPKOWSKI (PROBLEM
SESSIONS)

Abstract. In three lectures and three problem sessions we present a hand-
ful of recent results and techniques, which proved to be useful in Har-
monic Analysis, Probability and PDEs. This is an extended version of a
mini-course given 2-4 Oct at Potential Theory Workshop: Intersections in
Harmonic Analysis, Partial Differential Equations and Probability, Sep-
tember 28-October 6, 2023, CIMAT, Guanajuato. The prerequisites for
the course are just integration and general exposure to Analysis (limits,
series and estimates), but some familiarity of the reader with semigroups
of (sub-Markovian) operators, their generators, and quadratic form or
with Markov processes, their transition kernels, exit times, Green kernels,
and harmonic functions would be very helpful.
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1. Hardy inequality and ground-state representation

This Lecture 1 is based on [11], but we also like to mention [17], [18], [21].

1.1. Goals and motivation. We construct explicit supermedian functions
for symmetric sub-Markov semigroups to obtain Hardy inequality or ground-
state representation (Hardy identity) for their quadratic forms.

Hardy inequalities are important in harmonic analysis, potential theory,
functional analysis, partial differential equations and probability. In PDEs
they are used to obtain a priori estimates, existence and regularity results
[44] and asymptotic behaviour of solutions [50]. In functional and harmonic
analysis they yield embedding theorems and interpolation theorems, e.g.,
Gagliardo–Nirenberg interpolation inequalities [41], etc.

The connections of Hardy inequalities to potential theory are well known;
see, e.g., [1], [33], [10], [29]. A general rule stemming from the work of
Fitzsimmons [33] is this: If L is the generator of a symmetric Dirichlet form
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E , h ≥ 0 and Lh ≤ 0, then E(u, u) ≥
∫
u2(−Lh/h). Below we make a

similar connection in the setting of symmetric transition densities p. When
p is integrated against increasing weight in time and any weight in space, we
obtain a supermedian function h. We also get a weight, q, an analogue of
the Fitzsimmons’ ratio −Lh/h, which yields the Hardy identity or inequality.
Our approach is straightforward and general, the resulting Hardy identity of
inequality is automatically valid on the whole of the reference L2 space, and
is optimal in some cases.

We simultaneously prove non-explosion results for Schrödinger perturba-
tions p̃ of p by q. Namely, we verify that h is supermedian and integrable for
p̃, if finite. For instance, we recover the famous critical non-explosion result
of Baras and Goldstein for ∆ + (d/2 − 1)2|x|−2; see [3], [46].

The plan of Lecture 1 is as follows. In Theorem 1.6, we prove a non-
explosion for Schrödinger perturbations. In Theorem 1.9, we prove a Hardy
inequality, in fact, under mild additional assumptions, Hardy identity (ground-
state representation), with an explicit remainder term. Then we present ap-
plications: the classical Hardy inequality and ground-state representation for
the Laplacian and fractional Laplacian. In particular, we recover the optimal
constants and the corresponding remainder terms, as given by Filippas and
Tertikas [32], Frank, Lieb, and Seiringer [34], and Frank and Seiringer [35].

Current applications of our methods involve detailed analysis of “critical”
Schrödinger perturbations and some analogues in the Lp setting; see [17], [21],
and [18], respectively.

1.2. Notation. Throughout we use “:=” or cursive to indicate definition
or something noteworthy, e.g., a ∧ b := min{a, b} and a ∨ b := max{a, b}
for (real numbers) a, b ∈ R. For real number or real-valued function f ,
we let f+ := f ∨ 0. Positive means ≥ 0, analogously for increasing (and
decreasing). For two positive functions f and g we write f ≈ g if there is a
strictly positive number c, called constant, such that c−1 g ≤ f ≤ c g. Such
comparison is called sharp estimate. We write c = c(a, b, . . . , z) to claim that
c may be so chosen to depend only on a, b, . . . , z. Symbols for constants may
denote different numbers in different places. For an open subset D of the
d-dimensional Euclidean space Rd, d ∈ {1, 2, . . .}, we denote by Cc(D) the
space of continuous functions with compact supports in D, and by C∞

c (D)
the space of infinitely often differentiable functions in Cc(D). The Lebesgue
measure on the half-line [0,∞) is usually denoted by ds, dt, etc., and on Rd,
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by dx, dy, etc. As usual, 0 · ∞ := 0. Further notation is introduced as we
proceed.

1.3. The Gaussian kernel. Let g be the Gaussian kernel

(1.1) gt(x) := (4πt)−d/2e−|x|2/(4t) , t > 0, x ∈ Rd .

Below, as usual, f ∗ h(x) :=
∫
Rd f(x − y)h(y)dy, x ∈ Rd, the convolution of

functions f, h : Rd → R, defined if the integral is convergent.

Exercise 1.1. Prove that the function pt(x, y) := gt(y−x), t > 0, x, y ∈ Rd,
is symmetric: pt(x, y) = pt(y, x), and satisfies the Chapman–Kolmogorov
equations:∫

Rd

ps(x, y)pt(y, z)dy = ps+t(x, z), x, z ∈ Rd, s, t > 0.

In short, pt(x, y) is a transition density on Rd. Further,
∫
Rd pt(x, y)dy = 1

for x ∈ Rd, t > 0, so pt(x, y) is a probability transition density.

Hints. By Tonelli’s theorem, we verify that
∫
Rd gt(x)dx = 1, t > 0, after first

considering d = 2 and polar coordinates. Then we verify that gs ∗ gt = gs+t,
s, t > 0, by reorganizing squares in the exponents on the left-hand side. The
results for p are reformulations.

1.4. Supermedian functions. Let (X,M,m) be a σ-finite measure space.
Let B(0,∞) be the Borel σ-field on the half-line (0,∞). Let p : (0,∞) ×X ×
X → [0,∞] be B(0,∞) ×M×M-measurable and symmetric:

pt(x, y) = pt(y, x) , x, y ∈ X , t > 0 .

Let p satisfy the Chapman–Kolmogorov equations:

(1.2)

∫
X

ps(x, y)pt(y, z)m(dy) = ps+t(x, z), x, z ∈ X, s, t > 0,

and assume that for all t > 0 and x ∈ X, pt(x, y)m(dy) is a σ-finite measure.
Let f : R → [0,∞) be increasing and f := 0 on (−∞, 0]. We have f ′ ≥ 0

almost everywhere (a.e.), and

(1.3) f(a) +

∫ b

a

f ′(s)ds ≤ f(b), −∞ < a ≤ b < ∞.
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Further, let µ be a positive σ-finite measure on (X,M). We put

psµ(x) :=

∫
X

ps(x, y)µ(dy),(1.4)

h(x) :=

∫ ∞

0

f(s)psµ(x) ds.(1.5)

We also denote pth(x) :=
∫
X
pt(x, y)h(y)m(dy). By Tonelli and Chapman-

Kolmogorov, for t > 0 and x ∈ X,

pth(x) =

∫ ∞

t

f(s− t)psµ(x) ds

≤
∫ ∞

t

f(s)psµ(x) ds

≤ h(x).(1.6)

In this sense, h is supermedian for the kernel p. In fact, it is excessive since
pth → h as t → 0; see [37] for some nomenclature of potential theory.
We then define q : X → [0,∞] as follows: q(x) := 0 if h(x) = 0 or ∞, else

q(x) :=
1

h(x)

∫ ∞

0

f ′(s)psµ(x) ds.

Hence for all x ∈ X,

(1.7) q(x)h(x) ≤
∫ ∞

0

f ′(s)psµ(x) ds.

Exercise 1.2. Calculate h and q for the Gaussian semigroup, µ the Dirac

measure, and f(t) := tβ. For which β we get (the largest) q(x) = (d−2)2

4
|x|−2?

Hints. We consider −∞ < δ < d/2 − 1 and calculate the following integral
for the Gaussian kernel by substituting s = |x|2/(4t),

h(x) :=

∫ ∞

0

gt(x)tδ dt =

∫ ∞

0

(4πt)−d/2e−|x|2/(4t)tδ dt(1.8)

= (4π)−d/2

(
|x|2

4

)δ−d/2+1 ∫ ∞

0

sd/2−δ−2e−s ds

= 4−δ−1π−d/2|x|2δ−d+2Γ(d/2 − δ − 1).

Here, as usual, Γ(p) :=
∫∞
0

xp−1e−xdx, p ∈ (0,∞), and Γ(p + 1) = pΓ(p).
Optimal β = (d− 2)/2 is obtained by solving a quadratic equation.
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1.5. Schrödinger perturbation. Two things (definitions, theorems, cars,
etc.) may be considered similar if one seems a special case of another or both
seem special cases of a third thing. Here is an instance: exp and p̃ below.

Exercise 1.3. Of course, exp(x) :=
∑∞

n=0 x
n/n! for x ∈ R. Prove directly

that exp(x + y) = exp(x) exp(y), x, y ∈ R.

Hints. This multiplicativity follows from simple properties of the binomial
symbol

(
n
k

)
.

Definition 1.4. [15] We define the Schrödinger perturbation of our p by q:

(1.9) p̃ :=
∞∑
n=0

p(n),

where p
(0)
t (x, y) := pt(x, y), and

(1.10) p
(n)
t (x, y) :=

∫ t

0

∫
X

ps(x, z) q(z)p
(n−1)
t−s (z, y)m(dz) ds, n ≥ 1.

Lemma 1.5. p̃ is a transition density.

This is indeed similar to Exercise 1.3. For details, see [15] and Lecture 2.
Recall that h is supermedian for p. Here is a deeper result.

Theorem 1.6 ([11]). We have p̃th ≤ h for all t > 0.

Proof. For n = 0, 1, . . . and t > 0, x ∈ X, we consider

p
(n)
t h(x) :=

∫
X

p
(n)
t (x, y)h(y)m(dy),

and we claim that
n∑

k=0

p
(k)
t h(x) ≤ h(x).
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By (1.6) this holds for n = 0. By (1.10), Tonelli, induction and (1.7),

n+1∑
k=1

p
(k)
t h(x) =

∫ t

0

∫
X

∫
X

ps(x, z) q(z)
n∑

k=0

p
(k)
t−s(z, y)h(y)m(dy)m(dz) ds

≤
∫ t

0

∫
X

ps(x, z) q(z)h(z)m(dz) ds

≤
∫ t

0

∫
X

ps(x, z)

∫ ∞

0

f ′(u)

∫
X

pu(z, w)µ(dw) dum(dz) ds.

=

∫ t

0

∫ ∞

0

f ′(u)ps+uµ(x) du ds,

where in the last passage we used (1.2) and (1.4). By (1.3),

n+1∑
k=1

p
(k)
t h(x) ≤

∫ ∞

0

∫ u∧t

0

f ′(u− s) ds puµ(x) du

≤
∫ ∞

0

[f(u) − f(u− u ∧ t)] puµ(x) du

=

∫ ∞

0

[f(u) − f(u− t)] puµ(x) du.

Now, for k = 0,

pth(x) =

∫ ∞

t

f(u− t)puµ(x) du

=

∫ ∞

0

f(u− t) puµ(x) du.

So

n+1∑
k=0

p
(k)
t h(x) ≤

∫ ∞

0

f(u)puµ(x) du = h(x).

The claim is proved. The theorem follows by letting n → ∞. □

Remark 1.7. Theorem 1.6 asserts that h is supermedian for p̃. This is much
more than (1.6), but (1.6) may also be useful in applications. Incidentally,
the inequality in Theorem 1.6 gives an integral finiteness or non-explosion
for the Schrödinger perturbation p̃, if h(x) < ∞.

In the next subsection, q will double as a weight in a Hardy inequality.
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1.6. Hardy inequality. Let p, f , µ, h and q be as defined above.
Additionally, we shall assume that

∫
X
pt(x, y)m(dy) ≤ 1 for all t > 0

and x ∈ X. In short, p is a subprobability transition density. By Holm-
gren criterion [43, Theorem 3, p. 176], we then have ptu ∈ L2(m) for each
u ∈ L2(m), in fact

∫
X

[ptu(x)]2m(dx) ≤
∫
X
u(x)2m(dx). Here L2(m) is the

collection of all the real-valued square-integrable M-measurable functions on
X, equipped with the scalar product ⟨u, v⟩ :=

∫
X
u(x)v(x)m(dx). Since the

semigroup of operators (pt, t > 0) is self-adjoint and weakly measurable,

⟨ptu, u⟩ =

∫
[0,∞)

e−λtd⟨Pλu, u⟩,

where Pλ is the spectral decomposition of the operators, see [39, Section 22.3].
For u ∈ L2(m) and t > 0, we let

E (t)(u, u) :=
1

t
⟨u− ptu, u⟩.

In the theory of Dirichlet forms, it is usually argued by the spectral theorem
that t 7→ E (t)(u, u) is positive and decreasing [36, Lemma 1.3.4], allowing to
define the quadratic form of p,

E(u, u) := lim
t→0

E (t)(u, u), u ∈ L2(m).(1.11)

Exercise 1.8. Check the monotonicity.

Hints. According to the spectral theorem, it is enough to verify that the
function [0,∞) ∋ t 7→ (1 − e−tλ)/t is decreasing for λ ≥ 0, which follows by
calculus.

Here is a Hardy inequality with a remainder (1.12) and a Hardy identity,
or ground-state representation (1.13) of E .

Theorem 1.9 ([11]). If u ∈ L2(m) and u = 0 on {x ∈ X : h(x) = 0 or ∞},

E(u, u) ≥
∫
X

u(x)2q(x)m(dx)(1.12)

+ lim inf
t→0

∫
X

∫
X

pt(x, y)

2t

(
u(x)

h(x)
− u(y)

h(y)

)2

h(y)h(x)m(dy)m(dx).

If f(t) = tβ+ with β ≥ 0 in (1.5) or, more generally, if f is absolutely contin-
uous and there are δ > 0 and c < ∞ such that

[f(s) − f(s− t)]/t ≤ cf ′(s) for all s > 0 and 0 < t < δ,
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then for every u ∈ L2(m),

E(u, u) =

∫
u(x)2q(x)m(dx)(1.13)

+ lim
t→0

∫
X

∫
X

pt(x, y)

2t

(
u(x)

h(x)
− u(y)

h(y)

)2

h(y)h(x)m(dy)m(dx).

Proof. Let v := u/h, where v(x) := 0 if h(x) = 0 or ∞. Let t > 0. We note
that |vh| ≤ |u|, thus vh ∈ L2(m) and by (1.6), vpth ∈ L2(m). We then have

E (t)(vh, vh) = ⟨vh− pth

t
, vh⟩ + ⟨vpth− pt(vh)

t
, vh⟩ =: It + Jt.

By the definition of Jt and the symmetry of pt,

Jt =
1

t

∫
X

∫
X

pt(x, y)[v(x) − v(y)]h(y)m(dy) v(x)h(x)m(dx)

=

∫
X

∫
X

pt(x, y)

2t
[v(x) − v(y)]2h(x)h(y)m(dx)m(dy) ≥ 0.

To deal with It, we let x ∈ X, assume that h(x) < ∞, and consider

(h− pth)(x) =

∫ ∞

0

f(s)psµ(x) ds−
∫ ∞

0

f(s)ps+tµ(x) ds

=

∫ ∞

0

[f(s) − f(s− t)]psµ(x) ds.

Thus,

It =

∫
X

v2(x)h(x)

∫ ∞

0

1

t
[f(s) − f(s− t)] psµ(x) dsm(dx).

By (1.11) and Fatou’s lemma,

E(vh, vh) ≥
∫
X

∫ ∞

0

f ′(s)psµ(x) ds v2(x)h(x)m(dx)

+ lim inf
t→0

∫
X

∫
X

pt(x, y)

2t
[v(x) − v(y)]2 h(y)h(x)m(dy)m(dx)

=

∫
X

v2(x)h2(x)q(x)m(dx)

+ lim inf
t→0

∫
X

∫
X

pt(x, y)

2t
[v(x) − v(y)]2 h(y)h(x)m(dy)m(dx).

Now we substitute u for vh. For remaining (minor) details, see [11]. □
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Here is a resulting Hardy-type inequality.

Corollary 1.10. For every u ∈ L2(m) we have E(u, u) ≥
∫
X
u(x)2q(x)m(dx).

We are interested in quotients q as large as possible. This calls for ex-
plicit formulas or lower bounds of the numerator and upper bounds of the
denominator. For instance, Exercise 1.2 yields the classical Hardy inequality:

Corollary 1.11. The quadratic form of u ∈ L2(Rd, dx) for the Gaussian
semigroup is bounded below by (d/2 − 1)2

∫
Rd u(x)2|x|−2dx.

Below we discuss further applications. To this end we use the Fourier
transform (in the version consistent with the characteristic function):

f̂(ξ) :=

∫
Rd

eiξ·x f(x)dx for (a.e.) ξ ∈ Rd,

where ξ · x := ξ1x1 + . . . + ξdxd. For instance,

ĝt(ξ) = e−t|ξ|2 , t > 0, ξ ∈ Rd.

According to Plancherel theorem, for f, g ∈ L2(dx),∫
Rd

f̂(ξ)ĝ(ξ)dξ = (2π)d
∫
Rd

f(x)g(x)dx.

Exercise 1.12. Check this for g1/2.

Hints. By inspection, ĝ1/2 = (2π)d/2g1/2, which agrees with Plancherel.

Exercise 1.13. The classical Hardy inequality in Rd may be stated as∫
Rd

|ξ|2|û(ξ)|2dξ ≥
(
d− 2

2

)2

(2π)d
∫
Rd

u(x)2|x|−2dx, d ≥ 3.

Check this. Find a formulation that does not use the Fourier transform û.

Hints. By Plancherel theorem, for t > 0 and u ∈ L2(Rd),

E (t)(u, u) :=
1

t
⟨u− ptu, u⟩

= (2π)d
∫
Rd

1

t
(1 − e−t|ξ|2)| ˆu(ξ)|2dξ.

Note Proposition 1.27 below, too.
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1.7. The isotropic α-stable semigroup. A comprehensive reference is
[42]. Let

ν(z) := cd,α|z|−d−α, z ∈ Rd,

where 0 < α < 2, d ∈ N, and the constant cd,α is such that∫
Rd

(
1 − cos(ξ · z)

)
ν(z)dz = |ξ|α, ξ ∈ Rd.

Note that the measure ν(z)dz satisfies the so-called Lévy-measure condition:∫
Rd

(1 ∧ |x|2)ν(z)dz < ∞.

Further, it is homogeneous of degree −α:
∫
kA

ν(z)dz = k−α
∫
A
ν(z)dz, k > 0,

A ⊂ Rd, and it is invariant upon (linear) unitary transformations T : Rd →
Rd (to wit, T ∗T = TT ∗ = I) because ν(Tz) = ν(z).

Exercise 1.14. Prove that, indeed, for some c ∈ (0,∞),∫
Rd

(
1 − cos(ξ · z)

)
|z|−d−αdz = c|ξ|α, ξ ∈ Rd.

Hints. The left hand side is invariant upon (linear) unitary transformations
T : Rd → Rd (to wit, T ∗T = TT ∗ = I). For ξ ̸= 0, consider ξ = |ξ||ξ|−1ξ and
change the variables z := |ξ|y. Finally, use polar coordinates and note that

0 ≤ 1 − cos s =
∫ s

0
sin rdr ≤ s2

2
∧ 2 for s ∈ R.

Remark 1.15. It is known that cd,α = 2αΓ
(
(d + α)/2

)
π−d/2/|Γ(−α/2)|.

For t > 0, we let

pt(x) := (2π)−d

∫
Rd

e−t|ξ|αe−iξ·xdξ, x ∈ Rd.

By the celebrated Lévy-Khintchine formula, pt is a probability density and

p̂t(ξ) :=

∫
Rd

eiξ·x pt(x)dx = e−t|ξ|α , ξ ∈ Rd, t > 0.

For α = 1, we get the Cauchy convolution semigroup (aka Poisson kernel in
Harmonic Analysis):

pt(z) = Γ((d + 1)/2)π−(d+1)/2 t(
|z|2 + t2)(d+1)/2

.
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Exercise 1.16. Prove that for every α ∈ (0, 2),

pt(z) = t−d/αp1(t
−1/αz) , t > 0 , z ∈ Rd .

Hints. Use the homogeneity of |ξ|α and uniqueness for Fourier transform.

Remark 1.17. It is known that pt(x)/t → ν(x) for x ∈ Rd as t → 0.

Exercise 1.18. Check this directly for α = 1.

Hints. Do we get cd,1?

Apart from obvious similarities, there exist important differences between
p (hence 0 < α < 2) and g (hence α = 2). For instance the decay of p in
space is polynomial (see, e.g., [22] for a proof):

Lemma 1.19. There exists c = c(d, α) such that, for all z ∈ Rd, t > 0,

c−1

(
t

|z|d+α
∧ t−d/α

)
≤ pt(z) ≤ c

(
t

|z|d+α
∧ t−d/α

)
.

1.8. Subordination. There is a convolution semigroup ηt, t > 0, of prob-
ability densities concentrated on (0,∞), that is, such that ηt(s) = 0, s ≤ 0
and ηr ∗ ηt = ηr+t for r, t > 0, which satisfy

(1.14)

∫ ∞

0

e−usηt(s) ds = e−tuα/2

, u ≥ 0.

We have, using Bochner subordination,

pt(x) :=

∫ ∞

0

gs(x)ηt(s) ds,

where g is the Gaussian kernel defined in (1.1). This is great to analyze pt.

Exercise 1.20. Find p̂t using (1.14).

Hints. For t > 0,

pt(x) :=

∫ ∞

0

gs(x)ηt(s) ds,

so

p̂t(ξ) =

∫ ∞

0

e−s|ξ|2ηt(s) ds, ξ ∈ Rd.

The result follows by (1.14) and the definition of the gamma function.
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Below we denote
ν(x, y) := ν(y − x)

and
pt(x, y) := pt(y − x).

Exercise 1.21. Verify that

E (t)(u, u) =
1

2

∫
Rd

∫
Rd

[u(x) − u(y)]2
1

t
pt(x, y)dxdy.

1.9. Fractional Hardy inequality. Regarding the setting of Subsection 1.6,
we will have m(dx) = dx, the Lebesgue measure on Rd. For u ∈ L2(Rd, dx),
we let

(1.15) E(u, u) :=
1

2

∫
Rd

∫
Rd

[u(x) − u(y)]2ν(x, y) dy dx.

The following statement on self-dominated convergence is quite useful.

Lemma 1.22. [18, Lemma 6] If f, fk : Rd → [0,∞] satisfy fk ≤ cf and f =
limk→∞ fk, k = 1, 2, . . ., then for each measure µ, limk→∞

∫
fk dµ =

∫
f dµ.

Proof. The integrals converge either by the dominated convergence theorem,
if the right hand side is finite, or – else – by Fatou’s lemma. □

Exercise 1.23. Prove that (1.15) is the Dirichlet form of p.

Hints. The result follows from Lemma 1.22, Remark 1.17, and Lemma 1.19.

The important case β = (d−α)/(2α) in the following Hardy equality for
the Dirichlet form of the fractional Laplacian was given by Frank, Lieb and
Seiringer in [34, Proposition 4.1] (see [5] for another proof; see also [38]). In
fact, [34, formula (4.3)] also covers the case of (d−α)/(2α) ≤ β ≤ (d−α)/α
and smooth compactly supported functions u in the following Proposition.
Our approach is different from that of [34, Proposition 4.1] because we do
not use the Fourier transform.

Proposition 1.24 ([11]). If 0 < α < d, 0 < β < (d − α)/α, u ∈ L2(Rd),
then

E(u, u) = C

∫
Rd

u(x)2

|x|α
dx +

∫
Rd

∫
Rd

(
u(x)

h(x)
− u(y)

h(y)

)2

h(x)h(y)ν(x, y) dy dx ,
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where h(x) = |x|α(β+1)−d and

C = 2αΓ(
d

2
− αβ

2
)Γ(

α(β + 1)

2
)Γ(

d

2
− α(β+1)

2
)−1Γ(

αβ

2
)−1.

We get a maximal C = 2αΓ(d+α
4

)2/Γ(d−α
4

)2 if β = (d− α)/(2α).

Exercise 1.25. Prove this ground-state representation using Theorem 1.9.

Hints. Let −1 < β < d/α − 1. For f(t) := tβ+ and σ-finite Borel measure
µ ≥ 0 on Rd we have

h(x) :=

∫ ∞

0

∫
Rd

f(t)pt(x− y)µ(dy) dt

=

∫ ∞

0

∫
Rd

tβ
∫ ∞

0

gs(x− y)ηt(s) ds µ(dy) dt

=

∫
Rd

∫ ∞

0

∫ ∞

0

tβηt(s) dt gs(x− y) ds µ(dy)

=

∫
Rd

∫ ∞

0

Γ(β + 1)

Γ(α(β+1)
2

)
s

α(β+1)
2

−1gs(x− y) ds µ(dy)

=
Γ(β + 1)

Γ(α(β+1)
2

)

Γ(d
2
− α(β+1)

2
)

4
α(β+1)

2 πd/2

∫
Rd

|x− y|α(β+1)−d µ(dy),

where in the last two equalities we assume α(β + 1)/2− 1 < d/2− 1 and use
(1.8). If, furthermore, β ≥ 0, then by the same calculation∫ ∞

0

∫
Rd

f ′(t)pt(x, y)µ(dy) dt

= β
Γ(β)

Γ(αβ
2

)
4−αβ

2 π−d/2Γ(
d

2
− αβ

2
)

∫
Rd

|x− y|αβ−d µ(dy).

Here the expression is zero if β = 0. If µ = δ0, then we get

h(x) =
Γ(β + 1)

Γ(α(β+1)
2

)

Γ(d
2
− α(β+1)

2
)

4
α(β+1)

2 πd/2
|x|α(β+1)−d

and

q(x) =
1

h(x)

∫ ∞

0

∫
Rd

f ′(t)pt(x, y)µ(dy) dt

=
4α/2Γ(d

2
− αβ

2
)Γ(α(β+1)

2
)

Γ(d
2
− α(β+1)

2
)Γ(αβ

2
)

|x|−α.
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By homogeneity, we may assume h(x) = |x|α(β+1)−d, without changing q. By
the second statement of Theorem 1.9, it remains to show that

lim
t→0

∫
Rd

∫
Rd

pt(x, y)

2t

[
u(x)

h(x)
− u(y)

h(y)

]2
h(y)h(x)dydx

=
1

2

∫
Rd

∫
Rd

[
u(x)

h(x)
− u(y)

h(y)

]2
h(y)h(x)ν(x, y) dy dx .(1.16)

Since pt(x, y)/t ≤ cν(x, y) [14], and pt(x, y)/t → ν(x, y) as t → 0, (1.16)
follows by Lemma 1.22. If αβ = (d−α)/2, then we obtain h(x) = |x|−(d−α)/2

and

q(x) =
4α/2Γ(d+α

4
)2

Γ(d−α
4

)2
|x|−α.

Finally, the statement of the proposition is trivial for β = d/α− 1.

Corollary 1.26 ([11]). If 0 ≤ r ≤ d− α, x ∈ Rd and t > 0, then∫
Rd

pt(y − x)|y|−rdy ≤ |x|−r.

If 0 < r < d− α, x ∈ Rd, t > 0, β = (d− α− r)/α, and p̃ is given by (1.9),∫
Rd

p̃t(y − x)|y|−rdy ≤ |x|−r.

Proof. By (1.6) and the proof of Proposition 1.24, we get the first estimate.
The second estimate is stronger because p̃ ≥ p, and it follows from Theo-
rem 1.6, see the proof of Proposition 1.24. □

1.10. Further information about the classical Hardy identity. For
completeness we state Hardy identities for the Dirichlet form of the Gauss-
ian semigroup on Rd. Namely, (1.18) below is the optimal classical Hardy
equality with remainder, and (1.17) is its slight extension, in the spirit of
Proposition 1.24. For the equality (1.18), see for example [32, formula (2.3)],
[35, Section 2.3] or [5]. Equality (1.17) may also be considered as a corollary
of [35, Section 2.3]. Note the restriction of domain, compared to Corol-
lary 1.11.

Proposition 1.27. Suppose d ≥ 3 and 0 ≤ γ ≤ d− 2. For u ∈ W 1,2(Rd),∫
Rd

|∇u(x)|2dx=γ(d− 2 − γ)

∫
Rd

u(x)2

|x|2
dx +

∫
Rd

∣∣∣h(x)∇u

h
(x)

∣∣∣2 dx,(1.17)
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where h(x) = |x|γ+2−d. In particular,

(1.18)

∫
Rd

|∇u(x)|2 dx =
(d− 2)2

4

∫
Rd

u(x)2

|x|2
dx +

∫
Rd

∣∣∣∣|x| 2−d
2 ∇ u(x)

|x|(2−d)/2

∣∣∣∣2 dx.
The result has some ad-hoc elements (like gradient, ∇), so we refer to

[11].

2. Schrödinger perturbations and...

The plan of this Lecture 2 is to discuss details of Schrödinger pertur-
bations from [15], results on nonlocal Schrödinger perturbations from [23],
and nonlocal boundary conditions in [20]. It would also be nice to mention
gradient perturbation [16], general Schrödinger perturbations [19], special
considerations for the Gaussian kernel [24], [9], [12], and critical Hardy-type
Schrödinger perturbations [13]... Let us first make a probability connection.

2.1. A Feynman-Kac formula (down with time-homogeneous nota-
tion!) Here we follow [15]. Let g(s, x, t, y) := gt−s(y−x) be the Gaussian ker-
nel in Rd, s, t ∈ R, x, y ∈ Rd. (We let g = 0 if s ≥ t.) Let q : R×Rd → [0,∞]
(or C). Here is the perturbation of g by q on X = Rd without the time-
homogeneous corset: Let g̃ :=

∑∞
n=0 g

(n), where g(0)(s, x, t, y) := g(s, x, t, y),
and for n ≥ 1,

g(n)(s, x, t, y) :=

∫ t

s

∫
X

g(s, x, u, z) q(z, u)g(n−1)(u, z, t, y)m(dz) du.

Let Es,x and Ps,x be the expectation and the distribution of the Brownian
motion Y (here Yt = B2t) starting at the point x ∈ Rd at time s ∈ R. So,

Ps,x[Yt ∈ A] =

∫
A

g(s, x, t, y) dy, t > s, A ⊂ Rd.

Y has transition probability density g(u1, z1, u2, z2), where s ≤ u1 < u2.
Thus, the finite dimensional distributions have the density functions

g(s, x, u1, z1)g(u1, z1, u2, z2) · · · g(un−1, zn−1, un, zn) .

Further, for y ∈ Rd, t > s, we let Et,y
s,x and Pt,y

s,x denote the expectation and the
distribution of the process starting at x at time s and conditioned to reach
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y at time t (Brownian bridge). The bridge, also denoted Y , has transition
probability density

r(u1, z1, u2, z2) =
g(u1, z1, u2, z2)g(u2, z2, t, y)

g(u1, z1, t, y)
,

where s ≤ u1 < u2 < t and z1, z2 ∈ Rd. Thus, its finite dimensional distribu-
tions have the density functions

(2.1)
g(s, x, u1, z1)g(u1, z1, u2, z2) · · · g(un, zn, t, y)

g(s, x, t, y)
.

Here s ≤ u1 < . . . < un < t, z1, . . . , zn ∈ Rd. We get a disintegration of Ps,x:

Ps,x (Yu1 ∈ A1 , . . . , Yun ∈ An , Yt ∈ B)

=

∫
B

Pt,y
s,x (Yu1 ∈ A1 , . . . , Yun ∈ An) g(s, x, t, y) dy ,A1, . . . , An, B ⊂ Rd.

Here comes the multiplicative functional eq(s, t) := exp
(∫ t

s
q(u, Yu) du

)
[27].

Of course,

Et,y
s,x eq(s, t) =

∞∑
n=0

1

n!
Et,y

s,x

(∫ t

s

q(u, Yu) du

)n

.

According to (2.1),

Et,y
s,x

∫ t

s

q(u, Yu) du =

∫ t

s

∫
Rd

g(s, x, u, z)q(u, z)g(u, z, t, y)

g(s, x, t, y)
dudz

=
g1(s, x, t, y)

g(s, x, t, y)
.

Furthermore,

Et,y
s,x

1

2

(∫ t

s

q(u, Yu) du

)2

= Et,y
s,x

∫ t

s

∫ t

u

q(u, Yu)q(v, Yv) dvdu

=

∫ t

s

∫ t

u

∫
Rd

∫
Rd

g(s, x, u, z)g(u, z, v, w)g(v, w, t, y)

g(s, x, t, y)
q(u, z)q(v, w) dwdz dvdu

=

∫ t

s

∫
Rd

g(s, x, u, z)g1(u, z, t, y)

g(s, x, t, y)
q(u, z) dz du =

g2(s, x, t, y)

g(s, x, t, y)
.
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Similarly, for every n = 0, 1, . . .,

1

n!
Et,y

s,x

(∫ t

s

q(u, Yu) du

)n

=
gn(s, x, t, y)

g(s, x, t, y)
,

hence we get a Feynmann-Kac formula

g̃(s, x, t, y) = g(s, x, t, y)Et,y
s,x exp

∫ t

s

q(u, Yu)du .

We may interpret g̃(s, x, t, y)/g(s, x, t, y) as the eventual inflation of mass of
the Brownian particle moving from (s, x) to (t, y). The mass grows multi-
plicatively where q > 0 (and decreases if q < 0). For instance, if q(u, z) = q(u)
(depends only on time), then

g̃(s, x, t, y)/g(s, x, t, y) = exp

(∫ t

s

q(u)du

)
.
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2.2. Integral kernels. Here we mostly follow [23]. Let (E, E) be a measur-
able space. A kernel on E is a map K from E × E to [0,∞] such that

x 7→ K(x,A) is E-measurable for all A ∈ E , and

A 7→ K(x,A) is countably additive for all x ∈ E.

Consider kernels K and J on E. The map (E × E) → [0,∞] given by

(x,A) 7→
∫
E

K(x, dy)J(y, A)

is another kernel on E, called the composition of K and J , and denoted KJ .

Exercise 2.1. Why is composition of kernels similar to multiplication of
matrices?

Hints. In fact it is similar to multiplication of positive square matrices,
which is a special case of composition of kernels.

We let Kn := Kn−1JK(s, x, A) = (KJ)nK, n = 0, 1, . . .. The composi-
tion of kernels is associative, which yields the following lemma.

Lemma 2.2. Kn = Kn−1−mJKm for all n ∈ N and m = 0, 1, . . . , n− 1.

We define the perturbation, K̃, of K by J , via the perturbation series,

(2.2) K̃ :=
∞∑
n=0

Kn =
∞∑
n=0

(KJ)nK.

Of course, K ≤ K̃, and we have the following perturbation formula(s),

(2.3) K̃ = K + K̃JK = K + KJK̃.

Goals: algebra or bounds for K̃ under additional conditions on K and J .

2.3. An upper bound. Consider a set X (the space) with σ-algebra M,
the real line R (the time) with the Borel sets BR, and the space-time,

E := R×X,

with the product σ-algebra E = BR × M. Let η ∈ [0,∞) and a function
Q : R× R → [0,∞) satisfy the following condition of super-additivity:

Q(u, r) + Q(r, v) ≤ Q(u, v) for all u < r < v.
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Exercise 2.3. Check Q(s, t) :=
∫ t

s
f(u)du is superadditive if f : R → [0,∞).

Hints. In fact, this Q is additive:-)

Let J be another kernel on E. We assume that K and J are forward
kernels, i.e., for A ∈ E , s ∈ R, x ∈ X,

K(s, x, A) = 0 = J(s, x, A) whenever A ⊆ (−∞, s] ×X.

It also suffices that K is forward and J is instantaneous, that is, J(s, x, dtdy) =
j(s, x, dy)δs(dt). In particular, Schrödinger perturbations are obtained when
j(s, x, dy) = q(s, x)δx(dy) is local. In what follows, we study consequences of
the following assumption,

(2.4) K1(s, x, A) := KJK(s, x, A) ≤
∫
A

[η + Q(s, t)]K(s, x, dtdy),

with impulsive bound η ∈ [0,∞) and superadditive bound Q.

Theorem 2.4. Assuming (2.4), for all n = 1, 2, . . ., and (s, x) ∈ E, we have

Kn(s, x, dtdy) ≤ Kn−1(s, x, dtdy)

[
η +

Q(s, t)

n

]
≤ K(s, x, dtdy)

n∏
l=1

[
η +

Q(s, t)

l

]
.

If 0 < η < 1, then for all (s, x) ∈ E,

K̃(s, x, dtdy) ≤ K(s, x, dtdy)

(
1

1 − η

)1+Q(s,t)/η

.

If η = 0, then for all (s, x) ∈ E,

K̃(s, x, dtdy) ≤ K(s, x, dtdy)eQ(s,t).

2.4. Pointwise versions. Theorem 2.4 has two pointwise variants (which
may be skipped). Fix a (nonnegative) σ-finite, non-atomic measure

dt := µ(dt)
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on (R,BR) and a function k(s, x, t, A) ≥ 0 defined for s, t ∈ R, x ∈ X, A ∈
M, such that k(s, x, t, dy)dt is a forward kernel and (s, x) 7→ k(s, x, t, A) is
jointly measurable for all t ∈ R and A ∈ M. Let k0 = k, and for n = 1, 2, . . .,

kn(s, x, t, A) =

t∫
s

∫
X

kn−1(s, x, u, dz)

∫
(u,t)×X

J(u, z, du1dz1)k(u1, z1, t, A)du.

The perturbation, k̃, of k by J , is defined as k̃ =
∑∞

n=0 kn. Assume that

t∫
s

∫
X

k(s, x, u, dz)

∫
(u,t)×X

J(u, z, du1dz1)k(u1, z1, t, A)du ≤ [η+Q(s, t)]k(s, x, t, A).

Theorem 2.5. Under the assumptions, for all n = 1, 2, . . ., and (s, x) ∈ E,

kn(s, x, t, dy) ≤ kn−1(s, x, t, dy)

[
η +

Q(s, t)

n

]
≤ k(s, x, t, dy)

n∏
l=1

[
η +

Q(s, t)

l

]
.

If 0 < η < 1, then for all (s, x) ∈ E and t ∈ R we have

k̃(s, x, t, dy) ≤ k(s, x, t, dy)

(
1

1 − η

)1+Q(s,t)/η

.

If η = 0, then

k̃(s, x, t, dy) ≤ k(s, x, t, dy)eQ(s,t).

For the finest variant of Theorem 2.4, we fix a σ-finite measure

dz := m(dz)

on (X,M). We consider function κ(s, x, t, y) ≥ 0, s, t ∈ R, x, y ∈ X, such
that κ(s, x, t, y)dtdy is a forward kernel and (s, x) 7→ k(s, x, t, y) is jointly
measurable for all t ∈ R and y ∈ X. We call such κ a (forward) kernel
density (see [19]). We define κ0(s, x, t, y) = κ(s, x, t, y), and

κn(s, x, t, y) =

t∫
s

∫
X

κn−1(s, x, u, z)

∫
(u,t)×X

J(u, z, du1dz1)κ(u1, z1, t, y) dz du ,
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where n = 1, 2, . . .. Let κ̃ =
∑∞

n=0 κn. For all s < t ∈ R, x, y ∈ X, we assume

t∫
s

∫
X

κ(s, x, u, z)

∫
(u,t)×X

J(u, z, du1dz1)κ(u1, z1, t, y)dzdu ≤ [η+Q(s, t)]κ(s, x, t, y).

Theorem 2.6. Under the assumptions, for n = 1, 2, . . ., s < t and x, y ∈ X,

κn(s, x, t, y) ≤ κn−1(s, x, t, y)

[
η +

Q(s, t)

n

]
≤ κ(s, x, t, y)

n∏
l=1

[
η +

Q(s, t)

l

]
.

If 0 < η < 1, then for all s, t ∈ R and x, y ∈ X,

κ̃(s, x, t, y) ≤ κ(s, x, t, y)

(
1

1 − η

)1+Q(s,t)/η

.

If η = 0, then
κ̃(s, x, t, y) ≤ κ(s, x, t, y)eQ(s,t).

Exercise 2.7. If κ1 ≤ ηκ with η ∈ (0, 1), then κ̃ ≤ 1
1−η

κ (Khasminski’s

lemma). Explain why this follows from the above. Also, verify it directly
using perturbation series.

Hints. By induction, κn ≤ ηnκ.

2.5. Transition kernels. Let k as above be a transition kernel, i.e., addi-
tionally satisfy the Chapman-Kolmogorov conditions for s < u < t, A ∈ M
(we do not assume k(s, x, t,X) = 1),∫

X

k(s, x, u, dz)k(u, z, t, A) = k(s, x, t, A).

Following [15], we may show that k̃ is a transition kernel, too. Here is
the first step.

Lemma 2.8. For all s < u < t, x, y ∈ X, A ∈ M, and n = 0, 1, . . .,

(2.5)
n∑

m=0

∫
X

km(s, x, u, dz)kn−m(u, z, t, A) = kn(s, x, t, A).
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Proof. We note that (2.5) is true for n = 0 by fact that k is a transition
kernel and satisfies the Chapman-Kolmogorov equation. Assume that n ≥ 1
and (2.5) holds for n − 1. The sum of the first n terms on the left of (2.5)
can be dealt with by induction:

n−1∑
m=0

∫
X

km(s, x, u, dz)kn−m(u, z, t, A)(2.6)

=
n−1∑
m=0

∫
X

km(s, x, u, dz)

t∫
u

∫
X

kn−m−1(u, z, r, dw)

×
∫

(r,∞)×X

J(r, w, dr1dw1)k(r1, w1, t, A)dr

=

t∫
u

∫
X

∫
(r,∞)×X

J(r, w, dr1dw1)k(r1, w1, t, A)

×
n−1∑
m=0

∫
X

km(s, x, u, dz)k(n−1)−m(u, z, r, dw)dr

=

t∫
u

∫
X

kn−1(s, x, r, dw)

∫
(r,∞)×X

J(r, w, dr1dw1)k(r1, w1, t, A)dr.

The (n + 1)-st term on the left of (2.5) is∫
X

kn(s, x, u, dz)k(u, z, t, A)

=

∫
X

u∫
s

∫
X

kn−1(s, x, r, dw)

∫
(r,∞)×X

J(r, w, dr1dw1)k(r1, w1, u, dz)k(u, z, t, A)dr

=

u∫
s

∫
X

kn−1(s, x, r, dw)

∫
(r,∞)×X

J(r, w, dr1dw1)k(r1, w1, t, A)dr,

and (2.5) follows on this and (2.6). □
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Here is the a consequence, the evolution (Chapman-Kolmogorov) prop-
erty.

Lemma 2.9 (Chapman-Kolmogorov). For all s < u < t, x, y ∈ Rd and
A ∈ M, ∫

X

k̃(s, x, u, dz)k̃(u, z, t, A) = k̃(s, x, t, A).

The proof follows that of [15, Lemma 2], using (2.5). Thus, k̃ is a transi-
tion kernel. Similarly, κ̃ above is a transition density, provided so is κ.

Exercise 2.10. Prove Lemma 2.9 in analogy to Exercise 1.3.

Remark 2.11. Estimating K1 := KJK by K is crucial. Much of our research
(K.B., K.S. et al) was devoted to this goal, including proving and applying
3G Theorems for power-like kernels and 4G (4.5G) Theorems for others. See

[19, 24, 9, 12]. See [13] for cases when we get K̃ much bigger than K or even
explosion; see [16] for gradient perturbations and [18, 17] for applications.

Remark 2.12. The parametrix method a related but more difficult subject,
where we do not have an initial transition kernel to start with, but a field of
transition kernels, see [25] and [45].

We can describe connections with ‘generators’. For instance, let p(s, x, t, y) :=
pt−s(y−x) be the transition kernel of the α-stable semigroup, aka fundamen-

tal solution of ∂t − ∆
α/2
y :

(2.7)

∫
R

∫
Rd

p(s, x, t, y)
[
∂t + ∆α/2

y

]
ϕ(t, y) dydt = −ϕ(s, x) ,

where s ∈ R, x ∈ Rd, and ϕ ∈ C∞
c (R×Rd). (Hint: Use the Fourier transform

on Rd.)
Here C∞

c (R × Rd) is the class of all infinitely differentiable compactly
supported functions on R× Rd, and

∆α/2ϕ(y) := −(−∆)α/2ϕ(y) = lim
t↓0

ptϕ(y) − ϕ(y)

t

=
2αΓ((d + α)/2)

πd/2|Γ(−α/2)|
lim
ε↓0

∫
{|z|>ε}

ϕ(y + z) − ϕ(y)

|z|d+α
dz , y ∈ Rd .

Let
(
Lϕ

)
(t, y) = ∂tϕ(t, y) + ∆

α/2
y ϕ(t, y), the parabolic operator.
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We also consider kernels Q(s, x, dudz) := q(s, x)δs(du)δx(dz), the kernel
of multiplication by q, and P (s, x, dudz) := p(s, x, u, z)dudz, and

P̃ :=
∞∑
n=0

(PQ)nP .

We can interpret the fundamental solution (2.7) as

(2.8) PLϕ = −ϕ (ϕ ∈ C∞
c (R× Rd)) .

Let us assume, e.g., that Q ≥ 0 and PQP ≤ ηP for some η ∈ [0, 1). Then

(2.9) P̃ (L + Q)ϕ = −ϕ (ϕ ∈ C∞
c (R× Rd)) .

Indeed, by (2.8),

P̃ (L + Q)ϕ =
∞∑
n=0

P (QP )n(L + Q)ϕ

= PLϕ +
∞∑
n=1

(PQ)nPLϕ +
∞∑
n=0

(PQ)n+1ϕ = −ϕ .

Here is what (2.9) means:

∫
R

∫
Rd

p̃(s, x, t, y)
[
∂tϕ(t, y) + ∆α/2

y ϕ(t, y) + q(t, y)ϕ(t, y)
]
dydt = −ϕ(s, x) ,

where s ∈ R, x ∈ Rd, and ϕ ∈ C∞
c (R× Rd).
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3. ...and nonlocal boundary value problems

3.1. Fractional Laplacian and friends. Recall d ∈ N := {1, 2, . . .}, α ∈
(0, 2), and

ν(x) := cd,α|x|−d−α, x ∈ Rd.

The constant cd,α is such that

|ξ|α =

∫
Rd

(1 − cos ξ · x)ν(x)dx , ξ ∈ Rd.

Recall ν(x, y) := ν(y − x) = cd,α|y − x|−d−α. We interpret ν(x, y)dy as
intensity of jumps of the isotropic α-stable Lévy proces on Rd, which we will
now denote (Xt, t ≥ 0). For u ∈ C2

c (Rd),

∆α/2u(x) = lim
ϵ→0+

∫
{|y−x|>ϵ}

[
u(y) − u(x)

]
ν(x, y)dy

= 1
2

∫
Rd

[
u(x + z) + u(x− z) − 2u(x)

]
ν(z) dz, x ∈ Rd.

3.2. Transition semigroup (back to time-homogeneous notation).
Recall that, by the Lévy–Khinchine formula, there are smooth probability
densities with pt ∗ ps = pt+s and∫

Rd

eiξ·xpt(x)dx = e−t|ξ|α , ξ ∈ Rd.

We denote pt(x, y) := pt(y − x), for t > 0, x, y ∈ Rd. Then,

pt(x, y) = t−d/αp1(t
−1/α(x− y)) ≈ t−d/α ∧ t

|x− y|d+α
.

We get a Feller semigroup of operators (on C0(Rd)), see [47] or [26], denoted

Ptf(x) :=

∫
Rd

f(y)pt(x, y)dy, x ∈ Rd, t ≥ 0,

with ∆α/2 as generator. Of course, PtPs = Pt+s, s, t > 0.
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Consider the space D([0,∞)) of cádlág functions ω : [0,∞) → Rd. On
D([0,∞)), we denote Xt(ω) := ωt, t ≥ 0; Xt− := lims↑t Xs. We also define
measures Px, x ∈ Rd, as follows:
For x ∈ Rd, 0 < t1 < t2 < . . . < tn and A1, A2, . . . , An ⊂ Rd,

Px(Xt1 ∈ A1, . . . , Xtn ∈ An) = Px(ωt1 ∈ A1, . . . , ωtn ∈ An)

:=

∫
A1

dx1

∫
A2

dx2 . . .

∫
An

dxn pt1(x, x1)pt2−t1(x1, x2) · · · ptn−tn−1(xn−1, xn).

We let Ex be the corresponding integration. We call (Xt,Px) the isotropic
α-stable Lévy process in Rd. It is strong Markov.

3.3. The first exit time. We fix D, a nonempty open bounded Lipschitz
subset of Rd. The time of the first exit of X from D is

τD := {t > 0 : Xt /∈ D}.

We will consider the random variables τD, XτD− and XτD . We have Px(τD =
0) = 1 for x ∈ ∂D. Also, Px(XτD ∈ ∂D) = 0 for x ∈ D.

We want to reflect Xt at t = τD back to D.
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Figure 1. Trajectory of the izotropic α-stable Lévy process
leaving the unit disc on the plane, α = 1.8.

3.4. Killed semigroup and Ikeda-Watanabe formula. For t > 0, x ∈
D, and suitable functions f , we let

PD
t f(x) := Ex

[
t < τD; f(Xt)

]
=:

∫
D

f(y)pDt (x, y)dy.

This killed semigroup (PD
t ) is (strong) Feller: PD

t Bb(D) ⊂ C0(D).
The I-W formula describes the law of (τD, XτD−, XτD), for x ∈ D:

Px[τD ∈ J,XτD− ∈ A,XτD ∈ B] =

∫
J

∫
B

∫
A

pDu (x, y)ν(y, z)dydzdu.

Here J ⊂ [0,∞), A ⊂ D, B ⊂ Dc. We may interpret pDu (x, y) as occupation
time density.

3.5. The (tentative) reflections. We want a Markov process (Yt, t ≥ 0)
equal to X until τD, but at τD we will perform a reflection: instead of
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z = XτD ∈ Dc, we let YτD = y ∈ D with distribution µ(z, dy). This yields
jump intensity

(3.1) γ(x, dy) := ν(x, dy) +

∫
Dc

ν(x, dz)µ(z, dy) on D.

(1) Is there such a thing?

(2) How to construct the corresponding semigroup (Kt, t > 0) and de-
scribe its long-time behavior?

(3) What about the generator and boundary conditions?

3.6. Tightness assumption. The outcome of [20] is (just) a conservative
exponentially asymptotically stable Markovian semigroup (Kt, t ≥ 0), with γ
as the integro-differential kernel of generator. For this we make the following
assumptions on D and µ:

D is open nonempty bounded Lipschitz set in Rd. Let µ : Dc ×B(D) →
[0, 1] be such that µ(z, ·), z ∈ Dc, are weakly continuous tight Borel proba-
bility measures on D: for each ϵ > 0 there exists H ⋐ D with µ(z,H) ≥ 1−ϵ
for z ∈ Dc.

We will use the notation

ν1Dcµ(v,W ) :=

∫
Dc

ν(v, z)µ(z,W )dz , v ∈ D,W ⊂ D.

3.7. Some background on “reflecting”. Similar “reflections” appeared
first in Feller [30] for one-dimensional diffusions, called instantaneous return
processes with non-local boundary conditions. Ikeda, Nagasawa, Watanabe
[40], Sharpe [48], Werner [52] deal with “piecing together”, “resurrection”,
“concatenation”.

Further (multidimensional) developments: Ben-Ari and Pinski [6], Arendt,
Kunkel, and Kunze [2], Taira [49].

For jump processes, one can make YτD depend on XτD− and XτD :
E.g., KB, Burdzy and Chen [8] propose the censored processes, with the

reflection back to XτD−. Barles, Chasseigne, Georgelin and Jakobsen [4]
discuss geometric reflections depending on (XτD−, XτD) for the half-space.

Dipierro, Ros-Oton and Valdinoci [28] essentially postulate µ(z, dy) =
ν(z, dy)/ν(z,D). However, they discuss Neumann-type problems, not the
semigroup or Markov process. See also Felsinger, Kassmann and Voigt [31].
Vondraček [51] proposes a variant of [28, 31].
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Palmowski, Grzywny, Szczypkowski study “resetting” (forthcoming).
KB, Fafu la, Sztonyk deal with the Servadei-Valdinoci model (forthcom-

ing).
Bobrowski [7] describes (a limiting case of) “concatenation” in “geometric

graphs”.

3.8. Objects related to X. The Green function:

GD(x, y) :=

∫ ∞

0

pDt (x, y) dt, x, y ∈ D.

The expected exit time:

ExτD =

∫
D

GD(x, y) dy, x ∈ D.

The survival probability :

Px(τD > t) =

∫ ∞

t

ds

∫
D

dv

∫
Dc

dz pDs (x, v)ν(v, z)

=

∫
D

pDt (x, y) dy, t > 0, x ∈ D.

In particular, for all t > 0, x ∈ D,

(3.2)

∫
D

pDt (x, y)dy +

∫ t

0

ds

∫
D

dv

∫
Dc

dz pDs (x, v)ν(v, z) = 1.

3.9. Construction of the semigroup (Kt, t > 0). This follows [15] and
[23], as discussed above: For t > 0, x, y ∈ D, n ∈ N, we let kt(x, y) :=∑∞

n=0 pn(t, x, y), where

p0(t, x, y) := pDt (x, y),

pn(t, x, y) :=

∫ t

0

ds

∫
D

dv

∫
D

pn−1(s, x, v)ν1Dcµ(v, dw)p0(t− s, w, y).

In our notation of nonlocal Schrödinger perturbations (of kernels operating
on space-time),

K =
∞∑
n=0

(PD ν1Dcµ)nPD.

Corollary 3.1.
∫
D
kt(x, y)ks(y, z)dy = kt+s(x, z) for all t > 0, x, y ∈ D.

For f ∈ Bb(D), we let Ktf(x) :=
∫
D
f(y)kt(x, y)dy, where t > 0, x ∈ D.
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3.10. Main results.

Theorem 3.2.
∫
D
kt(x, y)dy = 1 for all t > 0, x ∈ D.

Hints: The easy part: Kt1(x) = kt(x,D) :=
∫
D
kt(x, y)dy ≤ 1.

Indeed, p0(t, x,D) :=
∫
D
pDt (x, y)dy ≤ 1. Then,

p1(t, x,D) :=

∫ t

0

ds

∫
D

dv

∫
D

pDs (x, v)ν1Dcµ(v, dw)pDt−s(w,D)

≤
∫ t

0

ds

∫
D

dvpDs (x, v)ν(v,Dc),

so, by (3.2), p0(t, x,D) + p1(t, x,D) ≤ 1. Similarly, for all n ∈ N,

n∑
k=0

pn(t, x,D) ≤ 1.

For deeper results we use there lower bounds for fixed t > 0:

p0(t, x,D) + p1(t, x,D) ≥ c > 0, x ∈ D,

kt(x, y) ≥ δ > 0, x ∈ D, y ∈ H for some H ⋐ D with |H| > 0.

They follow from known bounds of pD. (We will discuss some of these in the
last section.)
The second bound is a Dobrushin-type condition, which yields exponential
egodicity, as follows.

Theorem 3.3. There is a unique stationary distribution κ for (Kt). More-
over, there exist M,ω ∈ (0,∞) such that for every probability measure ρ on
D,

∥ρKt − κ∥TV ≤ Me−ωt, t > 0.

3.11. Generator and boundary conditions. Given a function f ∈ Cb(D),
we let

fµ(x) :=

{
f(x), for x ∈ D,

µ(x, f), for x ∈ Dc,

where

(µf)(z) := µ(z, f) :=

∫
D

µ(z, dy)f(y), z ∈ Dc.

We define the space Cµ(D) by

Cµ(D) := {f ∈ Cb(D) : fµ ∈ Cb(Rd)}.



32 K. BOGDAN AND K. SZCZYPKOWSKI

Proposition 3.4. Ktf → f uniformly as t → 0 if, and only if, f ∈ Cµ(D).

We consider the Laplace transform (resolvent) Rλ of Kt, defined by

Rλ :=

∫ ∞

0

e−λtKtdt, λ > 0,

and relate it to the Laplace transform RD
λ of PD. By perturbation formula,

Kt = PD +

∫ t

0

Psν1DcµKt−sds = PD +

∫ t

0

Ksν1DcµPD
t−sds,

which leads to

Rλ = RD
λ + RD

λ ν1DcµRλ = RD
λ + Rλν1DcµRD

λ .

The generator A of Kt is defined on D(A) := Rλ(Cb(D)) by A := λ−R−1
λ .

Theorem 3.5. For u, f ∈ Cb(D), the following are equivalent:

(1) u ∈ D(A) and Au = f .

(2) u ∈ Cµ(D) and, with γ := ν + ν1Dcµ as kernels on D, given by (3.1),

f(x) = lim
ϵ→0+

∫
{|y−x|>ϵ}∩D

(u(y) − u(x))γ(x, dy), x ∈ D.

3.12. Issues.

(1) (Kt) is a Cb-semigroup and has the strong Feller property, but it is
not Feller (on C0(D)) nor symmetric nor bounded on L2(D) in gen-
eral.

(2) The existence of (Yt) requires a separate approach. (Not yet done,
but concatenation of right processes applies.) Also called piecing-out,
resetting, resurrection, instantaneous return, Neumann-type condi-
tions.

(3) Test functions C∞
c (D) are not in the domain of the generator.

(4) The range of the resolvent is a specific function space with boundary
condition expressed via µ.
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(5) It is convenient to use the Dynkin operator as generator.

(6) This is about constructing new semigroups by positive nonlocal per-
turbations of PD

t . The perturbing kernel “defines” boundary condi-
tions.

(7) Reflected trajectories in models without tightness can accumulate at
the boundary.

3.13. Summary. We propose in [20] a framework for constructing semi-
groups with specific reflection mechanism from the killed semigroup. The
restriction to ∆α/2 can be easily relaxed, but the tightness condition is more
tricky.

This area of research is motivated by the Neumann-type boundary-value
problems [4, 28] and by the problem of piecing-out or concatenation of
Markov processes in the sense of Ikeda, Nagasawa and Watanabe [40], Sharpe
[48] and Werner [52].

Besides construction, questions arise on large-time and boundary behav-
ior of the semigroup (process) and on applications to nonlocal differential
equations with those boundary conditions.

4. Limits in the homogeneous setting
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