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Bermudan derivatives
Bermudan derivatives

Let L(t) € RP be an underlying and T := {To, T1,..., T} be a set of
exercise dates.

Bermudan derivative: an option to exercise a cashflow C(T,,L(T,))
at a future time T, € T, to be decided by the option holder.
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Bermudan derivatives
Bermudan derivatives

Let L(t) € RP be an underlying and T := {To, T1,..., T} be a set of
exercise dates.

Bermudan derivative: an option to exercise a cashflow C(T,,L(T,))
at a future time T, € T, to be decided by the option holder.

Example

The callable snowball note pays semi-annually a constant coupon |
over the first year and in the forthcoming years

(Previous coupon + A — Libor) ™,

semi-annually, where A increases on a regular basis.
Call feature: the issuer has the right to call the note at 100% on each
coupon payment date
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Bermudan p blem Bermudan derivatives

Bermudan derivatives
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Bermudan derivatives
Valuation

Let N, with N(0) = 1, be a numeraire and P be the associated pricing
measure. Define a deflated cash flow via

Z, == C(T,,L(T,))/N(T,).

The price of the Bermudan derivative is given by the solution of the
optimal stopping problem
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Bermudan derivatives
Valuation

Let N, with N(0) = 1, be a numeraire and P be the associated pricing
measure. Define a deflated cash flow via

Z, == C(T,,L(T,))/N(T,).

The price of the Bermudan derivative is given by the solution of the
optimal stopping problem

Vo= sup E%oz,
7€{0,...,J }

where the supremum runs over all stopping times = € {0, ..., 7 }.
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Bermudan derivatives
Optimal stopping

@ Mathematical problem:

Optimal stopping (calling) of a reward (cash-flow) process Z
depending on an underlying (e.g. interest rate) process L
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Bermudan derivatives
Optimal stopping

@ Mathematical problem:

Optimal stopping (calling) of a reward (cash-flow) process Z
depending on an underlying (e.g. interest rate) process L

@ Typical difficulties:

o L is usually high dimensional , for Libor interest rate models,
D = 10 and higher, so PDE methods do not work in general
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Bermudan derivatives
Optimal stopping

@ Mathematical problem:
Optimal stopping (calling) of a reward (cash-flow) process Z
depending on an underlying (e.g. interest rate) process L

@ Typical difficulties:

o L is usually high dimensional , for Libor interest rate models,
D = 10 and higher, so PDE methods do not work in general

e Z may only be virtually known, e.g. Z; = E/i Zj>i C(L;) for some
pay-off function C, rather than simply Z; = C(L;j)

(WIAS) Monte Carlo Pricing of Callable Derivatives Berlin, 28 October 2007

6/28



Bermudan derivatives
Optimal stopping

@ Mathematical problem:
Optimal stopping (calling) of a reward (cash-flow) process Z
depending on an underlying (e.g. interest rate) process L

@ Typical difficulties:

o L is usually high dimensional , for Libor interest rate models,
D = 10 and higher, so PDE methods do not work in general

e Z may only be virtually known, e.g. Z; = E/i Zj>i C(L;) for some
pay-off function C, rather than simply Z; = C(L;j)

@ Z may be path-dependent
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Snell Envelope Process
Snell Envelope Process

At a future time point t, when the option is not exercised before t, the
Bermudan option value is given by

Vi =N(t) sup E%Z,
Te{r(t),....T}

with k(t) == min{m : Ty > t}.
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Snell Envelope Process
Snell Envelope Process

At a future time point t, when the option is not exercised before t, the
Bermudan option value is given by

Vi =N(t) sup E%Z,

Te{k(t),...,T}
with k(t) == min{m : Ty > t}.
The process
Vi
Y =
CUON(Y)

is called the Snell-envelope process and is a supermartingale, i.e.

E7sYF <Y, t>s.
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2 €0 By e L Pl
Backward Dynamic Programming

SetY":= Yy, Lj = L(Tj), 7j := Fr;. At the last exercise date T

Y7=27

andfor0 <j < J,

Y = max (2, E7Yj, ).
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2 €0 By e L Pl
Backward Dynamic Programming

SetY":= Yy, Lj = L(Tj), 7j := Fr;. At the last exercise date T

Y7=27

andfor0 <j < J,

Y = max (2, E7Yj, ).

Observation

Nested Monte Carlo simulation of the price Y§ would require N7
samples when conditional expectations are computed with N samples
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Backward Dynamic Programming
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Exercise policies and lower bounds
Construction of Lower Bounds

Any stopping family (policy) () satisfying
<7<, 77=0, 7>]=17="T41, 0<j<J,

leads to a lower bound Y for the Snell envelope Y *

Yi :=Efiz, <Y
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Exercise policies and lower bounds
Construction of Lower Bounds

Any stopping family (policy) () satisfying
<7<, 77=0, 7>]=17="T41, 0<j<J,

leads to a lower bound Y for the Snell envelope Y *

Yi :=Efiz, <Y

Example
The policy
ni=inf{j>i:L €GCRPIAT

exercises when the underlying process L enters a certain region G.
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Exercise policies and lower bounds
Construction of Lower Bounds

An exercise policy 7 can be constructed via

7 = 7,
b i j+1., ;
T JX{CJ‘(LJ‘)SZJ} T XG>z )<,

where C; is an approximation for the continuation value

Ci(Ly) =BTV, i< 7.
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Bermudan pricing problem Exercise policies and lower bounds

Construction of Lower Bounds
An exercise policy 7 can be constructed via
™ =7,
o= jX{éj(Lj)SZj} +Tj+1x{6j(Lj)>Zi}7 1<J,
where 6,- is an approximation for the continuation value

Ci(Ly) :=ENY{,, j<J.

Remark
Cj(L;) can be first approximated by EZZ ;.1 with previously
constructed 71 +1
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Exercise policies and lower bounds
Regression Methods

The conditional expectation can be found by a linear regression
R
CJ(X)%ZBJ”/%(X)' JZO,l,j—l,
r=1

using a sample from (L;, Z.;:1) and a set of basis functions {1 }R_;.

(WIAS) Monte Carlo Pricing of Callable Derivatives Berlin, 28 October 2007 12/28



Exercise policies and lower bounds
Regression Methods

The conditional expectation can be found by a linear regression

R

Ci(x)~ Y Br(x), j=01,...,7-1,

r=1
using a sample from (L;, Z.;:1) and a set of basis functions {1 }R_;.

Remark

The choice of basis functions is of crucial importance, especially in the
case of large D.
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Exercise policies and lower bounds
Regression Methods

The conditional expectation can be found by a linear regression

using a sample from (L;, Z.;:1) and a set of basis functions {1 }R_;.

Remark

The choice of basis functions is of crucial importance, especially in the
case of large D.

Question J

Is the policy 7 a good one ?
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Bual Upper Bounds
Dual upper bounds

Consider a discrete martingale (M;),_, , with Mo = 0 with respect to

the filtration (]:J')j:o - Following Rogers, Haugh and Kogan, we
observe that

Yo= sup E%[Z, —M;]<E”® max [Z, —M].
e{Om T} T T 0<j<J [ ] J]

Hence the r.h.s. with an arbitrary martingale gives an upper bound for
the Bermudan price Y.
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Bual Upper Bounds
Dual upper bounds

Consider a discrete martingale (M;),_, , with Mo = 0 with respect to
the filtration (-7:1')1' - Following Rogers, Haugh and Kogan, we
observe that

=0,...,

Yo= sup E%[Z, —M;]<E”® max [Z, —M].
e{Om T} T T 0<j<J [ ] J]

Hence the r.h.s. with an arbitrary martingale gives an upper bound for
the Bermudan price Y.

Question J

What martingale does lead to equality ?
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Upper Bounds Dual Upper Bounds

Dual upper bounds

Theorem (Rogers (2001), Haugh & Kogan (2001))

i.e.

Let M* be the (unique) Doob-Meyer martingale part of (Yj*>0<_<j,
<i<

M;" is an (})-martingale which satisfies
with Mg := Ag := 0 and Af being Fj_, measurable. Then

Yo =E® max |- M.
0<j<J
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Berlin, 28 October 2007 14/28




zE2 L 3 2R
Riesz upper bounds

Doob-Meyer decomposition
and Y’ = Z7 imply Riesz decomposition
Y =E%Z; +ETI(AT - A)

Since A7, — A" =Y —EFY;

i+1 N i+1 — [Zi —Efivy

|+1]+'
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zE2 L 3 2R
Riesz upper bounds

Doob-Meyer decomposition
and Y’ = Z7 imply Riesz decomposition
Y =E%Z; +ETI(AT - A)

Since Al — A =Y —E7YY, = [Z - EZY T

J-1

Y =Efiz; +EF ) [z - ETYA ]

i=j
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zE2 L 3 2R
Riesz upper bounds

Theorem (Belomestny & Milstein (2005))
If Y; is a lower approximation for Y;*, then

(WIAS) Monte Carlo Pricing of Callable Derivatives Berlin, 28 October 2007 16 /28



zE2 L 3 2R
Riesz upper bounds

Theorem (Belomestny & Milstein (2005))
If Y; is a lower approximation for Y;*, then

J=i

VP =EfiZ; +EF ) [z —ETYipq]T

i=j
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zE2 L 3 2R
Riesz upper bounds

Theorem (Belomestny & Milstein (2005))
If Y; is a lower approximation for Y;*, then

J=il
VP =Efiz; +EN Y [z —EFYip]t
i=j

is an upper approximation for Y that is

V<Y <Y® j=0,....7
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zE2 L 3 2R
Riesz upper bounds

Properties
@ Monotonicity

Yi> Y — Y <y
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zE2 L 3 2R
Riesz upper bounds

Properties
@ Monotonicity
Yi> Y — Y <y

@ Locality
Let {Y,*, a € |;} be a family of local lower bounds at i, then
J-1
Y =EfiZ; +EF Y (7 — max EFiY ]t

acl
i J i+1

is an upper bound.
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23 e il s
Doob-Meyer Martingale

For any martingale My, starting at Mg = 0,

YYP(M) := E”° | max (Z+ — M+,
o (M) OSJSJ( T~ M)

is an upper bound for the price of the Bermudan option with the
deflated cash-flow Zy,.
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23 e il s
Doob-Meyer Martingale

For any martingale My, starting at Mg = 0,

YU (M) := E7o Z+ — My,
0" (M) Jmax (27 = M)

is an upper bound for the price of the Bermudan option with the
deflated cash-flow Zy,.

Exact Bermudan price is attained at the martingale part M* of the
Snell envelope:

* o\ * * Ak
Y =Y, + Mg —Aq,
o Ak * i
where My = At = 0and At is Fy,_, measurable.
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23 e il s
Doob-Meyer Martingale

Assume that Y1, = u(Tj, L(T;)) is an approximation for the Snell
envelope Y{.‘j with the Doob decomposition

YTj = YTO + MTJ- — ATJ- .

It then holds:

Mr.

T.
i~ Mn=Yr,, —E J[YTHI]
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23 e il s
Doob-Meyer Martingale

Assume that Y1, = u(Tj, L(T;)) is an approximation for the Snell
envelope Y{.‘j with the Doob decomposition

YTj = YTO + MTJ- — ATJ- .

It then holds:
Mt —Mg =Y7,, — E" [YTj+1]
Observation
The computation of My, by MC leads to quadratic Monte Carlo for Yg‘p J
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Gl 2 e Ey2S e il
Martingale Representation

If process L satisfies

dL(t) = a(t,L)dt + b(t, L)dw,
L(O) = I,

then due to the martingale representation theorem

'TJ
MTj = / Ht th
JO

where H; is a square integrable and previsible process.
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Gl 2 e Ey2S e il
Martingale Representation

If process L satisfies
dL(t) = a(t,L)dt + b(t,L)dW,
L(O) = |,

then due to the martingale representation theorem

'TJ

MTJ = / Ht th
0

where H; is a square integrable and previsible process.

Observation
For any function h(-,-) with h(t,L(t)) € L, we get a martingale J
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a2 Sz
Projection Estimator

We are going to estimate H; on partition = = {to,...,tz} with t = 0,
tr=T,and {To,..., T4} C 7.

Write formally,

YTj+1 — YTJ- ~ Z Htl . (Wt|+1 — th) + ATJ-+1 — ATJ- .
t 671’;Tj <t <Tj+1

By multiplying both sides with (Wtf{rl — W), Tj <t < Tj;1, and taking
Jy-conditional expectations, we get by the Fr,-measurability of At ,,

~ 1
HY ~ Hf = EZ (W —w) Yy

o 1
it —1 o a
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. L LTI Projection Estimator
Projection Estimator

The corresponding approximation of the martingale M is

M= Y Hy, - AW,

t em0<t<T;

with AW .= wd —wd.

it
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a2 Sz
Projection Estimator

The corresponding approximation of the martingale M is

M7 = > Hy- AW,
tiEﬂ';Ogti<Tj
with AW .= wd —wd.

it

Theorem (Belomestny, Bender, Schoenmakers (2006))

lim E | max [MI — Mg [?| =0,
=0 |o<j<g 1 j

where || denotes the mesh of .
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a2 Sz
Projection Estimator

Infact, for Ty < t; < Tjy1

~ ~ 1
Hy = h(ti, L(t)) = EEfTi (A™Wi) "u(Tj41, L(Tj4a))

and the expectation can be computed by a linear regression.
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a2 Sz
Projection Estimator

Infact, for Ty < t; < Tjy1

~ ~ 1
Hy = h(ti, L(t)) = EEfTi (A™Wi) "u(Tj41, L(Tj4a))

and the expectation can be computed by a linear regression.

@ Take basis functions

(i, ) = (e (t,), r=1,...,R)
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a2 Sz
Projection Estimator

Infact, for Ty < t; < Tjy1

~ ~ 1
Hy = h(ti, L(t)) = EER (A™Wi) "u(Tj41, L(Tj4a))

i
and the expectation can be computed by a linear regression.
@ Take basis functions
¥, ) = W (t,-), r=1,...,R)
@ Simulate N independent samples
(ti, nL(t)),n=1,...,N
from L(tj) using the Brownian increments ATW,;.
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a2 Sz
Projection Estimator

© Construct the matrix A7 := (A] Ay)*A[, where

Ay = {¢r(ti, nL(t)), n=1,...,N,r=1,...,R}.
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a2 Sz
Projection Estimator

© Construct the matrix A7 := (A] Ay)*A[, where

Ay = {¢r(ti, nL(t)), n=1,...,N,r=1,...,R}.

@ Define

h(ti, x) = ¥(t,x) AP <A;\7/TV' -YTJ-+1> = (t, X)f,

where Bti is the R x D matrix of estimated regression coefficients
at time t;.
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Projection Estimator
Fast MC Upper Bound

Finally construct

. 1 _ _
Y _ = mx[z.—M.]
0 anlogjgj N4, T

with B L s
Mr = > h(t, L(T)) (A™W,)
tem0<t<T;

by simulating new paths (nZTj,A’,{VA\fi), n=1...,N.
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Projection Estimator
Fast MC Upper Bound

Finally construct

N
= 1 ~ ~
Y= = [ Zr — M ]
0 anlorgj% nZ1, = Mr |,
with B L .
Mr = > h(t, L(T)) (A™W,)
tem0<t<T;

by simulating new paths (nZTj,A’,{VA\fi), n=1...,N.

Observation

|\7|j is always a martingale, so the upper bound is true!
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Max Call on D assets

Black-Scholes model:

Pay-off:

dXd = (r — 6)XZdt + oXddwg,

d=1,..,D,

Zy =z (%) == (max(X, ..., XP) — x)*.

Ts =3yr, J =9 (ex. dates), k = 100, r = 0.05, ¢ = 0.2, § = 0.1,
D = 2 and different xq

D

Xo

Lower Bound
Yo

Upper Bound
YSJP(MW)

A&B Price
Interval

90
100
110

8.0242+0.075
13.859+0.094
21.330+0.109

8.0891+0.068
13.958+0.085
21.459+0.097

[8.053, 8.082]
[13.892, 13.934]
[21.316, 21.359]
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Dimension Reduction

Leta(:,-),or(-,-) : Ry x RY +— RY and

q

di(t) = a(t,L)dt+ ) or(t, L)dW,(t),
r=1

L(0) = I,

where (Wy,. .., W) are independent Brownian motions and q < d.
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Dimension Reduction

Leta(:,-),or(-,-) : Ry x RY +— RY and

q
di(t) = a(t,L)dt+ ) or(t, L)dW,(t),
r=1
L(O) = |,
where (Wy,. .., W) are independent Brownian motions and q < d.

We assume that coefficients a and b are almost affine, that is
a(t,x) =xoda(t,x), o(t,x)=xo{sr(t,x),

where (a(t,x) and ¢, (t,x) are slow varying functions in x.
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Dimension Reduction

Let f(-) be a function of the form f(x) = ¢(3x), x € RY, then

E[f(L(t + h))|L(t) = L] =
/' ¢< B+hpocalt, L]TL+ZWW @mL]%)

=:g(BL)+ O(h

with (q + 1) x n matrix B defined as

= (B+hBoGa(t,L),h/280oa(t,L),....h/2B8 0 (oq(t, L))"

and g(-) : R9*1 — R
g(Xo, ..., Xq) := /Rq d(Xo + X161 + ... + Xq&q) AP (&).
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