Monte Carlo Pricing of Callable Derivatives

Weierstraß Institute Berlin

Berlin, 28 October 2007

Overview

(1) Bermudan pricing problem

- Bermudan derivatives
- Snell Envelope Process
- Backward Dynamic Programming
- Exercise policies and lower bounds
(2) Upper Bounds
- Dual Upper Bounds
- Riesz upper bounds
(3) Fast upper bounds
- Doob-Meyer Martingale
- Martingale Representation
- Projection Estimator

4 Applications
(5) Dimension Reduction

Bermudan derivatives

Let $L(t) \in \mathbb{R}^{D}$ be an underlying and $\mathbb{T}:=\left\{T_{0}, T_{1}, \ldots, T_{\mathcal{J}}\right\}$ be a set of exercise dates.

Bermudan derivative: an option to exercise a cashflow $C\left(T_{\tau}, L\left(T_{\tau}\right)\right)$ at a future time $T_{\tau} \in \mathbb{T}$, to be decided by the option holder.

Example
The callable snowball note pays semi-annually a constant coupon I over the first year and in the forthcoming years

semi-annually, where A increases on a regular basis.
Call feature: the issuer has the right to call the note at 100% on each coupon payment date

Bermudan derivatives

Let $L(t) \in \mathbb{R}^{D}$ be an underlying and $\mathbb{T}:=\left\{T_{0}, T_{1}, \ldots, T_{\mathcal{J}}\right\}$ be a set of exercise dates.

Bermudan derivative: an option to exercise a cashflow $C\left(T_{\tau}, L\left(T_{\tau}\right)\right)$ at a future time $T_{\tau} \in \mathbb{T}$, to be decided by the option holder.

Example

The callable snowball note pays semi-annually a constant coupon I over the first year and in the forthcoming years

$$
(\text { Previous coupon }+A-\text { Libor })^{+},
$$

semi-annually, where A increases on a regular basis.
Call feature: the issuer has the right to call the note at 100% on each coupon payment date

Bermudan derivatives

NEUEMISSION		Zürcher Kantonalbank
ZKB 5-Jahres Callable		
Snowball Note in CHF 100 \% Kapitalschutz		
12.07.2005-12.07.2010		
Produkbeschrebung	5.Jahres Colable Snowball Nate in CHF mit Zinszothlungen in Verbindung mit dem CHF 6 . Monats Libar Satz Die Callable Snowball Note in CHF stellt eine Alternotive im Bareich der Fixed income Anlagen dor. Tendiert der Basiswert seitwärts oder nur leicht häher, resulieet für dieses Prodult ein im Vergleich zu herkömmlichen ObligationenAnlogen attraktiveres Renditeprofil. Ein Ansteigen des Bosiswertes hat tiefere Couponszahlungen zur Folge. Ein sinkender Basiswert sowie eine Verflachung der Zinskurve erhşhen die Wahrscheinlichkeit einer vorzeitigen Rückzohlung durch die Emittentin. Die Note ist per Verfal oder per vorzetigem Kündigungesatum zuv 100% des Nominalbetrages kapitalgeschüzzt.	
Emitent	Zürcher Kartonolbonk Finance	memsey) Limied, Guensey
Keep-Woll Agreement mit der Zurcher Kantonalonk, Zürich	mit dor Zurcher Kantonalonkk,	
Lead Manager	Zürcher Kantonolbank, Zürich	
Emissionsberrag	CHF 50,000000	
Basiswert	CHF 6Monats Libar	
Watrung	CHF	
Stückelung	CHF $10^{\prime} 000$ Naminal	
Emissionspreis	100.00\%	
Zeichnungstrist	bis 07. Juli 2005, 17.00 Uhr	
Liberieung	12. Jui 2005	
Rückoohlungsdatum	12. Juli 2010	
Zinsstobelle	Zinsperiode	Inscoupon p.a
	Juli 2005 - Januar 2006	2.00% fox
	Januar 2006 - Juli 2006	2.00% fox
	Juli 2000 - Januar 2007	vachergahender $\mathrm{C} P+1.00 \%$. 6 M LIBOR CHF in arrears
	Januar 2007 - Juli 2007	vachergehender Cp $+1.25 \% .6 \mathrm{M}$ LBOR CHF in arrears
	Juli 2007 - Jonuar 2008	vachergehender Cp $+1.50 \%$. 6 M LIBOR CHF in arrears
	Januar 2008 - Juli 2008	vachergehender C $\mathrm{P}+1.75 \%$. 6 M LIBOR CHF in arrears
	Juli 2008 - Jonuar 2009	vachergehender $\mathrm{Cp}+2.00 \%$ \% 6 M LIBOR CHF in arrears
	Januar 2009 - Jull 2009	vartergahender $C p+2.25 \%$. 6 M Llilor C ChF in arrears
	Juli 2009 - Januar 2010	vachergehender C $\mathrm{P}+2.50 \%$. 6 M LIBOR CHF in arrears
	Janue 2010- Juli 2010	vachergehender $C \mathrm{p}+2.75 \% .6 \mathrm{M}$ LBOR CHF in arrears
	Der minimale Zinscoupon pro	ode betrögt 0 \%.
Zinszohlongskomention	$30 / 360$, modified following Handelstage fir die Llbocfixie	usted, Zürcher Handelstage für Zahlungen, Londoner
Zinsperiode	Die erste Zinsperiode beginnt Zinszahlungstog. Die nochtoly und enden cinen Tog vor dem	dem Liberienuggtog und endet einen Tag vor dem ersten den Zinsperioden beginenen jeweils mit dem Zinszahhlungstog Chsten Zinszahlungstag.

Valuation

Let N, with $N(0)=1$, be a numeraire and \mathbb{P} be the associated pricing measure. Define a deflated cash flow via

$$
Z_{\tau}:=C\left(T_{\tau}, L\left(T_{\tau}\right)\right) / N\left(T_{\tau}\right)
$$

The price of the Bermudan derivative is given by the solution of the optimal stopping problem
where the supremum runs over all stopping times $\tau \in\{0, \ldots, \mathcal{J}\}$

Valuation

Let N, with $N(0)=1$, be a numeraire and \mathbb{P} be the associated pricing measure. Define a deflated cash flow via

$$
Z_{\tau}:=C\left(T_{\tau}, L\left(T_{\tau}\right)\right) / N\left(T_{\tau}\right)
$$

The price of the Bermudan derivative is given by the solution of the optimal stopping problem

$$
V_{0}=\sup _{\tau \in\{0, \ldots, \mathcal{J}\}} E^{\mathcal{F}_{0}} Z_{\tau}
$$

where the supremum runs over all stopping times $\tau \in\{0, \ldots, \mathcal{J}\}$.

Optimal stopping

- Mathematical problem:

Optimal stopping (calling) of a reward (cash-flow) process Z depending on an underlying (e.g. interest rate) process L

- Typical difficulties:
- L is usually high dimensional, for Libor interest rate models, $D=10$ and higher, so PDE methods do not work in general
- Z may only be virtually known, e.g. $Z_{i}=E^{\mathcal{F}_{i}} \sum_{j>i} C\left(L_{j}\right)$ for some pay-off function C, rather than simply $Z_{i}=C\left(L_{i}\right)$
- Z may be path-dependent

Optimal stopping

- Mathematical problem:

Optimal stopping (calling) of a reward (cash-flow) process Z depending on an underlying (e.g. interest rate) process L

- Typical difficulties:
- L is usually high dimensional, for Libor interest rate models, $D=10$ and higher, so PDE methods do not work in general
- Z may only be virtually known, e.g. $Z_{i}=E^{\mathcal{F}_{i}} \sum_{j \geq i} C\left(L_{j}\right)$ for some
pay-off function C, rather than simply $Z_{i}=C\left(L_{i}\right)$
- Z may be path-dependent

Optimal stopping

- Mathematical problem:

Optimal stopping (calling) of a reward (cash-flow) process Z depending on an underlying (e.g. interest rate) process L

- Typical difficulties:
- L is usually high dimensional, for Libor interest rate models, $D=10$ and higher, so PDE methods do not work in general
- Z may only be virtually known, e.g. $Z_{i}=E^{\mathcal{F}_{i}} \sum_{j \geq i} C\left(L_{j}\right)$ for some pay-off function C, rather than simply $Z_{i}=C\left(L_{i}\right)$
- Z may be path-dependent

Optimal stopping

- Mathematical problem:

Optimal stopping (calling) of a reward (cash-flow) process Z depending on an underlying (e.g. interest rate) process L

- Typical difficulties:
- L is usually high dimensional, for Libor interest rate models, $D=10$ and higher, so PDE methods do not work in general
- Z may only be virtually known, e.g. $Z_{i}=E^{\mathcal{F}_{i}} \sum_{j \geq i} C\left(L_{j}\right)$ for some pay-off function C, rather than simply $Z_{i}=C\left(L_{i}\right)$
- Z may be path-dependent

Snell Envelope Process

At a future time point t, when the option is not exercised before t, the Bermudan option value is given by

$$
V_{t}=N(t) \sup _{\tau \in\{\kappa(t), \ldots, \mathcal{J}\}} E^{\mathcal{F}_{t}} Z_{\tau}
$$

with $\kappa(t):=\min \left\{m: T_{m} \geq t\right\}$.
The process

is called the Snell-envelope process and is a supermartingale, i.e.

Snell Envelope Process

At a future time point t, when the option is not exercised before t, the Bermudan option value is given by

$$
V_{t}=N(t) \sup _{\tau \in\{\kappa(t), \ldots, \mathcal{J}\}} E^{\mathcal{F}_{t}} Z_{\tau}
$$

with $\kappa(t):=\min \left\{m: T_{m} \geq t\right\}$.
The process

$$
Y_{t}^{*}:=\frac{V_{t}}{N(t)}
$$

is called the Snell-envelope process and is a supermartingale, i.e.

$$
E^{\mathcal{F}_{s}} Y_{t}^{*} \leq Y_{s}^{*}, \quad t \geq s
$$

Backward Dynamic Programming

Set $Y_{j}^{*}:=Y_{T_{j}}^{*}, L_{j}=L\left(T_{j}\right), \mathcal{F}_{j}:=\mathcal{F}_{T_{j}}$. At the last exercise date $T_{\mathcal{J}}$

$$
Y_{\mathcal{J}}^{*}=Z_{\mathcal{J}}
$$

and for $0 \leq j<\mathcal{J}$,

$$
Y_{j}^{*}=\max \left(Z_{j}, E^{\mathcal{F}_{j}} Y_{j+1}^{*}\right) .
$$

Observation
Nested Monte Carlo simulation of the price Y_{0}^{*} would require $N^{\mathcal{J}}$ samples when conditional expectations are computed with N samples

Backward Dynamic Programming

Set $Y_{j}^{*}:=Y_{T_{j}}^{*}, L_{j}=L\left(T_{j}\right), \mathcal{F}_{j}:=\mathcal{F}_{T_{j}}$. At the last exercise date $T_{\mathcal{J}}$

$$
Y_{\mathcal{J}}^{*}=Z_{\mathcal{J}}
$$

and for $0 \leq j<\mathcal{J}$,

$$
Y_{j}^{*}=\max \left(Z_{j}, E^{\mathcal{F}_{j}} Y_{j+1}^{*}\right) .
$$

Observation
Nested Monte Carlo simulation of the price Y_{0}^{*} would require $N^{\mathcal{J}}$ samples when conditional expectations are computed with N samples

Backward Dynamic Programming

Construction of Lower Bounds

Any stopping family (policy) $\left(\tau_{j}\right)$ satisfying

$$
j \leq \tau_{j} \leq \mathcal{J}, \tau_{\mathcal{J}}=\mathcal{J}, \quad \tau_{j}>j \Rightarrow \tau_{j}=\tau_{j+1}, \quad 0 \leq j<\mathcal{J},
$$

leads to a lower bound Y for the Snell envelope Y^{*}

$$
Y_{i}:=E^{\mathcal{F}_{i}} Z_{\tau_{i}} \leq Y_{i}^{*} .
$$

Example
The policy

exercises when the underlying process L enters a certain region G.

Construction of Lower Bounds

Any stopping family (policy) $\left(\tau_{j}\right)$ satisfying

$$
j \leq \tau_{j} \leq \mathcal{J}, \tau_{\mathcal{J}}=\mathcal{J}, \quad \tau_{j}>j \Rightarrow \tau_{j}=\tau_{j+1}, \quad 0 \leq j<\mathcal{J},
$$

leads to a lower bound Y for the Snell envelope Y^{*}

$$
Y_{i}:=E^{\mathcal{F}_{i}} Z_{\tau_{i}} \leq Y_{i}^{*} .
$$

Example
The policy

$$
\tau_{i}:=\inf \left\{j \geq i: L_{j} \in G \subset \mathbb{R}^{D}\right\} \wedge \mathcal{J}
$$

exercises when the underlying process L enters a certain region G.

Construction of Lower Bounds

An exercise policy τ can be constructed via

$$
\begin{aligned}
\tau^{\mathcal{J}} & =\mathcal{J}, \\
\tau^{j} & =j \chi_{\left\{\hat{c}_{j}\left(L_{j}\right) \leq Z_{j}\right\}}+\tau^{j+1} \chi_{\left\{\hat{c}_{j}\left(L_{j}\right)>z_{j}\right\}}, \quad j<\mathcal{J},
\end{aligned}
$$

where \widehat{C}_{j} is an approximation for the continuation value

$$
C_{j}\left(L_{j}\right):=E^{\mathcal{F}_{j}} Y_{j+1}^{*}, \quad j<\mathcal{J} .
$$

Remark
$C_{i}\left(L_{i}\right)$ can be first approximated by $E^{\boldsymbol{H}} Z_{\text {w }}$ with previously constructed

Construction of Lower Bounds

An exercise policy τ can be constructed via

$$
\begin{aligned}
\tau^{\mathcal{J}} & =\mathcal{J}, \\
\tau^{j} & =j \chi_{\left\{\hat{c}_{j}\left(L_{j}\right) \leq Z_{j}\right\}}+\tau^{j+1} \chi_{\left\{\hat{c}_{j}\left(L_{j}\right)>z_{j}\right\}}, \quad j<\mathcal{J},
\end{aligned}
$$

where \widehat{C}_{j} is an approximation for the continuation value

$$
C_{j}\left(L_{j}\right):=E^{\mathcal{F}} Y_{j+1}^{*}, \quad j<\mathcal{J} .
$$

Remark

$C_{j}\left(L_{j}\right)$ can be first approximated by $E^{\mathcal{F}_{j}} Z_{\tau i+1}$ with previously constructed τ^{j+1}

Regression Methods

The conditional expectation can be found by a linear regression:

$$
C_{j}(x) \approx \sum_{r=1}^{R} \beta_{j r} \psi_{r}(x), \quad j=0,1, \ldots, \mathcal{J}-1
$$

using a sample from $\left(L_{j}, Z_{i+1}\right)$ and a set of basis functions $\left\{\psi_{r}\right\}_{r=1}^{R}$.
Remark
The choice of basis functions is of crucial importance, especially in the case of large D.

Regression Methods

The conditional expectation can be found by a linear regression:

$$
C_{j}(x) \approx \sum_{r=1}^{R} \beta_{j r} \psi_{r}(x), \quad j=0,1, \ldots, \mathcal{J}-1
$$

using a sample from $\left(L_{j}, Z_{\tau+1}\right)$ and a set of basis functions $\left\{\psi_{r}\right\}_{r=1}^{R}$.

Remark

The choice of basis functions is of crucial importance, especially in the case of large D.

Regression Methods

The conditional expectation can be found by a linear regression:

$$
C_{j}(x) \approx \sum_{r=1}^{R} \beta_{j r} \psi_{r}(x), \quad j=0,1, \ldots, \mathcal{J}-1
$$

using a sample from $\left(L_{j}, Z_{\tau+1}\right)$ and a set of basis functions $\left\{\psi_{r}\right\}_{r=1}^{R}$.

Remark

The choice of basis functions is of crucial importance, especially in the case of large D.

Question
Is the policy τ a good one?

Dual upper bounds

Consider a discrete martingale $\left(M_{j}\right)_{j=0, \ldots, \mathcal{J}}$ with $M_{0}=0$ with respect to the filtration $\left(\mathcal{F}_{j}\right)_{j=0, \ldots, \mathcal{J}}$. Following Rogers, Haugh and Kogan, we observe that

$$
Y_{0}=\sup _{\tau \in\{0, \ldots,, \mathcal{J}\}} E^{\mathcal{F}_{0}}\left[Z_{\tau}-M_{\tau}\right] \leq E^{\mathcal{F}_{0}} \max _{0 \leq j \leq \mathcal{J}}\left[Z_{j}-M_{j}\right] .
$$

Hence the r.h.s. with an arbitrary martingale gives an upper bound for the Bermudan price Y_{0}.

Question
What martingale does lead to equality ?

Dual upper bounds

Consider a discrete martingale $\left(M_{j}\right)_{j=0, \ldots, \mathcal{J}}$ with $M_{0}=0$ with respect to the filtration $\left(\mathcal{F}_{j}\right)_{j=0, \ldots, \mathcal{J}}$. Following Rogers, Haugh and Kogan, we observe that

$$
Y_{0}=\sup _{\tau \in\{0, \ldots, \mathcal{J}\}} E^{\mathcal{F}_{0}}\left[Z_{\tau}-M_{\tau}\right] \leq E^{\mathcal{F}_{0}} \max _{0 \leq j \leq \mathcal{J}}\left[Z_{j}-M_{j}\right] .
$$

Hence the r.h.s. with an arbitrary martingale gives an upper bound for the Bermudan price Y_{0}.

Question
What martingale does lead to equality ?

Dual upper bounds

Theorem (Rogers (2001), Haugh \& Kogan (2001))
Let M^{*} be the (unique) Doob-Meyer martingale part of $\left(Y_{j}^{*}\right)_{0 \leq j \leq \mathcal{J}}$, i.e. M_{j}^{*} is an $\left(\mathcal{F}_{j}\right)$-martingale which satisfies

$$
Y_{j}^{*}=Y_{0}^{*}+M_{j}^{*}-A_{j}^{*}, \quad j=0, \ldots, \mathcal{J}
$$

with $M_{0}^{*}:=A_{0}^{*}:=0$ and A_{j}^{*} being \mathcal{F}_{j-1} measurable. Then

$$
Y_{0}^{*}=E^{\mathcal{F}_{0}} \max _{0 \leq j \leq \mathcal{J}}\left[Z_{j}-M_{j}^{*}\right] .
$$

Riesz upper bounds

Doob-Meyer decomposition

$$
Y_{j}^{*}=Y_{0}^{*}+M_{j}^{*}-A_{j}^{*}, \quad j=0, \ldots, \mathcal{J},
$$

and $Y_{\mathcal{J}}^{*}=Z_{\mathcal{J}}$ imply Riesz decomposition

$$
Y_{j}^{*}=E^{\mathcal{F}_{j}} Z_{\mathcal{J}}+E^{\mathcal{F}_{j}}\left(A_{\mathcal{J}}^{*}-A_{j}^{*}\right)
$$

Since $A_{i+1}^{*}-A_{i}^{*}=Y_{i}^{*}-E^{\mathcal{F}_{i}} Y_{i+1}^{*}=\left[Z_{i}-E^{\mathcal{F}_{i}} Y_{i+1}^{*}\right]^{+}$,

Riesz upper bounds

Doob-Meyer decomposition

$$
Y_{j}^{*}=Y_{0}^{*}+M_{j}^{*}-A_{j}^{*}, \quad j=0, \ldots, \mathcal{J},
$$

and $Y_{\mathcal{J}}^{*}=Z_{\mathcal{J}}$ imply Riesz decomposition

$$
Y_{j}^{*}=E^{\mathcal{F}_{j}} Z_{\mathcal{J}}+E^{\mathcal{F}_{j}}\left(A_{\mathcal{J}}^{*}-A_{j}^{*}\right)
$$

Since $A_{i+1}^{*}-A_{i}^{*}=Y_{i}^{*}-E^{\mathcal{F}_{i}} Y_{i+1}^{*}=\left[Z_{i}-E^{\mathcal{F}_{i}} Y_{i+1}^{*}\right]^{+}$,

$$
Y_{j}^{*}=E^{\mathcal{F}_{j}} Z_{\mathcal{J}}+E^{\mathcal{F}_{j}} \sum_{i=j}^{\mathcal{J}-1}\left[Z_{i}-E^{\mathcal{F}_{i}} Y_{i+1}^{*}\right]^{+}
$$

Riesz upper bounds

Theorem (Belomestny \& Milstein (2005))
If Y_{i} is a lower approximation for Y_{i}^{*}, then
is an upper approximation for Y_{j}^{*}, that is

Riesz upper bounds

Theorem (Belomestny \& Milstein (2005))
If Y_{i} is a lower approximation for Y_{i}^{*}, then

is an upper approximation for Y_{j}^{*}, that is

Riesz upper bounds

Theorem (Belomestny \& Milstein (2005))
If Y_{i} is a lower approximation for Y_{i}^{*}, then

is an upper approximation for Y_{j}^{*}, that is

$$
Y_{j} \leq Y_{j}^{*} \leq Y_{j}^{u p}, \quad j=0, \ldots, \mathcal{J}
$$

Riesz upper bounds

Properties

- Monotonicity

$$
\widetilde{Y}_{i} \geq Y_{i} \longrightarrow \widetilde{Y}_{i}^{u p} \leq Y_{i}^{u p}
$$

- Locality

Let $\left\{Y_{i}^{\alpha}, \alpha \in l_{i}\right\}$ be a family of local lower bounds at i, then

is an upper bound.

Riesz upper bounds

Properties

- Monotonicity

$$
\widetilde{Y}_{i} \geq Y_{i} \longrightarrow \widetilde{Y}_{i}^{u p} \leq Y_{i}^{u p}
$$

- Locality

Let $\left\{Y_{i}^{\alpha}, \alpha \in I_{i}\right\}$ be a family of local lower bounds at i, then

$$
Y_{j}^{\alpha, u p}=E^{\mathcal{F}_{j}} Z_{\mathcal{J}}+E^{\mathcal{F}_{j}} \sum_{i=j}^{\mathcal{J}-1}\left[Z_{i}-\max _{\alpha \in l_{i+1}} E^{\mathcal{F}_{i}} Y_{i+1}^{\alpha}\right]^{+}
$$

is an upper bound.

Doob-Meyer Martingale

For any martingale $M_{T_{j}}$, starting at $M_{0}=0$,

$$
Y_{0}^{u p}(M):=E^{\mathcal{F}_{0}}\left[\max _{0 \leq j \leq \mathcal{J}}\left(Z_{T_{j}}-M_{T_{j}}\right)\right]
$$

is an upper bound for the price of the Bermudan option with the deflated cash-flow $Z_{T_{j}}$.

Exact Bermudan price is attained at the martingale part M^{*} of the Snell envelope:

where $M_{T_{0}}^{*}=A_{T_{0}}^{*}=0$ and $A_{T_{j}}^{*}$ is $\mathcal{F}_{T_{j-1}}$ measurable.

Doob-Meyer Martingale

For any martingale $M_{T_{j}}$, starting at $M_{0}=0$,

$$
Y_{0}^{u p}(M):=E^{\mathcal{F}_{0}}\left[\max _{0 \leq j \leq \mathcal{J}}\left(Z_{T_{j}}-M_{T_{j}}\right)\right]
$$

is an upper bound for the price of the Bermudan option with the deflated cash-flow $Z_{T_{j}}$.

Exact Bermudan price is attained at the martingale part M^{*} of the Snell envelope:

$$
Y_{T_{j}}^{*}=Y_{T_{0}}^{*}+M_{T_{j}}^{*}-A_{T_{j}}^{*},
$$

where $M_{T_{0}}^{*}=A_{T_{0}}^{*}=0$ and $A_{T_{j}}^{*}$ is $\mathcal{F}_{T_{j-1}}$ measurable.

Doob-Meyer Martingale

Assume that $Y_{T_{j}}=u\left(T_{j}, L\left(T_{j}\right)\right)$ is an approximation for the Snell envelope $Y_{T_{j}}^{*}$ with the Doob decomposition

$$
Y_{T_{j}}=Y_{T_{0}}+M_{T_{j}}-A_{T_{j}} .
$$

It then holds:

$$
M_{T_{j+1}}-M_{T_{j}}=Y_{T_{j+1}}-E^{T_{j}}\left[Y_{T_{j+1}}\right]
$$

Doob-Meyer Martingale

Assume that $Y_{T_{j}}=u\left(T_{j}, L\left(T_{j}\right)\right)$ is an approximation for the Snell envelope $Y_{T_{j}}^{*}$ with the Doob decomposition

$$
Y_{T_{j}}=Y_{T_{0}}+M_{T_{j}}-A_{T_{j}} .
$$

It then holds:

$$
M_{T_{j+1}}-M_{T_{j}}=Y_{T_{j+1}}-E^{T_{j}}\left[Y_{T_{j+1}}\right]
$$

Observation
The computation of $M_{T_{j}}$ by MC leads to quadratic Monte Carlo for $Y_{0}^{\text {up }}$

Martingale Representation

If process L satisfies

$$
\begin{aligned}
d L(t) & =a(t, L) d t+b(t, L) d W_{t} \\
L(0) & =I
\end{aligned}
$$

then due to the martingale representation theorem

$$
\begin{aligned}
M_{T_{j}} & =: \int_{0}^{T_{j}} H_{t} d W_{t} \\
& =: \int_{0}^{T_{j}} h(t, L(t)) d W_{t}, \quad j=0, \ldots, \mathcal{J},
\end{aligned}
$$

where H_{t} is a square integrable and previsible process.
Observation
For any function $h(\cdot, \cdot)$ with $h(t, L(t)) \in L_{2}$ we get a martingale

Martingale Representation

If process L satisfies

$$
\begin{aligned}
d L(t) & =a(t, L) d t+b(t, L) d W_{t} \\
L(0) & =I
\end{aligned}
$$

then due to the martingale representation theorem

$$
\begin{aligned}
M_{T_{j}} & =: \int_{0}^{T_{j}} H_{t} d W_{t} \\
& =: \int_{0}^{T_{j}} h(t, L(t)) d W_{t}, \quad j=0, \ldots, \mathcal{J}
\end{aligned}
$$

where H_{t} is a square integrable and previsible process.
Observation
For any function $h(\cdot, \cdot)$ with $h(t, L(t)) \in L_{2}$ we get a martingale

Projection Estimator

We are going to estimate H_{t} on partition $\pi=\left\{t_{0}, \ldots, t_{\mathcal{I}}\right\}$ with $t_{0}=0$, $t_{\mathcal{I}}=T$, and $\left\{T_{0}, \ldots, T_{\mathcal{J}}\right\} \subset \pi$.

Write formally,

$$
Y_{T_{j+1}}-Y_{T_{j}} \approx \sum_{t_{t} \in \pi: T_{j} \leq t_{l}<T_{j+1}} H_{t_{t}} \cdot\left(W_{t_{t+1}}-W_{t_{t}}\right)+A_{T_{j+1}}-A_{T_{j}} .
$$

By multiplying both sides with $\left(W_{t_{i+1}}^{d}-W_{t_{i}}^{d}\right), T_{j} \leq t_{i}<T_{j+1}$, and taking $\mathcal{F}_{t_{i}}$-conditional expectations, we get by the $\mathcal{F}_{T_{j}}$-measurability of $A_{T_{j+1}}$,

$$
H_{t_{i}}^{d} \approx \hat{H}_{t_{i}}^{d}:=\frac{1}{t_{i+1}-t_{i}} E^{\mathcal{F}_{t_{i}}}\left[\left(W_{t_{i+1}}^{d}-W_{t_{i}}^{d}\right) \cdot Y_{T_{j+1}}\right] .
$$

Projection Estimator

The corresponding approximation of the martingale M is

$$
M_{T_{j}}^{\pi}:=\sum_{t_{i} \in \pi ; 0 \leq t_{i}<T_{j}} \widehat{H}_{t_{i}} \cdot \Delta^{\pi} W_{i},
$$

with $\Delta^{\pi} W_{i}^{d}:=W_{t_{i+1}}^{d}-W_{t_{i}}^{d}$.

Theorem (Belomestny, Bender, Schoenmakers (2006))

where $|\pi|$ denotes the mesh of π.

Projection Estimator

The corresponding approximation of the martingale M is

$$
M_{T_{j}}^{\pi}:=\sum_{t_{i} \in \pi ; 0 \leq t_{i}<T_{j}} \widehat{H}_{t_{i}} \cdot \Delta^{\pi} W_{i}
$$

with $\Delta^{\pi} W_{i}^{d}:=W_{t_{i+1}}^{d}-W_{t_{i}}^{d}$.

Theorem (Belomestny, Bender, Schoenmakers (2006))

$$
\lim _{|\pi| \rightarrow 0} E\left[\max _{0 \leq j \leq \mathcal{J}}\left|M_{T_{j}}^{\pi}-M_{T_{j}}\right|^{2}\right]=0
$$

where $|\pi|$ denotes the mesh of π.

Projection Estimator

In fact, for $T_{j} \leq t_{i}<T_{j+1}$

$$
\widehat{H}_{t_{i}}=\widehat{h}\left(t_{i}, L\left(t_{i}\right)\right)=\frac{1}{\Delta_{i}^{\pi}} E^{\mathcal{F}_{T_{i}}}\left[\left(\Delta^{\pi} W_{i}\right)^{\top} u\left(T_{j+1}, L\left(T_{j+1}\right)\right)\right]
$$

and the expectation can be computed by a linear regression.
(Take basis functions

(2) Simulate N independent samples

from $L\left(t_{i}\right)$ using the Brownian increments $\triangle_{n}^{\pi} W_{i}$.

Projection Estimator

In fact, for $T_{j} \leq t_{i}<T_{j+1}$

$$
\widehat{H}_{t_{i}}=\widehat{h}\left(t_{i}, L\left(t_{i}\right)\right)=\frac{1}{\Delta_{i}^{\pi}} E^{\mathcal{F}_{T_{i}}}\left[\left(\Delta^{\pi} W_{i}\right)^{\top} u\left(T_{j+1}, L\left(T_{j+1}\right)\right)\right]
$$

and the expectation can be computed by a linear regression.
(1) Take basis functions

$$
\psi\left(t_{i}, \cdot\right)=\left(\psi_{r}\left(t_{i}, \cdot\right), r=1, \ldots, R\right)
$$

(2) Simulate N independent samples

from $L\left(t_{i}\right)$ using the Brownian increments $\triangle_{n}^{\pi} W_{i}$.

Projection Estimator

In fact, for $T_{j} \leq t_{i}<T_{j+1}$

$$
\widehat{H}_{t_{i}}=\widehat{h}\left(t_{i}, L\left(t_{i}\right)\right)=\frac{1}{\Delta_{i}^{\pi}} E^{\mathcal{F}_{T_{i}}}\left[\left(\Delta^{\pi} W_{i}\right)^{\top} u\left(T_{j+1}, L\left(T_{j+1}\right)\right)\right]
$$

and the expectation can be computed by a linear regression.
(1) Take basis functions

$$
\psi\left(t_{i}, \cdot\right)=\left(\psi_{r}\left(t_{i}, \cdot\right), r=1, \ldots, R\right)
$$

(2) Simulate N independent samples

$$
\left(t_{i}, n L\left(t_{i}\right)\right), n=1, \ldots, N
$$

from $L\left(t_{i}\right)$ using the Brownian increments $\Delta_{n}^{\pi} W_{i}$.

Projection Estimator

(3) Construct the matrix $A_{t_{i}}^{\oplus}:=\left(A_{t_{i}}^{\top} A_{t_{i}}\right)^{-1} A_{t_{i}}^{\top}$, where

$$
A_{t_{i}}=\left\{\psi_{r}\left(t_{i},{ }_{n} L\left(t_{i}\right)\right), n=1, \ldots, N, r=1, \ldots, R\right\} .
$$

(4) Define

where $\widehat{\beta}_{t_{i}}$ is the $R \times D$ matrix of estimated regression coefficients at time t_{i}.

Projection Estimator

(3) Construct the matrix $A_{t_{i}}^{\oplus}:=\left(A_{t_{i}}^{\top} A_{t_{i}}\right)^{-1} A_{t_{i}}^{\top}$, where

$$
A_{t_{i}}=\left\{\psi_{r}\left(t_{i},{ }_{n} L\left(t_{i}\right)\right), n=1, \ldots, N, r=1, \ldots, R\right\} .
$$

(4) Define

$$
\widehat{h}\left(t_{i}, x\right)=\psi\left(t_{i}, x\right) A_{t_{i}}^{\oplus}\left(\frac{\Delta^{\pi} W_{i}}{\Delta_{i}^{\pi}} \cdot Y_{T_{j+1}}\right)=: \psi\left(t_{i}, x\right) \widehat{\beta}_{t_{i}}
$$

where $\widehat{\beta}_{t_{i}}$ is the $R \times D$ matrix of estimated regression coefficients at time t_{i}.

Fast MC Upper Bound

Finally construct

$$
\widehat{Y}_{0}^{u p}=\frac{1}{\widetilde{N}} \sum_{n=1}^{\widetilde{N}} \max _{0 \leq j \leq \mathcal{J}}\left[n \widetilde{Z}_{T_{j}}-\widetilde{M}_{T_{j}}\right]
$$

with

$$
\widetilde{M}_{T_{j}}=\sum_{t_{i} \in \pi ; 0 \leq t_{i}<T_{j}} \widehat{h}\left(t_{i}, \widetilde{L}\left(T_{j}\right)\right) \cdot\left(\Delta^{\pi} \widetilde{W}_{i}\right)
$$

by simulating new paths $\left({ }_{n} \widetilde{Z}_{T_{j}}, \Delta_{n}^{\pi} \widetilde{W}_{i}\right), n=1, \ldots, \widetilde{N}$.

Fast MC Upper Bound

Finally construct

$$
\widehat{Y}_{0}^{u p}=\frac{1}{\widetilde{N}} \sum_{n=1}^{\widetilde{N}} \max _{0 \leq j \leq \mathcal{J}}\left[n \widetilde{Z}_{T_{j}}-\widetilde{M}_{T_{j}}\right]
$$

with

$$
\widetilde{M}_{T_{j}}=\sum_{t_{i} \in \pi ; 0 \leq t_{i}<T_{j}} \widehat{h}\left(t_{i}, \widetilde{L}\left(T_{j}\right)\right) \cdot\left(\Delta^{\pi} \widetilde{W}_{i}\right)
$$

by simulating new paths $\left({ }_{n} \widetilde{Z}_{T_{j}}, \Delta_{n}^{\pi} \widetilde{W}_{i}\right), n=1, \ldots, \widetilde{N}$.
Observation
\widetilde{M}_{j} is always a martingale, so the upper bound is true!

Max Call on D assets

Black-Scholes model:

$$
d X_{t}^{d}=(r-\delta) X_{t}^{d} d t+\sigma X_{t}^{d} d W_{t}^{d}, \quad d=1, \ldots, D
$$

Pay-off:

$$
Z_{t}:=z\left(X_{t}\right):=\left(\max \left(X_{t}^{1}, \ldots, X_{t}^{D}\right)-\kappa\right)^{+}
$$

$T_{\mathcal{J}}=3 \mathrm{yr}, \mathcal{J}=9$ (ex. dates), $\kappa=100, r=0.05, \sigma=0.2, \delta=0.1$,
$D=2$ and different x_{0}

D	x_{0}	Lower Bound Y_{0}	Upper Bound $Y_{0}^{u p}\left(\widehat{M}^{\pi}\right)$	A\&B Price Interval
2	90	8.0242 ± 0.075	8.0891 ± 0.068	$[8.053,8.082]$
	100	13.859 ± 0.094	13.958 ± 0.085	$[13.892,13.934]$
	110	21.330 ± 0.109	21.459 ± 0.097	$[21.316,21.359]$

Dimension Reduction

Let $a(\cdot, \cdot), \sigma_{r}(\cdot, \cdot): \mathbb{R}_{+} \times \mathbb{R}^{d} \mapsto \mathbb{R}^{d}$ and

$$
\begin{aligned}
d L(t) & =a(t, L) d t+\sum_{r=1}^{q} \sigma_{r}(t, L) d W_{r}(t) \\
L(0) & =I
\end{aligned}
$$

where $\left(W_{1}, \ldots, W_{q}\right)$ are independent Brownian motions and $q \leq d$. We assume that coefficients a and b are almost affine, that is
where $\zeta_{a}(t, x)$ and $\zeta_{\sigma, r}(t, x)$ are slow varying functions in x.

Dimension Reduction

Let $a(\cdot, \cdot), \sigma_{r}(\cdot, \cdot): \mathbb{R}_{+} \times \mathbb{R}^{d} \mapsto \mathbb{R}^{d}$ and

$$
\begin{aligned}
d L(t) & =a(t, L) d t+\sum_{r=1}^{q} \sigma_{r}(t, L) d W_{r}(t) \\
L(0) & =I
\end{aligned}
$$

where $\left(W_{1}, \ldots, W_{q}\right)$ are independent Brownian motions and $q \leq d$. We assume that coefficients a and b are almost affine, that is

$$
a(t, x)=x \circ \zeta_{a}(t, x), \quad \sigma(t, x)=x \circ \zeta_{\sigma, r}(t, x),
$$

where $\zeta_{a}(t, x)$ and $\zeta_{\sigma, r}(t, x)$ are slow varying functions in x.

Dimension Reduction

Let $f(\cdot)$ be a function of the form $f(x)=\phi\left(\beta^{\top} x\right), x \in \mathbb{R}^{d}$, then

$$
\mathrm{E}[f(L(t+h)) \mid L(t)=L]=
$$

$$
\begin{array}{r}
\int_{\mathbb{R}^{q}} \phi\left(\left[\beta+h \beta \circ \zeta_{a}(t, L)\right]^{\top} L+\sum_{r=1}^{q} \sqrt{h}\left[\beta \circ \zeta_{\sigma, r}(t, L)\right]^{\top} L \xi_{r}\right) d P(\xi)+O(h) \\
=: g(B L)+O(h)
\end{array}
$$

with $(q+1) \times n$ matrix B defined as

$$
B:=\left(\beta+h \beta \circ \zeta_{a}(t, L), h^{1 / 2} \beta \circ \zeta_{\sigma, 1}(t, L), \ldots, h^{1 / 2} \beta \circ \zeta_{\sigma, q}(t, L)\right)^{\top}
$$

and $g(\cdot): \mathbb{R}^{q+1} \mapsto \mathbb{R}$

$$
g\left(x_{0}, \ldots, x_{q}\right):=\int_{\mathbb{R}^{q}} \phi\left(x_{0}+x_{1} \xi_{1}+\ldots+x_{q} \xi_{q}\right) d P(\xi) .
$$

國 Belomestny，D．and Milstein，G．
Monte Carlo evaluation of American options using consumption processes．
Int．J．of Theoretical and Applied Finance，02（1）：65－69， 2000.
䍰 Belomestny，D．and Milstein，G．
Adaptive simulation algorithms for pricing American and Bermudan options by local analysis of the financial market． Journal of Computational Finance，submitted．

直 Belomestny，D．，Milstein，G．and Spokoiny，V．
Regression methods in pricing American and Bermudan options using consumption processes．
Journal of Quantitative Finance，tentatively accepted．
Belomestny，D．，Bender，Ch．and Schoenmakers，J．
True upper bounds for Bermudan products via non－nested Monte Carlo．
Mathematical Finance，to appear．

