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Bermudan pricing problem Bermudan derivatives

Bermudan derivatives

Let L(t) ∈ RD be an underlying and T := {T0,T1, . . . ,TJ } be a set of
exercise dates.

Bermudan derivative: an option to exercise a cashflow C(Tτ ,L(Tτ ))
at a future time Tτ ∈ T, to be decided by the option holder.

Example

The callable snowball note pays semi-annually a constant coupon I
over the first year and in the forthcoming years

(Previous coupon + A− Libor)+,

semi-annually, where A increases on a regular basis.
Call feature: the issuer has the right to call the note at 100% on each

coupon payment date
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Bermudan pricing problem Bermudan derivatives

Bermudan derivatives

NEUEMISSION 

 

ZKB 5-Jahres Callable  
Snowball Note in CHF  
100 % Kapitalschutz 

 
 

12.07.2005 – 12.07.2010  

  
Produktbeschreibung 5-Jahres Callable Snowball Note in CHF mit Zinszahlungen in Verbindung mit dem CHF 6-

Monats Libor Satz. Die Callable Snowball Note in CHF stellt eine Alternative im Bereich der 
Fixed Income Anlagen dar. Tendiert der Basiswert seitwärts oder nur leicht höher, resultiert für 
dieses Produkt ein im Vergleich zu herkömmlichen Obligationen-Anlagen attraktiveres 
Renditeprofil. Ein Ansteigen des Basiswertes hat tiefere Couponszahlungen zur Folge. Ein 
sinkender Basiswert sowie eine Verflachung der Zinskurve erhöhen die Wahrscheinlichkeit 
einer vorzeitigen Rückzahlung durch die Emittentin. Die Note ist per Verfall oder per 
vorzeitigem Kündigungsdatum zu 100 % des Nominalbetrages kapitalgeschützt. 

  
Emittent Zürcher Kantonalbank Finance (Guernsey) Limited, Guernsey 
  
Keep-Well Agreement mit der Zürcher Kantonalbank, Zürich 
  
Lead Manager Zürcher Kantonalbank, Zürich 
  
Emissionsbetrag CHF 50'000'000 
  
Basiswert CHF 6-Monats Libor 
  
Währung CHF 
  
Stückelung CHF 10'000 Nominal 
  
Emissionspreis 100.00%  
  
Zeichnungsfrist bis 07. Juli 2005, 17.00 Uhr 
  
Liberierung 12. Juli 2005 
  
Rückzahlungsdatum 12. Juli 2010  
 
Zinsstabelle Zinsperiode Zinscoupon p.a. 

Juli 2005 – Januar 2006 2.00 % fix 
Januar 2006 – Juli 2006 2.00 % fix 
Juli 2006 – Januar 2007 vorhergehender Cp +1.00 % - 6M LIBOR CHF in arrears 
Januar 2007 – Juli 2007 vorhergehender Cp +1.25 % - 6M LIBOR CHF in arrears 
Juli 2007 – Januar 2008 vorhergehender Cp +1.50 % - 6M LIBOR CHF in arrears 
Januar 2008 – Juli 2008 vorhergehender Cp +1.75 % - 6M LIBOR CHF in arrears 
Juli 2008 – Januar 2009 vorhergehender Cp +2.00 % - 6M LIBOR CHF in arrears 
Januar 2009 – Juli 2009 vorhergehender Cp +2.25 % - 6M LIBOR CHF in arrears 
Juli 2009 – Januar 2010 vorhergehender Cp +2.50 % - 6M LIBOR CHF in arrears 
Januar 2010 – Juli 2010 vorhergehender Cp +2.75 % - 6M LIBOR CHF in arrears 

Der minimale Zinscoupon pro Periode beträgt 0 %. 
  
Zinszahlungskonvention 30/360 , modified following adjusted, Zürcher Handelstage für Zahlungen, Londoner 

Handelstage für die Liborfixierung 
  
Zinsperiode Die erste Zinsperiode beginnt mit dem Liberierungstag und endet einen Tag vor dem ersten 

Zinszahlungstag. Die nachfolgenden Zinsperioden beginnen jeweils mit dem Zinszahlungstag 
und enden einen Tag vor dem nächsten Zinszahlungstag.  
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Bermudan pricing problem Bermudan derivatives

Valuation

Let N, with N(0) = 1, be a numeraire and P be the associated pricing
measure. Define a deflated cash flow via

Zτ := C(Tτ ,L(Tτ ))/N(Tτ ).

The price of the Bermudan derivative is given by the solution of the
optimal stopping problem

V0 = sup
τ∈{0,...,J}

EF0Zτ ,

where the supremum runs over all stopping times τ ∈ {0, ...,J }.
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Bermudan pricing problem Bermudan derivatives

Optimal stopping

Mathematical problem:

Optimal stopping (calling) of a reward (cash-flow) process Z
depending on an underlying (e.g. interest rate) process L

Typical difficulties:

L is usually high dimensional , for Libor interest rate models,
D = 10 and higher, so PDE methods do not work in general

Z may only be virtually known, e.g. Zi = EFi
∑

j≥i C(Lj) for some
pay-off function C, rather than simply Zi = C(Li)

Z may be path-dependent
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Bermudan pricing problem Snell Envelope Process

Snell Envelope Process

At a future time point t , when the option is not exercised before t , the
Bermudan option value is given by

Vt = N(t) sup
τ∈{κ(t),...,J}

EFt Zτ

with κ(t) := min{m : Tm ≥ t}.
The process

Y ∗
t :=

Vt

N(t)

is called the Snell-envelope process and is a supermartingale, i.e.

EFsY ∗
t ≤ Y ∗

s , t ≥ s.

(WIAS) Monte Carlo Pricing of Callable Derivatives Berlin, 28 October 2007 7 / 28



Bermudan pricing problem Snell Envelope Process

Snell Envelope Process

At a future time point t , when the option is not exercised before t , the
Bermudan option value is given by

Vt = N(t) sup
τ∈{κ(t),...,J}

EFt Zτ

with κ(t) := min{m : Tm ≥ t}.
The process

Y ∗
t :=

Vt

N(t)

is called the Snell-envelope process and is a supermartingale, i.e.

EFsY ∗
t ≤ Y ∗

s , t ≥ s.

(WIAS) Monte Carlo Pricing of Callable Derivatives Berlin, 28 October 2007 7 / 28



Bermudan pricing problem Backward Dynamic Programming

Backward Dynamic Programming

Set Y ∗
j := Y ∗

Tj
, Lj = L(Tj), Fj := FTj . At the last exercise date TJ

Y ∗
J = ZJ

and for 0 ≤ j < J ,

Y ∗
j = max

(
Zj ,E

Fj Y ∗
j+1

)
.

Observation

Nested Monte Carlo simulation of the price Y ∗
0 would require NJ

samples when conditional expectations are computed with N samples
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Bermudan pricing problem Backward Dynamic Programming

Backward Dynamic Programming
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Bermudan pricing problem Exercise policies and lower bounds

Construction of Lower Bounds

Any stopping family (policy) (τj) satisfying

j ≤ τj ≤ J , τJ = J , τj > j ⇒ τj = τj+1, 0 ≤ j < J ,

leads to a lower bound Y for the Snell envelope Y ∗

Yi := EFi Zτi ≤ Y ∗
i .

Example

The policy
τi := inf{j ≥ i : Lj ∈ G ⊂ RD} ∧ J

exercises when the underlying process L enters a certain region G.
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Bermudan pricing problem Exercise policies and lower bounds

Construction of Lower Bounds

An exercise policy τ can be constructed via

τJ = J ,
τ j = jχ{bCj (Lj )≤Zj}

+ τ j+1χ{bCj (Lj )>Zj}
, j < J ,

where Ĉj is an approximation for the continuation value

Cj(Lj) := EFj Y ∗
j+1, j < J .

Remark

Cj(Lj) can be first approximated by EFj Zτ j+1 with previously
constructed τ j+1
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Bermudan pricing problem Exercise policies and lower bounds

Regression Methods

The conditional expectation can be found by a linear regression :

Cj(x) ≈
R∑

r=1

βjrψr (x), j = 0,1, . . . ,J − 1,

using a sample from (Lj ,Zτ j+1) and a set of basis functions {ψr}R
r=1.

Remark

The choice of basis functions is of crucial importance, especially in the
case of large D.

Question

Is the policy τ a good one ?
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Upper Bounds Dual Upper Bounds

Dual upper bounds

Consider a discrete martingale
(
Mj
)

j=0,...,J with M0 = 0 with respect to

the filtration
(
Fj
)

j=0,...,J . Following Rogers, Haugh and Kogan, we
observe that

Y0 = sup
τ∈{0,,...,J}

EF0 [Zτ −Mτ ] ≤ EF0 max
0≤j≤J

[
Zj −Mj

]
.

Hence the r.h.s. with an arbitrary martingale gives an upper bound for
the Bermudan price Y0.

Question

What martingale does lead to equality ?
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Upper Bounds Dual Upper Bounds

Dual upper bounds

Theorem (Rogers (2001), Haugh & Kogan (2001))

Let M∗ be the (unique) Doob-Meyer martingale part of
(

Y ∗
j

)
0≤j≤J

, i.e.

M∗
j is an

(
Fj
)
-martingale which satisfies

Y ∗
j = Y ∗

0 + M∗
j − A∗j , j = 0, ...,J

with M∗
0 := A∗0 := 0 and A∗j being Fj−1 measurable. Then

Y ∗
0 = EF0 max

0≤j≤J

[
Zj −M∗

j

]
.
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Upper Bounds Riesz upper bounds

Riesz upper bounds

Doob-Meyer decomposition

Y ∗
j = Y ∗

0 + M∗
j − A∗j , j = 0, ...,J ,

and Y ∗
J = ZJ imply Riesz decomposition

Y ∗
j = EFj ZJ + EFj (A∗J − A∗j )

Since A∗i+1 − A∗i = Y ∗
i − EFi Y ∗

i+1 = [Zi − EFi Y ∗
i+1]

+,

Y ∗
j = EFj ZJ + EFj

J−1∑
i=j

[Zi − EFi Y ∗
i+1]

+.
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Upper Bounds Riesz upper bounds

Riesz upper bounds

Theorem (Belomestny & Milstein (2005))

If Yi is a lower approximation for Y ∗
i , then

Y up
j = EFj ZJ + EFj

J−1∑
i=j

[Zi − EFi Yi+1]
+

is an upper approximation for Y ∗
j , that is

Yj ≤ Y ∗
j ≤ Y up

j , j = 0, . . . ,J .
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Upper Bounds Riesz upper bounds

Riesz upper bounds

Properties

Monotonicity

Ỹi ≥ Yi −→ Ỹ up
i ≤ Y up

i

Locality
Let {Y α

i , α ∈ Ii} be a family of local lower bounds at i, then

Y α,up
j = EFj ZJ + EFj

J−1∑
i=j

[Zi − max
α∈Ii+1

EFi Y α
i+1]

+

is an upper bound.
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Fast upper bounds Doob-Meyer Martingale

Doob-Meyer Martingale

For any martingale MTj , starting at M0 = 0,

Y up
0 (M) := EF0

[
max

0≤j≤J
(ZTj −MTj )

]
is an upper bound for the price of the Bermudan option with the
deflated cash-flow ZTj .

Exact Bermudan price is attained at the martingale part M∗ of the
Snell envelope:

Y ∗
Tj

= Y ∗
T0

+ M∗
Tj
− A∗Tj

,

where M∗
T0

= A∗T0
= 0 and A∗Tj

is FTj−1 measurable.
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Fast upper bounds Doob-Meyer Martingale

Doob-Meyer Martingale

Assume that YTj = u(Tj ,L(Tj)) is an approximation for the Snell
envelope Y ∗

Tj
with the Doob decomposition

YTj = YT0 + MTj − ATj .

It then holds:

MTj+1 −MTj = YTj+1 − ETj [YTj+1 ]

Observation

The computation of MTj by MC leads to quadratic Monte Carlo for Y up
0
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Fast upper bounds Martingale Representation

Martingale Representation

If process L satisfies

dL(t) = a(t ,L)dt + b(t ,L)dWt ,

L(0) = l ,

then due to the martingale representation theorem

MTj =:

∫ Tj

0
HtdWt

=:

∫ Tj

0
h(t ,L(t))dWt , j = 0, . . . ,J ,

where Ht is a square integrable and previsible process.

Observation

For any function h(·, ·) with h(t ,L(t)) ∈ L2 we get a martingale
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Fast upper bounds Projection Estimator

Projection Estimator

We are going to estimate Ht on partition π = {t0, . . . , tI} with t0 = 0,
tI = T , and {T0, . . . ,TJ } ⊂ π.

Write formally,

YTj+1 − YTj ≈
∑

tl∈π;Tj≤tl<Tj+1

Htl · (Wtl+1 −Wtl ) + ATj+1 − ATj .

By multiplying both sides with (W d
ti+1

−W d
ti
), Tj ≤ ti < Tj+1, and taking

Fti -conditional expectations, we get by the FTj -measurability of ATj+1 ,

Hd
ti ≈ Ĥd

ti :=
1

ti+1 − ti
EFti

[
(W d

ti+1
−W d

ti ) · YTj+1

]
.
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Fast upper bounds Projection Estimator

Projection Estimator

The corresponding approximation of the martingale M is

Mπ
Tj

:=
∑

ti∈π;0≤ti<Tj

Ĥti ·∆
πWi ,

with ∆πW d
i := W d

ti+1
−W d

ti
.

Theorem (Belomestny, Bender, Schoenmakers (2006))

lim
|π|→0

E
[

max
0≤j≤J

|Mπ
Tj
−MTj |

2
]

= 0,

where |π| denotes the mesh of π.
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Mπ
Tj

:=
∑

ti∈π;0≤ti<Tj

Ĥti ·∆
πWi ,

with ∆πW d
i := W d

ti+1
−W d

ti
.

Theorem (Belomestny, Bender, Schoenmakers (2006))

lim
|π|→0

E
[

max
0≤j≤J

|Mπ
Tj
−MTj |

2
]

= 0,

where |π| denotes the mesh of π.
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Fast upper bounds Projection Estimator

Projection Estimator

In fact, for Tj ≤ ti < Tj+1

Ĥti = ĥ(ti ,L(ti)) =
1

∆π
i

EFTi

[
(∆πWi)

>u(Tj+1,L(Tj+1))
]

and the expectation can be computed by a linear regression.

1 Take basis functions

ψ(ti , ·) = (ψr (ti , ·), r = 1, . . . ,R)

2 Simulate N independent samples

(ti , nL(ti)), n = 1, . . . ,N

from L(ti) using the Brownian increments ∆π
nWi .
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Fast upper bounds Projection Estimator

Projection Estimator

3 Construct the matrix A⊕ti := (A>ti Ati )
−1A>ti , where

Ati = {ψr (ti , nL(ti)), n = 1, . . . ,N, r = 1, . . . ,R} .

4 Define

ĥ(ti , x) = ψ(ti , x) A⊕ti

(
∆π
· Wi

∆π
i

·YTj+1

)
=: ψ(ti , x)β̂ti ,

where β̂ti is the R × D matrix of estimated regression coefficients
at time ti .
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Fast upper bounds Projection Estimator

Fast MC Upper Bound

Finally construct

Ŷ up
0 =

1

Ñ

eN∑
n=1

max
0≤j≤J

[
nZ̃Tj − M̃Tj

]
,

with
M̃Tj =

∑
ti∈π;0≤ti<Tj

ĥ(ti , L̃(Tj)) · (∆πW̃i)

by simulating new paths (nZ̃Tj ,∆
π
nW̃i), n = 1, . . . , Ñ.

Observation

M̃j is always a martingale, so the upper bound is true!
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Applications

Max Call on D assets

Black-Scholes model:

dX d
t = (r − δ)X d

t dt + σX d
t dW d

t , d = 1, ...,D,

Pay-off:
Zt := z(Xt) := (max(X 1

t , ...,X
D
t )− κ)+.

TJ = 3yr, J = 9 (ex. dates), κ = 100, r = 0.05, σ = 0.2, δ = 0.1,
D = 2 and different x0

D x0 Lower Bound Upper Bound A&B Price
Y0 Y up

0 (M̂π) Interval
90 8.0242±0.075 8.0891±0.068 [8.053, 8.082]

2 100 13.859±0.094 13.958±0.085 [13.892, 13.934]
110 21.330±0.109 21.459±0.097 [21.316, 21.359]
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Dimension Reduction

Dimension Reduction

Let a(·, ·), σr (·, ·) : R+ × Rd 7→ Rd and

dL(t) = a(t ,L)dt +

q∑
r=1

σr (t ,L)dWr (t),

L(0) = l ,

where (W1, . . . ,Wq) are independent Brownian motions and q ≤ d .

We assume that coefficients a and b are almost affine, that is

a(t , x) = x ◦ ζa(t , x), σ(t , x) = x ◦ ζσ,r (t , x),

where ζa(t , x) and ζσ,r (t , x) are slow varying functions in x .

(WIAS) Monte Carlo Pricing of Callable Derivatives Berlin, 28 October 2007 27 / 28



Dimension Reduction

Dimension Reduction

Let a(·, ·), σr (·, ·) : R+ × Rd 7→ Rd and

dL(t) = a(t ,L)dt +

q∑
r=1

σr (t ,L)dWr (t),

L(0) = l ,

where (W1, . . . ,Wq) are independent Brownian motions and q ≤ d .

We assume that coefficients a and b are almost affine, that is

a(t , x) = x ◦ ζa(t , x), σ(t , x) = x ◦ ζσ,r (t , x),

where ζa(t , x) and ζσ,r (t , x) are slow varying functions in x .

(WIAS) Monte Carlo Pricing of Callable Derivatives Berlin, 28 October 2007 27 / 28



Dimension Reduction

Dimension Reduction

Let f (·) be a function of the form f (x) = φ(β>x), x ∈ Rd , then

E[f (L(t + h))|L(t) = L] =∫
Rq
φ

(
[β + hβ ◦ ζa(t ,L)]>L +

q∑
r=1

√
h[β ◦ ζσ,r (t ,L)]>Lξr

)
dP(ξ) + O(h)

=: g(BL) + O(h)

with (q + 1)× n matrix B defined as

B := (β + hβ ◦ ζa(t ,L),h1/2β ◦ ζσ,1(t ,L), . . . ,h1/2β ◦ ζσ,q(t ,L))>

and g(·) : Rq+1 7→ R

g(x0, . . . , xq) :=

∫
Rq
φ(x0 + x1ξ1 + . . .+ xqξq) dP(ξ).
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