Local parametric methods in nonparametric estimation. 2. Local parametric approach

Vladimir Spokoiny

Weierstraß-Institute for Applied Analysis and Stochastics

October 1, 2006

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Regression model

The (mean) regression model link the *explained variable* Y and the *explanatory variable* in the form

 $Y = f(X) + \varepsilon.$

- ► Observations (X_i, Y_i) for i = 1,..., n. Typically the Y_i's are independent. n is usually called the sample size.
- ▶ Design X₁,...,X_n, X_i ∈ X where X is the design space. Usually either random or deterministic.
- ► Regression function f(x) for $x \in \mathcal{X}$. The parametric case: $f(x) = f_{\theta}(x)$ is known up to a parameter $\theta \in \Theta \subset \mathbb{R}^{p}$.
- Errors ε_i. Mutually independent and zero mean.
 Homoscedastic errors: Var ε_i = σ². Heteroscedastic errors:
 Var ε_i varies with i or with the location X_i.

Parametric M-estimation

Target of estimation - regression function f(x). Parametric model: $f(x) = f_{\theta}(x)$. M-estimate:

$$\widetilde{ heta} = \operatorname*{argmin}_{ heta} \sum_{i=1}^{n} M(Y_i - f_{ heta}(X_i)).$$

- \blacktriangleright if $M(u) = u^2$, then $\widetilde{ heta} = \widetilde{ heta}_{LSE}$, the least squares estimate
- ▶ if M(u) = |u|, then $\tilde{\theta} = \tilde{\theta}_{LAD}$, the least absolute deviation estimate
- ▶ if $M(u) = -\log p(u)$ where p(u) is the density of ε_i , then $\tilde{\theta} = \tilde{\theta}_{MLE}$, the maximum likelihood estimate.

Regression-like model

Let $\mathcal{P} = (P_v, v \in \mathcal{U})$ be a parametric (exponential) family. *Regression-like model:* Y_i are independent and the distribution of Y_i belongs to \mathcal{P} where the parameter depends on X_i :

$$Y_i \sim P_{f(X_i)}, \qquad i=1,\ldots,n.$$

The regression function $f(\cdot)$ identifies the distribution of $Y^{(n)}$. For the case of the natural parametrization

$$\boldsymbol{E}[Y_i|X_i]=f(X_i).$$

Parametric modeling: $f(\cdot) = f_{\theta}(\cdot)$. The MLE

$$\widetilde{oldsymbol{ heta}} = \operatorname*{argmax}_{oldsymbol{ heta}\in\Theta} \sum_{i=1}^n \ell(Y_i, f_{oldsymbol{ heta}}(X_i))$$

where $\ell(y, v) = \log p(y, v)$ is the log-density of P_v .

Examples. Constant and linear regression

Example (Constant regression) Let $\theta \in \mathcal{U}$ and $f_{\theta}(x) \equiv \theta$. Then

$$\widetilde{\theta} = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{n} \ell(Y_i, \theta) = n^{-1} \sum_{i=1}^{n} Y_i.$$

Example (Linear regression)

Let $\psi_1(x), \ldots, \psi_p(x)$ be given basis functions and $f_{\theta}(x) = \theta_1 \psi_1(x) + \ldots + \theta_p \psi_p(x)$. Then

$$\widetilde{\boldsymbol{\theta}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \sum_{i=1}^{n} \ell(\boldsymbol{Y}_{i}, \boldsymbol{\Psi}_{i}^{\top} \boldsymbol{\theta})$$

where $\boldsymbol{\theta} = (\theta_1, \dots, \theta_p)^\top$ and $\Psi_i = (\psi_1(X_i), \dots, \psi_p(X_i))^\top$.

・ロト・日本・モート モー うへぐ

Localization

The global parametric assumption $f(x) \equiv f_{\theta}(x)$ can be too restrictive, especially if the family $f_{\theta}(\cdot)$ is simple (as for constant or linear regression).

Way out by local parametric assumption (LPA): suppose that this assumption is valid only approximately and in a small neighborhood of each point x.

Localization around x using the collection of weights $W = \{w_i\} = \{w_i(x)\}$:

$$\widetilde{\theta}(x) = \operatorname*{argmax}_{\theta \in \Theta} L(W, \theta) = \operatorname*{argmax}_{\theta \in \Theta} \sum_{i=1}^{n} \ell(Y_i, f_{\theta}(X_i)) w_i(x).$$

Usually $w_i(x) = K_{\text{loc}}((X_i - x)/h)$ for a bandwidth h and a kernel K_{loc} .

Local constant regression

LPA: $f(X_i) \approx \theta$ for some θ in a neighborhood of x described by the weights $w_i = w_i(x)$.

Local estimate $\tilde{f}(x) = \tilde{\theta}(x)$:

$$\widetilde{f}(x) = \widetilde{ heta}(x) = \operatorname*{argmax}_{ heta} L(W, heta) = \operatorname*{argmax}_{ heta} \sum_{i=1}^{n} \ell(Y_i, heta) w_i \,.$$

In the case of an exponential family with the natural parametrization

$$\widetilde{f}(x) = \widetilde{\theta}(x) = N^{-1} \sum_{i=1}^{n} Y_i w_i$$
 where $N = \sum_{i=1}^{n} w_i$

means the local sample size.

Local linear regression

LPA: $f(X_i) \approx f_{\theta}(X_i) = \Psi_i^{\top} \theta$ if $w_i > 0$ for some $\theta \in \Theta$. Local estimate $\tilde{\theta} = \tilde{\theta}(x)$:

$$\widetilde{oldsymbol{ heta}} = \operatorname*{argmax}_{oldsymbol{ heta}} \sum_{i=1}^n \ell(Y_i, \Psi_i^ op oldsymbol{ heta}) w_i$$

A closed form solution only for the Gaussian contrast $\ell(y, v) = (y - v)^2$. Then

$$\widetilde{\boldsymbol{\theta}} = \left(\sum_{i=1}^n \boldsymbol{\Psi}_i^\top \boldsymbol{\Psi}_i \boldsymbol{w}_i\right)^{-1} \sum_{i=1}^n Y_i \boldsymbol{\Psi}_i \boldsymbol{w}_i \,.$$

The value f(x) is estimated as

$$\widetilde{f}(x) = f_{\widetilde{\theta}}(x) = \Psi(x)^{\top}\widetilde{\theta}.$$

Accuracy of local estimation in the parametric case

LPA: $f(X_i) \approx f_{\theta}(X_i)$ if $w_i > 0$ for some $\theta \in \Theta$. Leads to the local estimate $\tilde{\theta} = \tilde{\theta}(x)$

$$\widetilde{\boldsymbol{\theta}} = \operatorname*{argmax}_{\boldsymbol{\theta} \in \Theta} \sum_{i=1}^{n} \ell(Y_i, f_{\boldsymbol{\theta}}(X_i)) w_i.$$

Theorem

Let the LPA be exactly fulfilled, i.e., $f(X_i) \equiv f_{\theta^*}(X_i)$ for $w_i > 0$. Then $L(W, \tilde{\theta}, \theta^*) = \max_{\theta \in \Theta} L(W, \theta) - L(W, \theta^*)$ satisfies

$$\boldsymbol{E}_{f(\cdot)} \big| L(W, \widetilde{\boldsymbol{\theta}}, \boldsymbol{\theta}^*) \big|^r = \boldsymbol{E}_{\boldsymbol{\theta}^*} \big| L(W, \widetilde{\boldsymbol{\theta}}, \boldsymbol{\theta}^*) \big|^r \leq \mathfrak{R}_r.$$

Local confidence intervals:

$$\mathcal{E}(\mathfrak{z}) = \{ \boldsymbol{\theta} \in \Theta : L(W, \widetilde{\boldsymbol{\theta}}, \boldsymbol{\theta}) \leq \mathfrak{z} \}.$$

"Small modeling bias" condition

LPA: $f(X_i) \approx f_{\theta}(X_i)$ if $w_i > 0$ for some $\theta \in \Theta$.

Problems: how to measure the quality of the LPA?

A natural measure via the local Kullback-Leibler divergence. Define

$$\Delta(W,\theta) = \sum_{i=1}^n \mathcal{K}(f(X_i), f_{\theta}(X_i)) \mathbf{1}(w_i > 0).$$

Theorem

Let θ and $\Delta \geq 0$ be such that $\Delta(W, \theta) \leq \Delta$. Then

$$E_{f(\cdot)}\log\left(1+rac{\left|L(W,\widetilde{ heta}, heta)
ight|^{r}}{\mathfrak{R}_{r}}
ight)\leq\Delta+1.$$

Interpretation: the local parametric approach applies as long as the SMB holds.

Problem of local adaptive estimation

Let $W^{(k)} = \{w_i^{(k)}\}$, k = 1, ..., K, be an ordered collection of localizing schemes for a fixed x.

Usually $w_i^{(k)} = K_{loc}((X_i - x)/h_k)$ for a giving ordered set of bandwidths $h_1 < h_2 < \ldots < h_K$.

Leads to a growing local sample size $N_k = \sum w_i^{(k)}$ and decreasing variability of the $\tilde{\theta}_k$.

Aim: to build an estimate $\widehat{\theta} = \widehat{\theta}(x)$ which behaves as good as the best in the family $\widetilde{\theta}_k$.

Local model selection (LMS) procedure. Idea

For a given x and a set $W^{(1)} \subset W^{(2)} \subset \ldots \subset W^{(K)}$.

Local Model Selection Problem: select the largest scheme $W^{(k)}$ with the largest N_k for which the SMB still holds.

Idea: sequential test of the hypothesis of local homogeneity $f(X_i) = f_{\theta}(X_i)$ for $w_i^{(k)} > 0$.

If the hypothesis holds for $W^{(k)}$, the value heta belongs with the high probability to the confidence set

$$\mathcal{E}_k = \mathcal{E}_k(\mathfrak{z}) = \{ \boldsymbol{\theta} \in \Theta : L(W^{(k)}, \widetilde{\boldsymbol{\theta}}_k, \boldsymbol{\theta}) \leq \mathfrak{z} \}.$$

 $\widetilde{oldsymbol{ heta}}_k$ is accepted if it belongs to all confidence sets $\,\mathcal{E}_l\,$ for $\,l < k$.

LMS procedure. Formal description

• Start with
$$\widehat{oldsymbol{ heta}}_1 = \widetilde{oldsymbol{ heta}}_1$$
 .

▶ for $k \ge 2$, $\tilde{\theta}_k$ is accepted and $\hat{\theta}_k = \tilde{\theta}_k$ if $\tilde{\theta}_{k-1}$ was accepted and

$$L(W^{(I)}, \widetilde{oldsymbol{ heta}}_I, \widetilde{oldsymbol{ heta}}_k) \leq \mathfrak{z}_I\,, \qquad I=1,\ldots,k-1.$$

Otherwise $\widehat{\theta}_k = \widehat{\theta}_{k-1}$.

 $\widehat{oldsymbol{ heta}}_k$ is the latest accepted estimate after first k steps.

The adaptive estimate $\widehat{\theta} = \widehat{\theta}_K$ is the latest accepted estimate among $\widetilde{\theta}_k$.

LMS procedure. Parameters

To run the procedure, one has to specify:

- Set of localizing schemes (the bandwidths h_k and the kernel K_{loc})
- the critical values $\mathfrak{z}_1, \ldots, \mathfrak{z}_{K-1}$.

The localizing schemes $W^{(k)}$ are assumed to be given. The only condition to be verified that the local sample size $N_k = \sum_i w_i^{(k)}$ grows geometrically with k.

The critical values \mathfrak{z}_k are selected to provide the prescribed performance of the method in the parametric situation:

$$\sup_{\boldsymbol{\theta}^* \in \Theta} \boldsymbol{E}_{\boldsymbol{\theta}^*} \big| L(W^{(k)}, \widetilde{\boldsymbol{\theta}}_k, \widehat{\boldsymbol{\theta}}_k) \big|^r \leq \alpha \mathfrak{R}_r.$$

Sequential choice of critical values

The parameters \mathfrak{z}_k have to fulfill

$$\sup_{\boldsymbol{\theta}^* \in \Theta} \boldsymbol{E}_{\boldsymbol{\theta}^*} \left| L(\boldsymbol{W}^{(k)}, \widetilde{\boldsymbol{\theta}}_k, \widehat{\boldsymbol{\theta}}_k) \right|^r \le \alpha \mathfrak{R}_r, \qquad k = 2, \dots, K.$$
(1)

In total K-1 conditions to fix K-1 parameters. The sensitivity to deviations from local homogeneity is important. Therefore, we aim to select the minimal \mathfrak{Z}_k 's providing (1).

Sequential procedure.

Start with \mathfrak{z}_1 letting $\mathfrak{z}_2 = \ldots = \mathfrak{z}_{K-1} = \infty$. Leads to the estimates $\widehat{\theta}_t^{(k)}(\mathfrak{z}_1)$ for $k = 2, \ldots, K$. The value \mathfrak{z}_1 is selected as the minimal one for which

$$\boldsymbol{E}_{\theta^*} \big| L\big(\boldsymbol{W}^{(k)}, \widetilde{\boldsymbol{\theta}}_k, \widehat{\boldsymbol{\theta}}_k(\mathfrak{z}_1) \big) \big|^r \leq \frac{\alpha \mathfrak{r}_r}{K-1}, \qquad k = 2, \dots, K.$$
(2)

Such a value exists because the choice $\mathfrak{z}_1 = \infty$ leads to $\widehat{\theta}_k(\mathfrak{z}_1) = \widetilde{\theta}_k$ for all k.

Sequential choice of critical values. 2

Suppose $\mathfrak{z}_1, \ldots, \mathfrak{z}_{k-1}$ have been already fixed.

We set $\mathfrak{z}_k = \ldots = \mathfrak{z}_{K-1} = \infty$ and fix \mathfrak{z}_k leading to the set of parameters $\mathfrak{z}_1, \ldots, \mathfrak{z}_k, \infty, \ldots, \infty$ and the estimates $\widehat{\theta}_m(\mathfrak{z}_1, \ldots, \mathfrak{z}_k)$ for $m = k + 1, \ldots, K$

We select \mathfrak{z}_k as the minimal value which fulfills

$$\boldsymbol{E}_{\theta^*} \big| L\big(\widetilde{\boldsymbol{\theta}}_l, \widehat{\boldsymbol{\theta}}_l(\boldsymbol{\mathfrak{z}}_1, \dots, \boldsymbol{\mathfrak{z}}_k) \big) \big|^r \leq \frac{k \alpha \mathfrak{r}_r}{K - 1}, \qquad l = k + 1, \dots, K. \quad (3)$$