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Regression model

The (mean) regression model link the explained variable Y and
the explanatory variable in the form

Y = f (X ) + ε.

I Observations (Xi ,Yi ) for i = 1, . . . , n . Typically the Yi ’s are
independent. n is usually called the sample size.

I Design X1, . . . ,Xn , Xi ∈ X where X is the design space.
Usually either random or deterministic.

I Regression function f (x) for x ∈ X . The parametric case:
f (x) = fθ(x) is known up to a parameter θ ∈ Θ ⊂ IRp .

I Errors εi . Mutually independent and zero mean.
Homoscedastic errors: Var εi = σ2 . Heteroscedastic errors:
Var εi varies with i or with the location Xi .



Parametric M-estimation

Target of estimation - regression function f (x) .

Parametric model: f (x) = fθ(x) .

M-estimate:

θ̃ = argmin
θ

n∑
i=1

M(Yi − fθ(Xi )).

I if M(u) = u2 , then θ̃ = θ̃LSE , the least squares estimate

I if M(u) = |u| , then θ̃ = θ̃LAD , the least absolute deviation
estimate

I if M(u) = − log p(u) where p(u) is the density of εi , then
θ̃ = θ̃MLE , the maximum likelihood estimate.



Regression-like model

Let P = (Pυ, υ ∈ U) be a parametric (exponential) family.
Regression-like model: Yi are independent and the distribution of
Yi belongs to P where the parameter depends on Xi :

Yi ∼ Pf (Xi ), i = 1, . . . , n.

The regression function f (·) identifies the distribution of Y (n) .

For the case of the natural parametrization

IE [Yi |Xi ] = f (Xi ).

Parametric modeling: f (·) = fθ(·) . The MLE

θ̃ = argmax
θ∈Θ

n∑
i=1

`(Yi , fθ(Xi ))

where `(y , υ) = log p(y , υ) is the log-density of Pυ .



Examples. Constant and linear regression

Example (Constant regression)

Let θ ∈ U and fθ(x) ≡ θ . Then

θ̃ = argmax
θ

n∑
i=1

`(Yi , θ) = n−1
n∑

i=1

Yi .

Example (Linear regression)

Let ψ1(x), . . . , ψp(x) be given basis functions and
fθ(x) = θ1ψ1(x) + . . .+ θpψp(x) . Then

θ̃ = argmax
θ

n∑
i=1

`(Yi ,Ψ
>
i θ)

where θ = (θ1, . . . , θp)
> and Ψi =

(
ψ1(Xi ), . . . , ψp(Xi )

)>
.



Localization

The global parametric assumption f (x) ≡ fθ(x) can be too
restrictive, especially if the family fθ(·) is simple (as for constant
or linear regression).

Way out by local parametric assumption (LPA): suppose that this
assumption is valid only approximately and in a small
neighborhood of each point x .

Localization around x using the collection of weights
W = {wi} = {wi (x)} :

θ̃(x) = argmax
θ∈Θ

L(W ,θ) = argmax
θ∈Θ

n∑
i=1

`(Yi , fθ(Xi ))wi (x).

Usually wi (x) = Kloc

(
(Xi − x)/h

)
for a bandwidth h and a kernel

Kloc .



Local constant regression

LPA: f (Xi ) ≈ θ for some θ in a neighborhood of x described by
the weights wi = wi (x) .

Local estimate f̃ (x) = θ̃(x) :

f̃ (x) = θ̃(x) = argmax
θ

L(W , θ) = argmax
θ

n∑
i=1

`(Yi , θ)wi .

In the case of an exponential family with the natural
parametrization

f̃ (x) = θ̃(x) = N−1
n∑

i=1

Yiwi where N =
n∑

i=1

wi

means the local sample size.



Local linear regression

LPA: f (Xi ) ≈ fθ(Xi ) = Ψ>
i θ if wi > 0 for some θ ∈ Θ .

Local estimate θ̃ = θ̃(x) :

θ̃ = argmax
θ

n∑
i=1

`(Yi ,Ψ
>
i θ)wi

A closed form solution only for the Gaussian contrast
`(y , υ) = (y − υ)2 . Then

θ̃ =
( n∑

i=1

Ψ>
i Ψiwi

)−1
n∑

i=1

YiΨiwi .

The value f (x) is estimated as

f̃ (x) = f
θ̃
(x) = Ψ(x)>θ̃.



Accuracy of local estimation in the parametric case

LPA: f (Xi ) ≈ fθ(Xi ) if wi > 0 for some θ ∈ Θ .

Leads to the local estimate θ̃ = θ̃(x)

θ̃ = argmax
θ∈Θ

n∑
i=1

`(Yi , fθ(Xi ))wi .

Theorem
Let the LPA be exactly fulfilled, i.e., f (Xi ) ≡ fθ∗(Xi ) for wi > 0 .
Then L(W , θ̃,θ∗) = maxθ∈Θ L(W ,θ)− L(W ,θ∗) satisfies

IEf (·)
∣∣L(W , θ̃,θ∗)

∣∣r = IEθ∗
∣∣L(W , θ̃,θ∗)

∣∣r ≤ Rr .

Local confidence intervals:

E(z) = {θ ∈ Θ : L(W , θ̃,θ) ≤ z}.



“Small modeling bias” condition

LPA: f (Xi ) ≈ fθ(Xi ) if wi > 0 for some θ ∈ Θ .

Problems: how to measure the quality of the LPA?

A natural measure via the local Kullback-Leibler divergence. Define

∆(W ,θ) =
n∑

i=1

K
(
f (Xi ), fθ(Xi )

)
1(wi > 0).

Theorem
Let θ and ∆ ≥ 0 be such that ∆(W ,θ) ≤ ∆ . Then

IEf (·) log

(
1 +

∣∣L(W , θ̃,θ)
∣∣r

Rr

)
≤ ∆ + 1.

Interpretation: the local parametric approach applies as long as the
SMB holds.



Problem of local adaptive estimation

Let W (k) = {w (k)
i } , k = 1, . . . ,K , be an ordered collection of

localizing schemes for a fixed x .

Usually w
(k)
i = Kloc

(
(Xi − x)/hk

)
for a giving ordered set of

bandwidths h1 < h2 < . . . < hK .

Leads to a growing local sample size Nk =
∑

w
(k)
i and decreasing

variability of the θ̃k .

W (1) ⊂ W (2) ⊂ . . . ⊂ W (K)

↓ ↓ ↓
θ̃1 θ̃2 . . . θ̃K

↓ ↓ ↓
N1 < N2 < . . . < NK

Aim: to build an estimate θ̂ = θ̂(x) which behaves as good as the
best in the family θ̃k .



Local model selection (LMS) procedure. Idea

For a given x and a set W (1) ⊂ W (2) ⊂ . . . ⊂ W (K) .

Local Model Selection Problem: select the largest scheme W (k)

with the largest Nk for which the SMB still holds.

Idea: sequential test of the hypothesis of local homogeneity

f (Xi ) = fθ(Xi ) for w
(k)
i > 0 .

If the hypothesis holds for W (k) , the value θ belongs with the
high probability to the confidence set

Ek = Ek(z) = {θ ∈ Θ : L(W (k), θ̃k ,θ) ≤ z}.

θ̃k is accepted if it belongs to all confidence sets El for l < k .



LMS procedure. Formal description

I Start with θ̂1 = θ̃1 .

I for k ≥ 2 , θ̃k is accepted and θ̂k = θ̃k if θ̃k−1 was
accepted and

L
(
W (l), θ̃l , θ̃k

)
≤ zl , l = 1, . . . , k − 1.

Otherwise θ̂k = θ̂k−1 .

θ̂k is the latest accepted estimate after first k steps.

The adaptive estimate θ̂ = θ̂K is the latest accepted estimate
among θ̃k .



LMS procedure. Parameters

To run the procedure, one has to specify:

I Set of localizing schemes (the bandwidths hk and the kernel
Kloc )

I the critical values z1, . . . , zK−1 .

The localizing schemes W (k) are assumed to be given. The only

condition to be verified that the local sample size Nk =
∑

i w
(k)
i

grows geometrically with k .

The critical values zk are selected to provide the prescribed
performance of the method in the parametric situation:

sup
θ∗∈Θ

IEθ∗
∣∣L(W (k), θ̃k , θ̂k)

∣∣r ≤ αRr .



Sequential choice of critical values

The parameters zk have to fulfill

sup
θ∗∈Θ

IEθ∗
∣∣L(W (k), θ̃k , θ̂k)

∣∣r ≤ αRr , k = 2, . . . ,K . (1)

In total K − 1 conditions to fix K − 1 parameters. The sensitivity
to deviations from local homogeneity is important. Therefore, we
aim to select the minimal zk ’s providing (1).

Sequential procedure.
Start with z1 letting z2 = . . . = zK−1 = ∞ . Leads to the

estimates θ̂
(k)
t (z1) for k = 2, . . . ,K . The value z1 is selected as

the minimal one for which

IEθ∗
∣∣L(

W (k), θ̃k , θ̂k(z1)
)
|r ≤ αrr

K − 1
, k = 2, . . . ,K . (2)

Such a value exists because the choice z1 = ∞ leads to
θ̂k(z1) = θ̃k for all k .



Sequential choice of critical values. 2

Suppose z1, . . . , zk−1 have been already fixed.

We set zk = . . . = zK−1 = ∞ and fix zk leading to the set of
parameters z1, . . . , zk ,∞, . . . ,∞ and the estimates
θ̂m(z1, . . . , zk) for m = k + 1, . . . ,K

We select zk as the minimal value which fulfills

IEθ∗
∣∣L(

θ̃l , θ̂l(z1, . . . , zk)
)
|r ≤ kαrr

K − 1
, l = k + 1, . . . ,K . (3)


