Optimal control and Maximum principle

Daniel Wachsmuth, RICAM Linz

EMS school Bedlewo

Bedlewo, 12.10.2010

1. Model problem

- 2. Adjoint equation
- 3. Maximum principle
- 4. Numerical algorithms
- 5. Flow control

Rocket car

Objective: Reach target as fast as possible.

Control: Acceleration.

Constraints: Stop at target, control constraints.

1

Quantities: t .. time, $x(t) \in \mathbb{R}$ position, $u(t) \in [-1, +1]$ control, m > 0 mass, $x_0 \neq 0$ initial position

Equation of motion:

$$m x''(t) = u(t)$$
$$x(0) = x_0$$

Quantities: t .. time, $x(t) \in \mathbb{R}$ position, $u(t) \in [-1, +1]$ control, m > 0 mass, $x_0 \neq 0$ initial position

Equation of motion:

$$m x''(t) = u(t)$$
$$x(0) = x_0$$

Optimal control problem:

Minimize T subject to

- Equation of motion
- x(T) = 0, x'(T) = 0
- $|u(t)| \leq 1$

Quantities: t .. time, $x(t) \in \mathbb{R}$ position, $u(t) \in [-1, +1]$ control, m > 0 mass, $x_0 \neq 0$ initial position

Equation of motion:

$$m x''(t) = u(t)$$
$$x(0) = x_0$$

Optimal control problem:

Minimize T subject to

- Equation of motion
- x(T) = 0, x'(T) = 0
- $|u(t)| \leq 1$

Problem: Find a solution!

Features:

- optimization problem
- some optimization variable are functions \rightarrow infinite-dimensional optimization
- differential equations (ode / pde)
- inequalities

Minimize functional J given by

$$J(x, u, T) := \int_0^T f_0(x(t), u(t), t) dt$$

subject to the ODE

$$x'(t) = f(x(t), u(t))$$
 a.e. on (0, T),

initial and terminal conditions

$$x(0) = x_0, \quad x(T) = z$$

control constraints

 $u(t) \subset U.$

Setting $f_0 = 1$ the case of the time-optimal problem is contained as special case.

Unknowns: measurable functions u, x with $u(t) \in \mathbb{R}^m$, $x(t) \in \mathbb{R}^n$.

Problem: Find a solution!

Consider the simpler problem of minimizing $f : \mathbb{R} \to \mathbb{R}$,

min f(x), $x \in \mathbb{R}$.

If f is differentiable, then every solution \bar{x} satisfies

f'(x)=0.

Solve this equation to find candidates for solutions!

Consider the simpler problem of minimizing $f : \mathbb{R} \to \mathbb{R}$,

min f(x), $x \in \mathbb{R}$.

If f is differentiable, then every solution \bar{x} satisfies

f'(x)=0.

Solve this equation to find candidates for solutions!

What is f' in the optimal control problem??

- 1. Model problem
- 2. Adjoint equation
- 3. Maximum principle
- 4. Numerical algorithms
- 5. Flow control

Assumption: For every control function *u* there exists a uniquely determined solution of the ODE x = x(u).

Simplification: No terminal constraint.

Task: Compute directional derivative Given control u^0 , x^0 , direction *h*

$$J'(x^0, u^0)h \approx \frac{1}{\epsilon} (J(x(u^0 + \epsilon h), u^0 + \epsilon h) - J'(x^0, u^0))$$

Disadvantages:

- Choice of ϵ
- Each evaluation of one difference quotient requires one (nonlinear) ODE solve

Chain rule:

$$\frac{d}{du}J(x^0, u^0) = J_x(x^0, u^0)\frac{d}{du}x(u^0) + J_u(x^0, u^0)$$

(Total) Directional derivative

$$\frac{d}{du}J(x^0, u^0)h = J_x(x^0, u^0)\frac{d}{du}x(u^0)h + J_u(x^0, u^0)h$$

The quantity $z := \frac{d}{du} x(u^0)h$ is the solution of the linearized ode

$$z' = f_x(x^0, u^0)z + f_u(x^0, u^0)h, \quad z(0) = 0$$

The quantity $J_x(x^0, u^0)\frac{d}{du}x(u^0)h$ is a dual product:

$$J_{x}(x^{0}, u^{0})\frac{d}{du}x(u^{0})h = \langle J_{x}(x^{0}, u^{0}), \frac{d}{du}x(u^{0})h \rangle$$

EMS school Bedlewo

Chain rule:

$$\frac{d}{du}J(x^0, u^0) = J_x(x^0, u^0)\frac{d}{du}x(u^0) + J_u(x^0, u^0)$$

(Total) Directional derivative

$$\frac{d}{du}J(x^0, u^0)h = J_x(x^0, u^0)\frac{d}{du}x(u^0)h + J_u(x^0, u^0)h$$

The quantity $z := \frac{d}{du} x(u^0)h$ is the solution of the linearized ode

$$z' = f_x(x^0, u^0)z + f_u(x^0, u^0)h, \quad z(0) = 0$$

The quantity $J_x(x^0, u^0)\frac{d}{du}x(u^0)h$ is a dual product:

$$J_{x}(x^{0}, u^{0})\frac{d}{du}x(u^{0})h = \langle J_{x}(x^{0}, u^{0}), \frac{d}{du}x(u^{0})h \rangle = \left\langle \left(\frac{d}{du}x(u^{0})\right)^{*}J_{x}(x^{0}, u^{0}), \right\rangle$$

EMS school Bedlewo

How can we characterize

$$q := \left(\frac{d}{du}x(u^0)\right)^* J_x(x^0, u^0)?$$

It turns out that

$$q = f_u(x^0, u^0)^T p,$$

where p solves the linear ODE

[Recall $J = \int f_0(x, u)$]

$$-p'(t) = f_x(x^0, u^0)^T p + f_{0,x}(x^0, u^0)^T, \quad p(T) = 0.$$

Conclusion: Given (x^0, u^0) and p^0 . Then

$$\frac{d}{du}J(x^0, u^0)h = \int_0^T p^T f_u(x^0, u^0)h + f_{0,u}(x^0, u^0)h$$

Advantage: One linear ODE needed to evaluate many directional derivatives.

EMS school Bedlewo

Adjoint equation:

$$-p'(t) = f_x(x^0, u^0)^T p + f_{0,x}(x^0, u^0)^T, \quad p(T) = 0.$$

Properties:

- Linear in *p*
- Operator in the equation is the linearized and transposed (adjoint) operator of the state equation
- Inhomogeneities originate from objective functional
- Nonzero data only where observation takes place

Advantage:

- One linear ODE solve to obtain all derivative information
- Works for many problems: PDE, shape optimization, etc

10

We only wanted to evaluate f' ...

- 1. Model problem
- 2. Adjoint equation
- 3. Maximum principle
- 4. Numerical algorithms
- 5. Flow control

Minimize functional J given by

$$J(x, u, T) := \int_0^T f_0(x(t), u(t), t) dt$$

subject to the ODE

$$x'(t) = f(x(t), u(t))$$
 a.e. on $(0, T)$,

initial and terminal conditions

$$x(0) = x_0, \quad x(T) = z$$

control constraints

 $u(t) \subset U.$

Optimal control: (x^*, u^*, T^*) is optimal if

$$J(x^*, u^*, T^*) \le J(x, u, T)$$

for all admissible (x, u, T).

Define Hamilton-Function:

$$H(t, x, u, p, \lambda_0) = p^T f(x, u) - \lambda_0 f_0(x, u, t)$$

Theorem: Let the functions f, f_0 be continuous wrt (x, u, t) and continuously differentiable wrt (t, u). Let $U \subset \mathbb{R}^m$ be given.

Let (x^*, u^*, T^*) be optimal.

Then there exists $p_{T^*} \in \mathbb{R}^n$, $\lambda_0 \in \mathbb{R}$ with $(\lambda_0, p_{T^*}) \neq 0$, $\lambda_0 \geq 0$ such that the following conditions are satisfied

• Adjoint equation

$$-p'(t) = f_{x}(x^{*}(t), u^{*}(t), t)^{T} p(t) - \lambda_{0} f_{0,x}(x^{*}(t), u^{*}(t), t)^{T}$$
$$p(T^{*}) = p_{T^{*}}$$

• Maximum condition

$$H(t, x^*(t), u^*(t), p(t), \lambda_0) = \max_{v \in U} H(t, x^*(t), v, p(t), \lambda_0)$$
 a.e. on $(0, T^*)$

• Maximum function

$$\max_{v \in U} H(t, x^*(t), v, p(t), \lambda_0)$$

is continuous on $[0,\mathcal{T}^*]$ and satisfies at \mathcal{T}^*

$$\max_{v \in U} H(T^*, x^*(T^*), v, p(T^*), \lambda_0) = 0.$$

In particular, the maximum condition is satisfied in all points of left/right-continuity of u^* .

Message: The maximum principle generalizes the equation f'(x) = 0. Solve the system given by PMP to obtain solution candidates.

- PMP is a necessary optimality condition: sometimes sufficient (convex problems)
- Comparison to Kuhn-Tucker-type optimality conditions: Here no derivatives wrt *u* needed!
- Role of λ_0 : Indicates (non-)degeneracy of constraints. If one knows $\lambda_0 > 0$ a-priori, the PMP-system can be scaled such that $\lambda_0 = 1$.

The point $(\lambda_0, p_{T^*}) = 0$ is a solution of the PMP-system.

There is no equation to determine λ_0 -in computations set $\lambda_0 = 1$.

Rocket car

Here: non-degenerate case $\lambda_0 > 0$ if $x_0 \neq 0$.

Control u^* is bang-bang

$$u^{*}(t) = \begin{cases} -\operatorname{sign}(x_{0}) & \text{if } t \in (0, T^{*}/2) \\ \operatorname{sign}(x_{0}) & \text{if } t \in (T^{*}/2, T^{*}) \end{cases}$$

- 1. Model problem
- 2. Adjoint equation
- 3. Maximum principle
- 4. Numerical algorithms
- 5. Flow control

Suppose that f is continuously differentiable wrt u, and $U = \mathbb{R}^m$ (no control constraints). Then the maximum condition implies

$$H_u(t, x^*(t), u^*(t), p(t), \lambda_0) = 0,$$

which gives

$$-p(t)^{T} f_{u}(x^{*}(t), u^{*}(t), t) + f_{0,u}(x^{*}(t), u^{*}(t), t) = 0$$

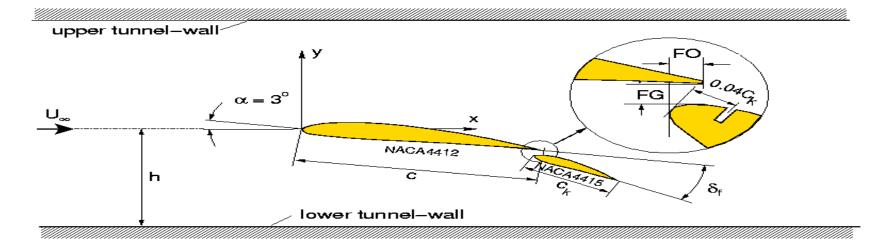
If we can solve this equation for $u^* = u^*(p)$, then we can replace the control u by the function u(p) in the state equation, and obtain a boundary value problem for (x^*, p) .

Solve with ODE-integration methods.

- 1. Discretize ODE by some discretization method (e.g. finite differences)
- 2. Obtain finite-dimensional optimization problem
- 3. Use optimization software

- 1. Derive formulas for derivatives (gradient, Hessian) of optimal control problem
- 2. Use (infinite-dimensional) optimization algorithm
- 3. Discretize and run the algorithm in finite-dimensional space

- 1. Model problem
- 2. Adjoint equation
- 3. Maximum principle
- 4. Numerical algorithms
- 5. Flow control



Maximize Lift

under the constraints

Navier-Stokes equations

Maximal drag Control constraints

Navier-Stokes equations:

$$y_t - \nu \Delta y + (y \cdot \nabla)y + \nabla p = 0$$

div y = 0
$$y|_{\Gamma} = u$$

$$y(0) = y_0.$$

Adjoint equations:

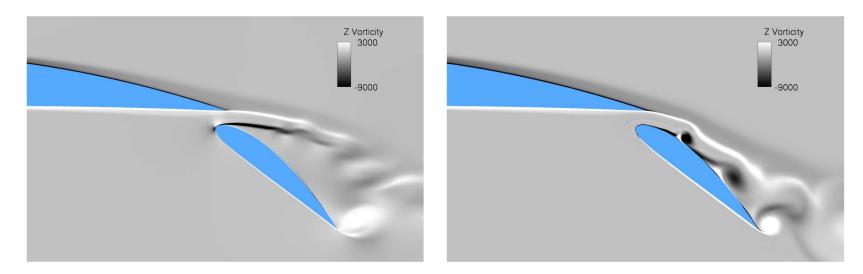
$$-\lambda_t - \nu \Delta \lambda + (\nabla y)^T \lambda - (y \cdot \nabla) \lambda + \nabla \pi = 0$$

div $\lambda = 0$
 $\lambda|_{\Gamma} = \vec{e}$
 $\lambda(T) = 0.$
$$\frac{d}{du} J(y^0, p^0, u^0)h = \int_{(0,T) \times \Gamma} -(\nu \frac{\partial \lambda}{\partial n} - \pi n)h$$

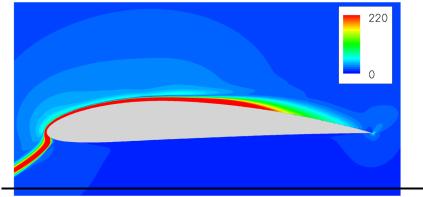
EMS school Bedlewo

Daniel Wachsmuth

Snapshots of vorticity: uncontrolled / controlled



Adjoint velocity field: Large near wing and near stagnation point streamline



EMS school Bedlewo

Daniel Wachsmuth

Optimal control of ODEs

- L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko. *The mathematical theory of optimal processes.* The Macmillan Co., New York, 1964.
- A. D. loffe and V. M. Tihomirov. *Theory of extremal problems*. North-Holland Publishing Co., Amsterdam, 1979.
- Jack W. Macki and Aaron Strauss. *Introduction to optimal control theory*. Springer-Verlag, New York, 1982.

Numerical methods

• J. Stoer and R. Bulirsch. *Introduction to numerical analysis*. Springer-Verlag, New York, third edition, 2002.

Optimal control of PDEs

- M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. *Optimization with PDE constraints*. Springer, New York, 2009.
- F. Tröltzsch. *Optimal control of partial differential equations*. AMS, Providence, RI, 2010.