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Abstract

Thermal regulation is honey combs is essential for the breeding process
of bees. This regulation is achieved by the bees by contracting their flight
muscles at a high rate in order to generate heat. In practice, heat is
diffused by the bees either by juxtaposing itself to the pupae, or by heating
adjacent cells. First, a review of previous attempts on modelling thermal
heat diffusion inside a honey comb is examined, before looking into the
numerics of such a system. In the numerical part, the honeycomb heat
problem is discretized via the finite element method. Heating and cooling
of the honeycomb by cell-heating bees is simulated. The simulation is
used to observe the isolation properties of different substances.
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1 Introduction

Outside of human societies, the honey bee colony is considered to be one of the
premiere examples of cooperative group functioning—an example of optimal so-
cial behaviour that has evolved entirely through the process of natural selection
[5]. Along these lines, the honey bees have learned that by maintaining the
temperature and humidity of the hive to a strict range (roughly 33−36◦C) this
not only allows for the preservation and storage of the hive’s food and honey,
but also optimises the development and health of the offspring and workers. It
is this natural ability of the bees to properly distribute the heat in their homes
that will be of concern to us; more specifically, in this paper we wish to model
and explain the transfer of heat that occurs in a typical bee hive.

Let us first discuss the structure of a typical bee hive. The structure of most
honey bee hives (or honey bee combs) consist of a mostly flat vertical panel
(the honeycomb), with two half-combs separated by a midrib surface (Figure 1).
These half-combs are covered by hexagonal cells of wax, which are either empty,
or filled with honey, pollen, or the offspring (pupae). Furthermore, the hive is
typically structured in layers, with the brood kept at the bottom center, and
with the honey to the sides and above the offspring. Of course, the health and

Figure 1: A typical honey bee hive.

development of the offspring is paramount; in order to maintain the pupae-filled
cells at the optimal temperature of 33 to 36◦C, the worker bees have developed
two interesting strategies, both of which use the bee’s unique ability to heat its
thorax to an astonishing 38.1 − 42.4◦C by contracting its flight muscles, when
properly decoupled from the flight mecanism. The first strategy is to place this
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warmed thorax onto the cap of a pupae-filled cell; by doing so, it is able to raise
the temperature of the cell by up to 3.2◦C. The second strategy is for the bee
to enter an adjacent vacant cell, and then to heat the cell for a longer period
of time (∼ 30 minutes), while cyclically generating heat. Here, the heat of the
cell can range from 32.7 to 40.6◦ for times ranging from a few minutes to tens
of minutes [1].

2 Mathematical Formulation

There has been some work done in the field of heat transport in a honeycomb,
especially by biologists. Broad surveys have been done concerning the lives of
the hive as a whole and particular bees inside it. We know quite much about
certain aspects of bee swarm and even about heat distribution. But unfortu-
nately this information is mostly descriptive. There are not many papers on
the mathematical side of this phenomenon and numerical modelling. We have
found one paper by J.A.C. Humphrey and E.S. Dykes [1] concerning mathemat-
ical modelling of this particular problem. We have been inspired by their work
and used similar model in our numerical simulations.

2.1 Model description

In this section, we will review the assumptions made in [1] for the construction
of the model.

First, we begin with a (half)comb represented by a 20×20 grid of hexagons.
Each hexagon has a depth of Ld = 14.4mm, a side length of Lw = 2.3mm, and
a cell wall thickness of about 70µm. These cells contain honey, pollen, pupae,
a cell-heating bee, or are left empty (and thus filled with air). Table [] lists the
key thermal and physical properties of each cell, identical to those numbers used
by [1]. The current model is then completed by adding an identical half-comb,
separated a normal distance of Ls = 14mm away. In the following, we will
review five assumptions, fully elucidated in the aforementioned article.

• Dominance of cell-heating bees vs. cap-heating bees

The thermal effects of the cap-heating bees can be ignored in comparison
with the cell-heating bees. Essentially, this is because the snug fit between
bee and cell guarantees much more conduction and radiation, scaled to the
surface area of all six cell walls, compared to the conduction and radiation
via the smaller surface area of the cap.

• Wax walls contribute to negligible resistance

The extreme thinness of the walls (∼ 70µm) contributes to a negligible
amount of normal heat transfer—several orders of magnitude lower than
the heat transfer due to conductance.

• Radiation effects are ignored
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– Bee to wall: Because the bee-to-wall spacing is so small (∼ 0.1mm)
the radiative heat transfer be ignored in favour of pure conduction.

– Between two halfcomb surfaces: We can make the assumption that in
a healthy bee-hive, the two facing comb surfaces (about the midrib)
are of essentially the same temperature and thus the radiation ex-
change will be minimal.

– Within cells: The heat transfer between opposing cell walls in an
air-filled cell is subdominant to the conductive transfer, essentially
due to the fact that the maximum temperature deviation between
the two walls is relatively small (from a numerical estimation)

• Convection is ignored

Within the comb cells, the smallness of the characteristic length-scale
implies that the Rayleigh number is sufficiently small that convection can
be ignored. Moreover the situation in the gaps between halfcomb surfaces
is similar, with the separation length insufficient to produce any significant
transfer via convection.

The above recapitulation of the work by Humphrey and Davis [1] thus implies
that the dominant mode of heat transfer throughout a beehive can be captured
using the two-dimensional heat equation in each cell, with continuity and flux
conditions at the cell walls.

2.2 Equations and solution

The cells in the honeycomb are represented by a continuum of materials with
different physical properties. Authors assume that every cell is completely filled
with appropriate material. They use the unsteady heat equation in calculating
quantitative. This equation governs the heat transport in every cell and is given
by

ρcp
∂T

∂t
= k

(
∂2T

∂x2
+
∂2T

∂y2

)
+G. (1)

where ρ is the density, cp - specific heat, k - thermal conductivity and T is
the temperature at (x,y,t). The function G represents a source of heat. It could
be either pupae or cell-heating bee.

At the interfaces of adjoining cells (here 1 and 2) the boundary conditions
have to be imposed.

T1 = T2 (2)

k1
∂T1

∂n
= k2

∂T2

∂n
(3)

where ∂T2
∂n denotes the normal derivative to the interface.
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Above equations give the heat distribution in every cell. Authors seperated
the solution procedure into three cases taking Ti = 34◦C as an initial condition
in ith cell.

• Case1 : Calculation of the steady-state temperature assuming that there
are no cell-heating bees. All heat is generated only by the pupae.

• Case2 : Using previously obtained steady-state temperature profile as
an initial condition. The calculation is performed with one heating-bee
present. Bee heats the cell for 10min and then either vacates the cell or
remains in it and generate heat in a slower rate.

• Case3 : The same process as in Case2 but with 5 cell-heating bees.

All the numerical computations in the paper were carried in FEMLAB, a
finite element method software operating in MATLAB environment. Further-
more, we will focus on the third case in this report.

3 Numerical Implementation

3.1 Problem Description

The numerical implementation of the problem requires modelling the heat equa-
tion on a subdivided domain. On each subdomain, heat equation is fulfilled with
different coefficients. Between the subdomains, on the interfaces, continuity is
prescribed.

The problem is formulated in the following way. Let a bounded domain
Ω ⊂ R2 be split into N subdomains, Ωi with

N⋃
i=1

Ω̄i = Ω.

Each subdomain Ωi should be of equal size with hexagonal shape represent-
ing a honeycomb cell. Ω should hence model a cut-out of a honeycomb. For
illustration of Ω, see Figure 2.

The boundary conditions are of static Dirichlet type:

T (·, t) = g0(·) on ∂Ω (4)

for all times t ∈ (t0, t1). The initial conditions are:

T (·, t0) = T0(·) on Ω̄. (5)

3.2 Input Data

There are a total of five different substances that can fill a honeycomb cell –
honey, pollen, pupae, air gaps, as well as the cell-heating bees occupying some
of the gaps. Hence, there are five different types of parameters for the heat
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ρ (kg m−3) cp (J kg−1 K−1) k (W m−1 K−1) G (W m−3)
honey 1400 2300 0.60 0
pollen 420 2720 0.15 0
pupae 996 4180 0.61 103

air 1.1774 1005.7 0.02624 0
bee 996 4180 0.61 2.9× 105

Table 1: Physical properties of different substances occupying a honeycomb cell.

equation coefficients on each Ωi. The specific values of the parameters are listed
in Table 1.

The length of one side of the hexagonal cell Ωi is 2.3 mm. The boundary
condition is prescribed to 34 ◦Celsius (g0 = 307.15 Kelvin).

3.3 Problem Setup

Two programs, MATLAB’s PDE Toolbox and COMSOL were considered for simu-
lating the problem numerically. Due to its restrictive capabilities, MATLAB was
rejected in favor of the more powerful and user friendly COMSOL.

The domain Ω is represented by N = 400 cells arranged in a rectangular 20
by 20 grid.

Figure 2: Domain Ω, a 20 by 20 grid of cells Ωi.

Figure 2 shows the domain Ω drawn in COMSOL. The subdivision of Ω into
the cells Ωi is represented by the distinct hexagonal shapes in the figure. Each
cell is filled with a different substance – honey, pollen, pupae, air gaps and cell-
heating bees. The positioning of these five substances within the model is an
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attempt to replicate their arrangement in a real-life honeycomb. Figure 3 shows
this specific arrangement.

Figure 3: Arrangement of different substances within the honeycomb model.
From top to bottom: (H) honey, (P) pollen, (pu) pupae, (B) cells with heating
bees, (A) air.

For the sake of notation, let B ⊂ {1, . . . , N} be introduced as a set of
subdomain indices marked with (B) in Figure 3.

3.4 Simulation

In the simulation, the honeycomb is at first heated up, then cooled down. Ac-
cording to literature, cell heating bees heat the honeycomb for around ten min-
utes, after which they vacate their cells (thus a cool down takes place). In the
simulation, the temperature in the honeycomb will be observed at 10 minute
intervals, up to a total of 20 minutes. The time intervals are marked accordingly
(in seconds):

t0 = 0
t1 = 600
t2 = 1200.

The interval [t0, t1] will be called the heating stage, whereas the interval [t1, t2]
will be called the cooling stage.

In the first ten minutes, heating will be simulated. The heat equation coeffi-
cients in cells Ωi with i ∈ B (bee-occupied cells) will be set to “bee” from Table
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Figure 4: Temperature T in the honeycomb at the end of the heating stage, at
time t1. The temperature scale ranges from 34 to 41.92 ◦Celsius.

1. The initial value of the heating problem will be 34 ◦Celsius on the whole
domain Ω. In Kelvin:

T (·, t0) = 307.15 on Ω̄.

Then in the next ten minutes, cooling effect will be observed. The bees vacate
their cells, so the equation coefficients in cells with bees are then changed to the
coefficients corresponding to air-filled cells. No effort is made to model the bees
behaviour post-vacating the cell. The initial value of the cooling problem will
be the solution obtained at time t1 of the heating problem:

T (·, t1) on Ω̄.

3.4.1 Results

The temperature spread after the heating stage is displayed in Figure 4, whereas
the temperature after the cooling stage is displayed in Figure 5.

In Figure 4, one immediately notices the location of the five cell-heating
bees by the highest total heat accumulated at their cells. The overall heat is
concentrated around the cell-heating bees.

One also notices a certain asymmetric distribution of heat. The vertical
asymmetry, appearing in a pear-shaped form, is caused by the different heat-
specific properties of air, which is on bottom of the honeycomb, against honey,
which is on top (see Figure 3). The slight horizontal asymmetry comes due to
the original non-symmetric setup of the substances in the honeycomb (also see
Figure 3).

In Figure 5, after cooling took place, the maximum heat has decreased and
the overall heat has spread throughout the honeycomb.
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Figure 5: Temperature T in the honeycomb at the end of the cooling stage, at
time t2.

The simulation procedure gives the opportunity to numerically evaluate dif-
ferent arrangements within the honeycomb. The possibilities vary from rear-
ranging the substances within the honeycomb to organizing a periodic heating
cycles for bees.

Were one to formulate an optimization problem for the honeycomb, one could
use this simulation technique to find the optimal numerical solution. However,
even the formulation of such problem can be a rather complex task, as it is at
first unclear what functional and under what constraints must be optimized.

3.4.2 (Basic) Efficiency Test – Isolation of the Pupae Cluster

A very simple efficiency test can be conducted. In Figure 3 one can observe
that bees surround the pupae cluster with a perimeter of pollen. However, they
could equally well surround it with honey or just leave those perimeter cells
empty, surrounding the cluster with air. The question is: why would bees use
pollen as the surrounding substance around the pupae cluster instead of another
substance?

Using the simulation model, one can change the perimeter material from
pollen to honey or air to observe the heat diffusion in the honeycomb. As one
is interested in keeping the pupae warm, the pupae temperature with respect
to time will be observed. A surface integral of the temperature over the pupae
cells will be used as the efficiency function.

A surrounding material a will be called more efficient than material b, if the
surface temperature of the pupae cells is higher by a than by b at all times t.
Alternatively put, if the pupae cells will heat up faster during the heating stage
and cool down slower during the cooling stage by using surrounding material a
instead of b, then a is more efficient than b.
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Figure 6: Surface integral of temperature function Ti over all pupae cells with
respect to time. The kink in the plots appears at the 10-minute point where
the problem changes from heating to cooling.

Figure 6 displays the graphs of surface integrals of temperature in pupae
cells for three different enclosing substances: air, pollen and honey, over a 20-
minute interval. It can be observed that air ranks as the most efficient of the
three, pollen comes on second place, whereas honey is the least efficient thermic-
enclosure for pupae. The possible explanation for why air is not used by bees
is due to its storage inefficiency – the empty space should be occupied by some
substance. Between the two materials, which can be stored around the pupae,
bees prefer pollen, as it gives better isolation than honey.

Naturally, the isolation effect of the three substances that is observed in
this test is the direct consequence of their thermic properties. Nevertheless,
this test gives an on-hand example of how a very basic optimization problem is
attempted to be solved numerically by simulation.

4 Analytical Considerations

In this section, we will say a few words about the potential for analytical ap-
proaches to the honeycomb problem. We will keep the analysis brief for one
simple reason: As was shown in the previous section, the numerical solution
of the honeycomb problem is a simple exercise for a standard finite-elements
package, and while analytical approximations can indeed be developed, their
solution will likely be contingent on the evaluation of analytically intractable
integrals and boundary conditions—which will, in the end, still require a nu-
merical computation. Thus, a complete and in-depth analytical study may not
be warranted, given that the full time-dependent problem is so easily solved
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numerically.

4.1 A back-of-the-envelope computation

Suppose we were to reduce the two-dimensional steady-state 20 × 20 beehive
problem to a problem in only one dimension. This would consist of taking
a vertical (x = const) or horizontal (y = const) slice of Figure 3. In the
following, we will hold x constant and non-dimensionalize y = yLH , where
LH = LW cot(π/6) ≈ 3.8mm is the width of a typical height (cross-section) of a
honeycomb. Equations (1)-(3) would thus reduce to

d2T (y)
dy2 = − Gi

kiL2
w

(6)

T (0) = 307.15 K (7)
T (20) = 307.15 K (8)
T (i) = T (i+ 1) i = 1, . . . , 19 (9)

ki
dT (i)
dy

= ki+1
dT (i+ 1)

dy
i = 1, . . . , 19 (10)

Now each beehive is divided into distinct layers, each layer containing hon-
eycombs of a single property. Clearly, by the continuity and flux conditions,
solving the heat equation in each ‘hexagon’ is equivalent to solving the heat
equation in the entire layer. Thus we see that the solution of the above set is a
piecewise quadratic equation,

T (y) =
(
− Gi

kiL2
w

)
y2 +Biy + Ci, i = 1, . . . , 19.

where Bi and Ci are constants to be determined by the matching conditions.
For example, we can solve for the centre-most layer which contains (in in-

creasing y): 4 air, 2 pollen, 3 pupae, 1 bee, 2 pupae, 3 pollen, and 5 honey cells.
The global solution is then displayed in Figure 7 (left).

There is obviously a gross overestimation of the maximum temperatures
involved; the reason for this is the inherent asymmetries in the bee-hive. For
example, the lone bee at the centre of the hive is surrounded by six (cooler)
pupae-filled cells. It is then obvious that the effective heat source of the bee is
overestimated in our 1D estimation (which allows only a flux in two directions).
A ‘fudge-factor’ can be imposed on the source strengths:

Gpupae 7→
Gi

τpupae
i = 9, 10, 11, 12, 14, 15

Gbee 7→
Gi

τbee
i = 13

Using τbee = 32 and τpupae = 5, we produce Figure 7 (right).
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Figure 7: The 1D approximation (red curve) in the left figure overestimates the
solution profile because the heat is only allowed to diffuse in one direction. We
can define an ‘effective’ source term, G for the bee and pupae cells; this provides
a better agreement with the full 2D numerical results (dotted, blue) shown in
the right figure.

Now obviously, the above procedure is decidedly non-mathematical(!) A
mathematical reduction of the true two-dimensional problem to a one-dimensional
one would be impossible, for the true steady-state temperature is a global prob-
lem. However, the point of the above analysis is to produce a back-of-the-
envelope approximation that nevertheless preserves some of the qualitative (if
not quantitative) features of the full problem.

4.2 The full problem

In consideration of the previous subsection, we now see that the solution of
Equations (1)-(3) is equivalent to solving the time-dependent heat equation in
several distinct layers with continuity and flux matching conditions—that is, the
polygonal structure of the problem can be entirely ignored, except at the very
boundaries. Neglecting this fine structure, we can say that the solution would be
well approximated by the solution of the heat equation in a rectangular domain
(representing the honey/air boundary) with inner annuli and circular regions
(representing each of the different cells).

In particular the solution in each layer can then be expressed in terms of
Green’s functions. However, because of the nontrivial boundary conditions,
it is unlikely that we would be able to generate a closed-form solution which
would shed much light on the issue(s) involved. To put it simply: when the
full numerical solution is so easily computed and studied, it is unlikely that a
convoluted analytical solution would provide any more illumination than already
available.

Where a more analytical approach might be fruitful is if the small-scale
structure of the hive is more complex, but still ordered in some regular (of-
ten periodic) fashion. In that case, asymptotic methods like homogenization
or multiple-scale could be used to reduce the problem to a simpler effective
problem. Similar methods have been applied to diffusion problems on periodic
lattices (see [4], [2], or [3])
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5 Discussion

Some assumptions about the model should be verified by real-life experiments.
For example, acknowledging that radiative and convective effects can be ignored
in the heating problem should be verified, and other heating sources originating
from the honey-comb’s environment should be discussed. Furthermore, long-
time asymptotics could be affected by convection and radiation, because the
contrary have not been shown.

Deriving an analytical solution for this diffusion problem is rather compli-
cated compared to the speed in which the system is solved numerically. A
sufficient simulation layout has been defined, and enables in-depth exploration
of the organisation of the bee-hive in terms of thermal heating strategy. Those
strategies can be compared by simulation of different scenarios. The problem of
finding the optimal heating strategy should be investigated, together with the
associated optimal bee-hive structure in order to obtain a deeper understand-
ing of the magnificient precision bees can attain when it gets to regulating the
temperature inside the honeycomb.
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