
The 23rd ECMI Modelling Week
European Student Workshop
on Mathematical Modelling
in Industry and Commerce

Wrocław University of Technology, Wrocław, Poland, August 23-30, 2009

Report of project group 7 on

How to connect two pipes
of circular and rectangular profiles?

Project: Connecting two pipes of circular and
rectangular profiles

A.A. Arara K. Ermakov M. Friedrich T. Gross
M. Kollmann P. Uść J. Wulcan

October 30, 2009

1

Contents

1 Introduction 3
1.1 Connecting two rectangular pipes 3
1.2 Connecting two circular pipes 6

2 Connecting two pipes of circular and rectangular profiles 9
2.1 General infromation . 9
2.2 Calculation of triangles . 13
2.3 Calculation of non-triangular parts 16

3 Generalized problem 24
3.1 Step 1: Find the 3D shape . 24
3.2 Step 2: Make an indexation of the faces 24
3.3 Step 3: Unfold the shape . 25

4 Conclusions 28

5 Appendix 29
5.1 Code for the initial problem 29

5.1.1 pipes.m . 29
5.2 Code for genaralized problem 36

5.2.1 gen paint.m . 36
5.2.2 gen square.m . 36
5.2.3 gen circle.m . 36
5.2.4 shape2p3dv2.m . 36
5.2.5 p3d2ddate.m . 38
5.2.6 ddata2screen.m . 38
5.2.7 pipe.m . 39

2

1 Introduction

Connecting pipes of different profiles is an important technique in industry.
It is essential to design the connecting elements such that they are easy
to be made by means of turning down and/or rolling sheet-metal pieces of
the appropriate shapes (two-dimensional figures) and then welding them.
The welding edge should be situated on some flat surface if possible. The
connecting elements should also provide perfect air-tightness.
The main aim of the project is to find and design an element which connects
two pipes, one of circular profile and the other one of rectangular profile,
with different symmetry axes, see Figure 1.

Figure 1: The main problem

Let us begin with considering two simpler, well-known cases: connection
of two rectangular pipes with the same symmetry axis, and the case of two
circular pipes.

1.1 Connecting two rectangular pipes

Suppose we want to connect two pipes with square profiles with the same
symmetry axis. The simplest 3D connecting element is based on trapezoidal
shapes. From this one can construct the 2D figure of the unfolded connecting
element, see Figure 2.

The first task is to fully describe the geometry of this element with the
knowledge of the sizes L and l of the square profiles (with L > l) and the

3

Figure 2: Two square-profile pipes

4

distance H between the two pipes, see Figure 3 where:
H1 - height of the trapezoid, that we need to find;
h - length of a side of the trapezoid, which we do not know;
α - angle, which we have to calculate.

Figure 3: Part of 2D connecting element

For H1 we have the following expression:

H1 =

√
H2 +

(L− l)2

4

where H is the distance between the pipes.

From simple high-school geometry we know:

tan(α) =
H1

L−l
2

and

sin(α) =
H1

h

Now we can easily calculate the angle α and the side h:

α = arctan(
H1

L−l
2

)

h =
H1

sin(α)

Using this information, we can describe all 4 parts of the connecting element
and, therefore, connect the pipes in the appropriate way.

5

1.2 Connecting two circular pipes

Now suppose we want to connect two pipes of circular profile with the same
symmetry axis. For this problem the connection is based on a cone construc-
tion. Again, one can construct the 2-D figure of the unfolded connecting
element, see Figure 4.

Figure 4: Two circle-profile pipes

6

Now the second task is to fully describe the geometry of this 2D element
with the knowledge of the radiuses R and r of the circle profiles (with R > r)
and the distance H between the two pipes. For this, consider a regular cone
like in Figure 5 where
L - slant height
l - part of the slant height

Figure 5: Full cone

Now we have the following relations (similar triangles):

L

R
=

√
H2 + (R− r)2

R− r
l

r
=

√
H2 + (R− r)2

R− r

So we can compute L and l, which we need for constructing 2D shape of the
unfolded connecting element, see Figure 6. The only thing left is the angle
α. But there exists a simple relation, which we can be obtained from the
cone represented at figure 5:

7

Figure 6: 2D shape of circular connecting element

360◦ − α
360◦

=
2πR

2πL
=
R

L

α = 360◦(1− R

L
)

So the shape is now fully described, and one can easily build the connecting
element using the obtained information.

8

2 Connecting two pipes of circular and rect-

angular profiles

2.1 General infromation

Now, let us take into account one rectangular pipe and one circular pipe
with different symmetry axes. The main aim of the project is to design a
connection element for this problem.

Figure 7: 3D model of pipes

Denote by r, a, b, h and (x, y) the radius of the circular pipe, the length
and the width of the rectangular pipe, the distance between the pipes and
the coordinates of the centre of the circular pipe, respectively.

9

To understand the problem better it is useful to observe the 3D model
from the top, see Figure 8.

Figure 8: View from the top

From Figure 9 we can see that the 3D connecting model should be made of
4 triangles connected to each other with 4 yet unknown regions. We propose
to define these regions as parts of surfaces of the appropriate, asymmetric
cones.

10

Figure 9: The structure of connecting model

As it can be seen in Figure 10, each of these cones has a base with radius
r (the radius of the circle) and a vertex, which coincides with one of the
vertices of the rectangular. The line l is the line on the surface of the cone
going from the vertex to the base.

11

Figure 10: Asymmetric cone

In Figure 11 we can see that the cone regions can be approximately de-
fined by the lines l on the surfaces of each cone. The more lines l we find,
the more accurate the approximation will be.

To define the surface, one needs to find the lengths of the lines and the
angles between them:

• To find the lengths of all the lines in the unknown region we shall
consider cylindrical coordinate system in 3D model with the centre
situated in the centre of the circle. Then we can calculate the cylindrical
coordinates of the points in the circle and of the vertices of the triangle.

• To find the angles between the lines we need to consider cones with the
peaks in the vertices of rectangular with the circle as the base.

12

Figure 11: Connecting element

2.2 Calculation of triangles

Consider the rectangular with the length a and the width b. The radius of
the circle is r and its coordinates in 3D are (x, y, h).
As it was explained in the previous subsection, the 3D model can be divided
in the 4 triangles and 4 parts of unknown shape. To find these triangles we
have to calculate their sides and angles between them.

13

Figure 12: Triangle part of connecting element

To find H1 we should have a look at this side from the different point.
From Figures 12 and 13 it is obvious that H1 can be found from the

following expression:
H1 =

√
h2 + (y − r)2

Then:
L1 =

√
h2 + (y − r)2 + (a− x)2,

α1 = arcsin

(
H1

L1

)
and

β1 = arctan

(
H1

a− x

)
where α1 is the right angle of the triangle and β1 is the left angle of the
triangle.

Now we can construct the first triangle in 2D plane. All other triangles
can be found in the similar way. We will just provide formulas for Hi, Li, αi

14

Figure 13: Triangle to find H1

and βi.
H2 =

√
h2 + (a− x− r)2

L2 =
√
h2 + (b− y)2 + (a− x− r)2

α2 = arcsin

(
H2

L2

)
β2 = arctan

(
H2

y

)
H3 =

√
h2 + (b− y − r)2

L3 =
√
h2 + x2 + (b− y − r)2

α3 = arcsin

(
H3

L3

)
β3 = arctan

(
H3

x

)
H4 =

√
h2 + (x− r)2

L4 =
√
h2 + y2 + (x− r)2

15

α4 = arcsin

(
H4

L4

)
β4 = arctan

(
H4

b− y

)
The only unknowns now are the angles between the triangles and the

shape of non-triangular parts.

2.3 Calculation of non-triangular parts

For simplicity, we first consider the symmetric case, i.e. when the centre of
the circle coincides with the centre of the rectangular.

As it was briefly mentioned above, we use cylindrical coordinates to calculate
the shape of non-triangular parts. The idea is the following:

• The centre of the circle is taken as the centre of coordinates.

• All other points of the circle then have the following coordinates: (r, φ, 0),
where r - radius of the circle and φ ∈ [0, π

2
].

• The peak point of the rectangular has the following coordinates:(√
a2 + b2

2
, arctan

(
b

a

)
, h

)

Then the distance between the peak and the circle point is:

l =

√√√√(√a2 + b2

2
cos arctan

(
b

a

)
− r cosφ

)2

+

(√
a2 + b2

2
sin arctan

(
b

a

)
− r sinφ

)2

+ h2

Now, let us return to the more general problem, i.e. the centre of the circle
has 3D coordinates (x, y, h).

For this case we use the following approach to simplify the calculations. For
each of the 4 sides of the rectangular we construct new virtual rectangulars
to calculate lines l. The idea behind that is the following - the centre of the
circle appears to be the centre of the new virtual rectangulars, so we can use
all the formulas described above. Below, we provide the lengths (ai) and the
widths (bi) of the new rectangulars:

16

• a1 = 2x
b1 = 2y

• a2 = 2(b− y)
b2 = 2x

• a3 = 2(a− x)
b3 = 2(b− y)

• a4 = 2y
b4 = 2(a− x)

The last open question is the angles between the two successive lines. We
are going to find the approximate values for these angles using the cones with
the peaks in the vertices of the rectangular and the base in circle.

If we use cylindrical coordinates again and choose very small angle φ, then we
can find the coordinates of the point on the circle (r, φ, 0) which is very close
to the point (r, 0, 0). Obviously, we can find the length of the corresponding
segment of the circle, which is ∆l = φr. But since this segment is very small,
it is also equal to ∆l = ψl, where l can be found using the formula above,
and ψ is the required angle between the lines in non-triangular part.

Then we have
ψi = φi

r

l
,

for every small φi ∈ [0, π
2
].

The final step is to find the angle γi between the triangles, which is sim-
ply found from:

γi = π − αi −
∑
j

ψij − βi+1,

for i = 1, 2, 3, 4.

Using the information above we can construct each of the triangle regions
of connecting element, approximately construct non-triangular parts between
these triangles and the angles between the neighbouring triangle parts. Obvi-
ously, this information is sufficient to construct the whole connecting element,
which was done in Matlab (see appendix pipes.m).

17

Now we are going to present some examples of unfolded elements, obtained
in Matlab.

1. Circular pipe has radius 1, coordinates (2, 2). Rectangular pipe has
length and width equal to 4. The distance between pipes is 2. So the
centre of the circular pipe coincides with the centre of rectangular pipe.

In Matlab this example can be called with the following function:

pipes(2, 2, 1, 4, 4, 2, 100)

Figure 14: Example 1

2. Circular pipe has radius 1, coordinates (2, 2). Rectangular pipe has
length 8 and width 6. The distance between the pipes is 4.

In Matlab this example can be called with the following function:

18

Figure 15: Example 2

pipes(2, 2, 1, 8, 6, 4, 100)

3. Circular pipe has radius 2, coordinates (3, 3). Rectangular pipe has
length 8 and width 6. The distance between the pipes is 4.

In Matlab this example can be called with the following function:

pipes(3, 3, 2, 8, 6, 4, 100)

4. In this example we will take the radius of the circular pipe bigger than
the width and the length of the rectangular pipe. The coordinates of
the circular pipe are (3, 3), radius is 6. The length and the width of
the rectangular pipe are equal to 4. The distance between the pipes is 3.

In Matlab this example can be called with the following function:

19

Figure 16: Example 3

pipes(3, 3, 6, 4, 4, 3, 100)

20

Figure 17: Example 4: side 1

Figure 18: Example 4: side 2

21

Figure 19: Example 4: side 3

Figure 20: Example 4: side 4

22

It is difficult to estimate accuracy of this method, as it depends on many
factors. All we can say is that, the more lines l we calculate, the more precise
the solution will be.

In the next section an alternative solution to the problem will be presented.
It allows to solve the problem for more general shapes, not only rectangular
and circular.

23

3 Generalized problem

The generalized problem was not initially the part of the project, but the idea
we used to solve circular-rectangular problem could be also used to solve the
problem for any convex shapes. That is why we extended the initial problem.

The solution to the generalized problem is divided into three steps.

3.1 Step 1: Find the 3D shape

To find the 3D shape we used the convex hull of the two polygons. We then
removed the faces in the polygons making openings for pipes. There exist
convex hull algorithms for 3 dimensions with complexity O(n log n). The
convex hull algorithm gives us a set of faces F (that is triangles) that form
the 3D shape.
For the simple rectangular-rectangular case this is presented in the Figure 21

Figure 21: 3D Shape

3.2 Step 2: Make an indexation of the faces

To be able to unfold the 3D shape we need to make an indexation of the
faces. Step 1 will give us a set of faces F . We need to find an indexation
I : F → N such that if |I(f)−I(g)| = 1 then the faces f and g share an edge.

Right now our implementation of this uses O(n2) time. But this could prob-
ably very easy be improved to someting like O(n log n).

24

3.3 Step 3: Unfold the shape

To unfold the shape, start of by placing the first face I−1(0) in a 2D plane
in an arbitrary way, but of course isometric.

Then place the next face using the fact that it shares an edge with a face
that has already been placed. This gives us that two of the three points in
the face has already been placed, the third point can be found since we know
the distances inside the face and that the 2D shape must not overlap itself.

The last step can be repeated which gives us the whole 2D shape. The
complexity for this step is O(n).

Example for rectangular-rectangular case is presented in Figures 22-24:

Figure 22: First triangle

25

Figure 23: Second triangle

Figure 24: Last triangle

As it was already mentioned, this method allows to solve the problem for
the great variety of shapes, even for some extraordinary ones.

26

27

4 Conclusions

In this report we discussed the problem of finding an element for connecting
two pipes. Our main aim was to find the connection for the pipes of circular
and rectangular shape. The solution of the problem should also be real, i.e.
the connecting element should be easy to produce. We tried to solve this
problem with two different approaches, and both of them produced the so-
lution which looked very similar.

The first solution is for the general, but usual case, i.e. connecting a pipe
of a rectangular profile with another one of a circular profile. The problem
was successfully solved, and matlab program was created to calculate the
connecting element for various initial data.

The second solution is even more general - the shapes of the pipes can be ar-
bitrary (but convex). Obviously, this approach can be used for the problems
described before as well. But it also solves some other very interesting prob-
lems - the shapes of the pipes can be triangles, trapezoids and even hearts.

So we solved the problem for even more general case than was requested
from the industries with 2 completely different approaches, but in the end
we had similar results.

However, we still have some open questions:

• One of these is whether the 2D shape can overlap when we unfold the
3D shape. It never happened, even when we tried to connect some very
extraordinary convex pipes, but we have no explanation for this.

• The second question is how we can connect concave shapes. This is
obviously not the demand of the industries, but the solution could be
interesting.

• Another question is, whether our solution is the optimal one. Especially
when we look at the flow of liquid in the pipes. Our approach is in this
context probably not bad, but maybe another shape of the connection
element would cause a better behavior of the flow.

In the end one can say that our solutions can not be so far away from the
optimal one because two our different approaches led to very similar solutions.

28

5 Appendix

5.1 Code for the initial problem

5.1.1 pipes.m

function [] = pipes(circx, circy, rad, length, width, dist,

number_of_phi)

% How to use this program:

%

% circx, circy = x- and y-coordinate of the center of the circle from the

% lower left edge of the rectangular

%

% rad = radius of the circle

% length, with = lenght and width of the rectangular

%

% dist = the distance between the two pipes

%

% number_of_phi = the number of small pieces in that the angle between the

%

% triangles will be devided to aproximate it.

n = number_of_phi;

h1 = sqrt(dist^2 + (circy - rad)^2); %height 1st triangle

h2 = sqrt(dist^2 + (circx - rad)^2); %height 2nd triangle

h3 = sqrt(dist^2 + (width - circy - rad)^2); %height 3rd triangle

h4 = sqrt(dist^2 + (length - circx - rad)^2); %height 4th triangle

% the side of the 1st triangle:

a1 = sqrt(dist^2 + (circx)^2 + (circy - rad)^2);

% the side of the 2nd triangle:

a2 = sqrt(dist^2 + (width - circy)^2 + (circx - rad)^2);

% the side of the 3rd triangle:

a3 = sqrt(dist^2 + (length - circx)^2 + (width - circy - rad)^2);

% the side of the 4th triangle:

a4 = sqrt(dist^2 + circy^2 + (length - circx - rad)^2);

29

length_save = length;

width_save = width;

%side1

length = abs(2*circx); %choice of the new, ...

width = 2*circy; %imaginary rectangle

alpha1 = atan((h1*2)/length); %lower right angle of the 1st triangle

step = pi/(2*(n-1));

phi = 0;

r = rad;

figure;

title(’side1’);

axis ([-length_save width_save 0 length_save+width_save]);

axis square;

x =[-length/2, -length/2,0];

y = [0,h1,0];

hold on;

fill(x,y,’b’); %drawing the 1st triangle

l1 = sqrt(((sqrt(length^2+width^2)/2)*(cos(atan(length/width))) - ...

r*cos(phi))^2 + ((sqrt(length^2+width^2)/2)*(sin(atan(length/width)))...

- r*sin(phi))^2 + dist^2);

%draw the n lines which describe the angle alpha:

for p=1:n

dp(p) = phi;

l = sqrt(((sqrt(length^2+width^2)/2)*(cos(atan(length/width))) - ...

r*cos(phi))^2 + ((sqrt(length^2+width^2)/2)*...

(sin(atan(length/width))) - r*sin(phi))^2 + dist^2);

da(p) = (phi*r)/l1;

dh = sin(alpha1 + da(p))*l;

dl = -cos(alpha1 + da(p))*l;

x = [dl,0];

y = [dh,0];

30

plot(x,y,’r’);

phi = phi + step;

end

%draw the second triangle:

beta1 = atan(h2/circy);

gamma = pi - alpha1 - beta1 - da(n);

c = sqrt(dh^2+dl^2-h2^2);

xc = cos(gamma)*c;

yc = sin(gamma)*c;

x = [0, dl, xc];

y = [0, dh, yc];

fill(x,y,’b’);

%For the sides 2,3,4 we do the same as for the 1st:

%side2

length = 2*(width_save - circy);

width = abs(2*circx);

alpha2 = atan((h2*2)/length);

step = pi/(2*(n-1));

phi = 0;

r = rad;

figure;

title(’side2’);

axis ([-width_save length_save 0 length_save+width_save]);

axis square;

hold on;

x =[-length/2, -length/2, 0];

y = [0,h2,0];

fill(x,y,’b’);

l1 = sqrt(((sqrt(length^2+width^2)/2)*(cos(atan(length/width))) - ...

31

r*cos(phi))^2 + ((sqrt(length^2+width^2)/2)*(sin(atan(length/width)))...

- r*sin(phi))^2 + dist^2);

for p=1:n

dp(p) = phi;

l = sqrt(((sqrt(length^2+width^2)/2)*(cos(atan(length/width))) -...

r*cos(phi))^2 + ((sqrt(length^2+width^2)/2)*(sin(atan(length/width)))...

- r*sin(phi))^2 + dist^2);

da(p) = (phi*r)/l1;

dh = sin(alpha2 + da(p))*l;

dl = -cos(alpha2 + da(p))*l;

x = [dl,0];

y = [dh,0];

plot(x,y,’r’);

phi = phi + step;

end

beta2 = atan(h3/circx);

gamma = pi - alpha2 - beta2 - da(n);

c = sqrt(dh^2+dl^2-h3^2);

xc = cos(gamma)*c;

yc = sin(gamma)*c;

x = [0, dl, xc];

y = [0, dh, yc];

fill(x,y,’b’);

%side3

length = 2*(length_save-circx);

width = abs(2*(width_save - circy));

alpha3 = atan((h3*2)/length);

step = pi/(2*(n-1));

phi = 0;

r = rad;

32

figure;

title(’side3’);

axis ([-length_save width_save 0 length_save+width_save]);

axis square;

x =[-(length_save-circx), -(length_save-circx),0];

y = [0,h3,0];

hold on;

fill(x,y,’b’);

l1 = sqrt(((sqrt(length^2+width^2)/2)*(cos(atan(length/width))) - ...

r*cos(phi))^2 + ((sqrt(length^2+width^2)/2)*(sin(atan(length/width))) ...

- r*sin(phi))^2 + dist^2);

for p=1:n

dp(p) = phi;

l = sqrt(((sqrt(length^2+width^2)/2)*(cos(atan(length/width))) -...

r*cos(phi))^2 + ((sqrt(length^2+width^2)/2)*(sin(atan(length/width)))...

- r*sin(phi))^2 + dist^2);

da(p) = (phi*r)/l1;

dh = sin(alpha3 + da(p))*l;

dl = -cos(alpha3 + da(p))*l;

x = [dl,0];

y = [dh,0];

plot(x,y,’r’);

phi = phi + step;

end

beta3 = atan(h4/(width_save-circy));

gamma = pi - alpha3 - beta3 - da(n);

c = sqrt(dh^2+dl^2-h4^2);

xc = cos(gamma)*c;

yc = sin(gamma)*c;

x = [0, dl, xc];

y = [0, dh, yc];

33

fill(x,y,’b’);

%side4

length = 2*circy;

width = 2*(length_save-circx);

alpha4 = atan((h4*2)/length);

step = pi/(2*(n-1));

phi = 0;

r = rad;

figure;

title(’side4’);

axis ([-width_save length_save 0 length_save+width_save]);

axis square;

hold on;

x =[-circy, -circy,0];

y = [0,h4,0];

fill(x,y,’b’);

l1 = sqrt(((sqrt(length^2+width^2)/2)*(cos(atan(length/width))) - ...

r*cos(phi))^2 + ((sqrt(length^2+width^2)/2)*(sin(atan(length/width)))...

- r*sin(phi))^2 + dist^2);

for p=1:n

dp(p) = phi;

l = sqrt(((sqrt(length^2+width^2)/2)*(cos(atan(length/width))) - ...

r*cos(phi))^2 + ((sqrt(length^2+width^2)/2)*(sin(atan(length/width)))...

- r*sin(phi))^2 + dist^2);

da(p) = (phi*r)/l1;

dh = sin(alpha4 + da(p))*l;

dl = -cos(alpha4 + da(p))*l;

x = [dl,0];

y = [dh,0];

plot(x,y,’r’);

phi = phi + step;

34

end

beta4 = atan(h1/(length_save - circx));

gamma = pi - alpha4 - beta4 - da(n);

c = sqrt(dh^2+dl^2-h1^2);

xc = cos(gamma)*c;

yc = sin(gamma)*c;

x = [0, dl, xc];

y = [0, dh, yc];

fill(x,y,’b’);

hold off;

35

5.2 Code for genaralized problem

5.2.1 gen paint.m

function [p] = gen_paint(ax)

figure(’Name’,’Paint a shape’,’NumberTitle’,’off’)

axis(ax);

title(’Paint a shape’);

h = impoly;

pos = wait(h);

p = pos’;

end

5.2.2 gen square.m

function [p] = gen_rect(mx, my, w, h)

p = [[0 h/2+h/1000]’ [w/2 h/2]’ [w/2 -h/2]’ [-w/2 -h/2]’ [-w/2 h/2]’];

% + h/1000 is just to make the polygon convex

p = [p(1, :)+mx;p(2, :)+my];

end

5.2.3 gen circle.m

function [p] = gen_circle(r, mx, my, pres)

phi = [0:2*pi/pres:2*pi-2*pi/pres];

p = [sin(phi).*r+mx; cos(phi).*r+my];

end

5.2.4 shape2p3dv2.m

function [p3d, p, faces] = shape2p3dv2(shape1, shape2, dist)

p = [[shape1;shape1(1, :).*0] [shape2;shape2(1, :).*0+dist]];

faces_raw = convhulln(p’)’;

faces = [];

for i=1:size(faces_raw, 2)

if all(p(3, faces_raw(:,i))==0)

continue

36

end

if all(p(3, faces_raw(:,i))==dist)

continue

end

faces = [faces faces_raw(:,i)];

end

used_faces = [];

curr1 = 1;

curr2 = size(shape1, 2)+1;

end1 = 1;

end2 = size(shape1, 2)+1;

p3d = [[p(:, curr1);0;0] [p(:, curr2);0;0]];

p3di1=1;

p3di2=2;

curr_p3di=3;

while 1

% find next point

next_p = -1;

for i=1:size(faces, 2)

if any(used_faces==i)

continue

end

if all([any(faces(:, i)==curr1) any(faces(:, i)==curr2)])

f = find(faces(:, i)~=curr1 & faces(:, i)~=curr2);

next_p = faces(f, i);

p3d = [p3d [p(:, next_p); p3di1; p3di2]];

if p(3, next_p) == 0

% shape1

p3di1=curr_p3di;

curr1 = next_p;

else

% shape2

p3di2=curr_p3di;

curr2 = next_p;

end

used_faces = [used_faces i];

curr_p3di=curr_p3di+1;

break;

37

end

end

if next_p == -1

error(’Couldnt build p3d data’)

end

if all([curr1==end1 curr2==end2])

break

end

end

end

5.2.5 p3d2ddate.m

function [p d] = p3d2ddata(p3d)

% generate ddata

v_first = p3d([1,2,3], 1)-p3d([1,2,3], 2);

d_first = sqrt(v_first’*v_first);

p = [[0 0]’ [0 d_first]’];

d = [];

for i=3:size(p3d, 2)

vect1 = p3d([1,2,3], i)-p3d([1,2,3], p3d(4, i));

dist1 = sqrt(vect1’*vect1);

vect2 = p3d([1,2,3], i)-p3d([1,2,3], p3d(5, i));

dist2 = sqrt(vect2’*vect2);

d = [d [p3d(4,i) dist1 p3d(5, i) dist2]’];

end

end

5.2.6 ddata2screen.m

function ddata2screen(p, d)

%p = [[0 0]’ [0 3]’];

%d = [[1 4 2 5]’ [1 5 3 3]’];

38

figure(’Name’,’2d plot’,’NumberTitle’,’off’)

hold on;

for i=1:size(d, 2)

p1 = p(:, d(1,i));

p2 = p(:, d(3,i));

qq = p2-p1;

a = sqrt(qq’*qq);

b = d(2, i);

c = d(4, i);

alpha = acos((a^2+b^2-c^2)/(2*a*b));

beta = acos (qq(2)/a);

if qq(1)<0

beta=-beta;

end

new_v = [sin(alpha+beta);cos(alpha+beta)]*b;

p3 = p1+new_v;

if sqrt((p1-p3)’*(p1-p3))-b > 0.01

fel = i

end

if sqrt((p2-p3)’*(p2-p3))-c > 0.01

fel2 = i

end

p = [p p3];

points = [p1 p2 p3];

fill(points(1, :), points(2, :), ’r’);

end

hold off;

axis equal;

axis off;

end

5.2.7 pipe.m

function [] = pipe(shape1, shape2, dist)

39

if size(convhulln(shape1’), 1) ~= size(shape1, 2)

error(’shape1 isnt convex’);

end

if size(convhulln(shape2’), 1) ~= size(shape2, 2)

error(’shape2 isnt convex’);

end

[p3d, points, faces] = shape2p3dv2(shape1, shape2, dist);

[p d] = p3d2ddata(p3d);

figure(’Name’,’Shape1’,’NumberTitle’,’off’)

patch(shape1(1, :), shape1(2, :), ’w’);

axis equal;

axis off;

figure(’Name’,’Shape2’,’NumberTitle’,’off’)

patch(shape2(1, :), shape2(2, :), ’w’);

axis equal;

axis off;

figure(’Name’,’3d plot’,’NumberTitle’,’off’)

trisurf(faces’,points(1,:),points(2,:),points(3,:))

axis equal;

axis off;

ddata2screen(p, d);

end

40

