
The 23rd ECMI Modelling Week
European Student Workshop
on Mathematical Modelling
in Industry and Commerce

Wrocław University of Technology, Wrocław, Poland, August 23-30, 2009

Report of project group 11 on

Improving the Efficiency of Allergy Tests

E C M I

The 23rd ECMI MODELLING WEEK
European Student Workshop on Mathematical Modeling in Industry and Commerce

Wroc law University of Technology
23rd - 30th August 2009

PROJECT TOPIC: Improving the Efficiency of Prick-tests

Blessing Uzor
Nathaniel Egwu

Peter Romeo Nyarko
Henrik Alsing Pedersen
Stephen Edward Moore
Ekeoma Rowland Ijioma

Jakub Tomczyk

Project supervisor: Christian Zschalig
Dresden, Germany

October 31, 2009

i

Contents

1 Introduction 3

2 Mathematical Model of the Problem 3
2.1 Formulation of the Problem . 3
2.2 Some basics of lattice theory . 4
2.3 Properties of the Test Function tY . 6

2.3.1 tY as a Mapping Between Boolean Lattices 6

3 Upper & Lower Bounds for the Number of Mixtures 8
3.1 Upper bounds for the number of mixtures, q[n] . 9
3.2 Lower bounds for the minimum q[n] . 9
3.3 Solution for k-injectivity . 9

4 The Algorithm 10
4.1 The decimal representation of binary vectors . 10
4.2 Comparability and Incomparability . 11
4.3 How to find Comparable binary vectors . 11

4.3.1 Validity of the Comparability test . 12
4.4 How to find Incomparable binary vectors . 13
4.5 Detecting Inconsistency . 16
4.6 The Pseudocode . 16

4.6.1 Consistent with previous substances . 16
4.7 Possible ways of including a substance . 17

5 Results 20

6 Conclusion/Future work 22

ii

List of Figures

1 Illustration of the k-injectivity. 4
2 Lattice representations of B|A| and Bq . 6
3 Rowwise/columnwise definition of Y and tY . 8
4 Boolean lattice of a set and two sets with their union, showing comparable areas. . . 14
5 Everything incomparable to c1 and lowest decimal representative from symmetry-

group . 19
6 A graph visualizing the algorithms results. 21

List of Tables

1 Example of comparable and incomparable columns. 11
2 Representation of the structure of 1-consistency and 2-consistency 15
3 Results obtained for different number of substances. 21

1

Abstract

Prick tests are common allergy tests. This research work is aimed at improving the effi-
ciency of those tests by reducing the number of pricks made on a patients skin by applying
mixtures of the considered allergenes. A model is formulated and Boolean lattice homomor-
phism is used to describe the relationship between the allergenes and the pricks after which
the model is analyzed by scientific computation using Java. However, impressive solutions
were obtained for n = 14 allergenes and q = 10 mixtures.

2

1 Introduction

Allergy tests are utilized to detect allergic reactions to certain substances (allergenes). A
well known standard procedure is the prick-test (or scratch-test). Potential allergy inducing
substances are applied onto the skin which is then pricked slightly to allow the allergenes
to enter the upper dermis. After some time (approx. 20 min), the allergic reaction can be
evaluated by means of the degree of redness and the size of the wheals of the affected region.
The skin is pricked once for each allergene in this procedure, i.e. for n substances n pricks
are needed.

In order to design a more elaborate treatment with fewer pricks, one can apply several
substances, each consisting of a mix of allergens. The test will then have a positive result if
the patient is allergic to at least one of its components. Actually, one has to regard potential
reactions among the ingredients impacting the result, i.e. the reaction of the upper dermis.
In our model we will exclude the consideration of these dependencies.

The aim is to develop a method to find the substances a patient is allergic to with as few
pricks as possible. More precisely, q < n compounds of allergens shall be analyzed in terms
of their skin irritations. The reaction pattern may allow to detect the involved allergenes
unambiguously. Obviously, one cannot expect to get a correct result for every combination
of allergic substances since the number 2q of possible outputs is less than the number 2n of
possible allergic reactions. However, the exact answer is important only for a small number
k < n of allergenes in many cases. If the number of allergic substances exceeds k then a poly-
allergy is diagnosed which is treated in a different way less fitted to the included allergenes.
We assume the number k to be about 5. The number of tests q is supposed to be as small as
possible, but will increase while k is growing.

2 Mathematical Model of the Problem

2.1 Formulation of the Problem

We are given a set A of allergenes (i.e chemicals, foods, medicines, mold, plants, and pollen
etc.) which depends on the type of test in question. This is so since we have different types of
tests for different allergic reaction. Each prick can be modelled as a map PX : P(A)→ {0, 1}
with X ∈ P(A), where P(A) is the set of all possible subsets of allergenes. The function PX

defined by

PX : y 7→
{

1, X ∩ y 6= ∅
0, X ∩ y = ∅ (1)

assigns a ”yes” if a set of allergenes y contains a substance of the ones of X a patient is
allergic to, otherwise it returns a ”No”.

Our aim is to find a set Y = (y1, · · · , yq) ⊆ P(A) of size q containing mixtures of aller-
genes, such that the function tY : P(A)→ {0, 1}q, defined by

tY : X 7→ (PX(y1), · · · , PX(yq)) (2)

3

called the prick-test-function, is injective for all X of cardinality at most k. More precisely,
if tY (X1) = tY (X2) holds, then |X1| > k and |X2| > k, and we will call Y k-recognizable
and tY k-injective. We will restrict to those Y that contain all elements of A (i.e for all
x ∈ A there exist y ∈ Y : x ∈ y) since otherwise tY (x) = P (∅) = (0, ..., 0), i.e. tY would
be not even 0-injective. For an illustration of the k-injectivity have a look at Figure 1. In
particular, the case depicted in the middle is not allowed. The prick-test-function assigns

Figure 1: Illustration of the k-injectivity.

to the patients allergies X a tuple of zeros and ones, i.e. a pattern of the patients allergic
reactions. Obviously, this function is composed of the q prick functions. In particular, we
conclude that our test result is conclusive if we could arrive at exactly one possible conclusion
of the allergic substances of the patient from the results of the test.

Furthermore, we mentioned that the prick-test-function shall be injective. Intuitively, this
means that we want to unambiguously find out a patients allergies, if their number does not
exceed k. Otherwise we will be able only to state that this number is greater than k without
specifying the actual allergies.

2.2 Some basics of lattice theory

We will see in the next subsection that the function tY is a mapping between Boolean lattices.
Hence, we want to recall here some basic notations regarding lattices. All content presented
here is well known and can be found in lattice theory monographs like [1].

There are two equivalent ways to declare a lattice, namely the algebraic and the order
theoretic definition:

Definition 2.1 (algebraic definition) An algebra (L,∧,∨) consisting of a set L and two
binary relations ∨ (“join”) and ∧ (“meet”) is called a lattice if ∨ and ∧ are commutative,
associative and fulfill the absorption rules

∀u, v ∈ L : u ∧ (u ∨ v) = u = u ∨ (u ∧ v).

An upper bound of a subset X ⊆ P of an ordered set (P,≤) is an element y satisfying x ≤ y
for all elements x ∈ X. Dually a lower bound is an element z with z ≤ x for all x ∈ X. We
call y =

∨
X least upper bound if it is lesser or equal to every upper bound y′ of X. Dually

z =
∧

X is a greatest lower bound of X if it is greater or equal to every lower bound z′ of X.
The order theoretic definition of a lattice is based on the existence of those bounds.

4

Definition 2.2 (order theoretic definition) An ordered set (L,≤) is called a lattice if for
every pair u, v ∈ L, the least upper bound u ∨ v (called join) and the greatest lower bound
u ∧ v (called meet) exist.

Indeed, both definitions are equivalent: It is straightforward to see that by

∀u, v ∈ L : u ≤ v ⇐⇒ u ∧ v = u (⇐⇒ u ∨ v = v)

both formulations can be transferred into another.
A special class of lattices are the Boolean lattices. The main addition to the usual join

and meet operations is a further unary operation called the complement that assigns to each
lattice element its “negation” or “opposition”:

Definition 2.3 An algebra (L,∧,∨, , 0, 1) consisting of a distributive lattice (L,∧,∨), a
unary relation and two constants 0 and 1 satisfying:

∀a ∈ L : a ∧ a = 0, ∀a ∈ L : a ∨ a = 1 and
∀a ∈ L : a = a.

is called a Boolean lattice.

Remark 2.1 1. Algebras of sets are prominent representatives of Boolean lattices; the
representation theorem of Stone even states that every Boolean lattice is isomorphic to
such an algebra of sets. In particular, the set P(M) of all subsets of a set M forms
a Boolean algebra. More precisely, the algebra is given by (P(M),∪,∩, , ∅, M), where
∪ and ∩ are the usual union and intersection operations and is the set complement.
The order relation associated to such a Boolean lattice is the usual set inclusion ⊆.

2. Another example of Boolean lattices is based on the set {0, 1}q of all q-tuples having
only the entries 0 or 1. It is easy to see that

Bq := ({0, 1}q,∨Bq ,∧Bq , Bq , 0Bq , 1Bq)

fulfills all required constraints, if we define for all a, b ∈ {0, 1}q with a := (a1, . . . , aq)
and b := (b1, . . . , bq):

a ∨Bq b := (a1 ∨ b1, . . . , aq ∨ bq)
a ∧Bq b := (a1 ∧ b1, . . . , aq ∧ bq)

aBq := (¬a1, . . . ,¬aq)
0 := (0, . . . , 0)
1 := (1, . . . , 1)

(Do not be confused by another occurrence of the symbols ∨, ∧. Without index they
indicate the common conjunction and disjunction operators used in predicate logic, while
¬ is the negation operator in this context.) In this setting, the order relation ≤Bq in the
lattice is given by

a ≤Bq b :⇐⇒ ∀i ∈ {1, . . . , q} : ai ≤ bi,

i.e. an element is smaller or equal than another, if it is smaller or equal in each
component.

5

In a lattice or more general an ordered set (P,≤) two elements u, v ∈ P are either comparable,
i.e. u ≤ v or v ≤ u holds, or they are incomparable. This we will denote by u ‖ v.

Finally we recall homomorphisms on lattices. Due to the twofold approach to this struc-
tures, there are also two concepts of a homomorphism:

Definition 2.4 A mapping ϕ : L→M between the lattices (L,≤L) and (M,≤M) is an order
homomorphism if the following equivalence holds:

∀u, v ∈ L : u ≤L v ⇐⇒ ϕ(u) ≤M ϕ(v).

Definition 2.5 A mapping ϕ : L→M between the lattices (L,∨L,∧L) and (M,∨M ,∧M) is
a lattice homomorphism if the following equations hold:

∀u, v ∈ L : ϕ(u ∨L v) = ϕ(u) ∨M ϕ(v) and ϕ(u ∧L v) = ϕ(u) ∧M ϕ(v)

A simple argumentation shows that every lattice homomorphism is an order homomorphism,
too. The opposite is not true: There exist order homomorphisms between lattices not being
lattice homomorphisms.

2.3 Properties of the Test Function tY

2.3.1 tY as a Mapping Between Boolean Lattices

We notice with Remark 2.1 that the function tY defines a map from the Boolean lattice B|A|
into the Boolean lattice Bq. This is illustrated in the lattice diagram in Figure 1.

Figure 2: Lattice representations of B|A| and Bq

In the diagram in Figure 2, we have used different colors to represent the notion of partial
order in the sets. There exist greatest elements A and (1, 1, ..., 1) as well as a least elements
∅ and (0, 0, ..., 0) of the sets. Now we want to prove that tY is even an order homomorphism
and a ∨-homomorphism, two facts that will be very helpful for the algorithmic part. Thereby,
tY is an order homomorphism i.e. an order-preserving map from the partially ordered set
P(A) into the partially ordered set {0, 1}q if

∀X1, X2 ∈ P(A) : X1 ≥ X2 =⇒ tY (X1) ≥ tY (X2).

6

Proposition 2.2 Let P(A) be a Boolean lattice and let Bq = {0, 1}q be another Boolean
lattice defined as in Remark 2.1. Then the map tY : P(A) → Q as defined in Equation 2 is
an order homomorphism.

Proof:

X1 ⊆ X2
(∗)⇐⇒ , ∀y ∈ Y : X1 ∩ y ⊆ X2 ∩ y∀y ∈ Y : PX1(y) ≤ PX2(y)⇔: tY (X1) ≤ tY (X2)

where (*) holds since for all m ∈ X1 we find a y ∈ Y such that m ∈ y (see definition of tY),
i.e. m ∈ X2 ∩ y, yielding m ∈ X2. �

Proposition 2.3 The function tY as defined in the last proposition, is a ∨-homomorphism.

Proof: We have to show that tY (X1 ∪X2) = tY (X1) ∨ tY (X2) holds for all X1, X2 ⊆ A.
Using the definition of PX in Equation 1, we know

PX(yi) =
{

1, X ∩ yi 6= ∅
0, X ∩ yi = ∅ (3)

From the definition of tY in Equation 2, we know that

tY (X1) = (PX1(y1), ..., PX1(yq)) and tY (X2) = (PX2(y1), ..., PX2(yq)) (4)

Now we claim that

∀i = 1, ..., q : PX1(yi) ∨ PX2(yi) = PX1∪X2(yi).
Assume PX1(yi)∨ PX2(yi) = 1 for some i. By Equation 1 this is equivalent to X1 ∩ yi 6= ∅ or
X2∩yi 6= ∅. That is, (X1∩yi)∪ (X2∩yi) = (X1∪X2)∩yi 6= ∅ which is, again by Equation 1,
PX1∪X2(yi) = 1. This proves our claim. This means that tY (X1 ∪X2) and tY (X1) ∨ tY (X2)
agree in each component, i.e. they are equal. �

In the following we will discover two further properties that the mapping tY is satisfying. We
will employ them in Section 4.

Corollary 2.4 (injectivity constraint) The mapping tY is k-injective, if and only if

∀X1, X2 ∈ P(A) : |X1| ≤ k, |X2| ≤ k ⇒ tY (X1) ‖ tY (X2) (5)

Proof: ”⇐”: Assume tY (X1) = tY (X2) for X1, X2 ∈ P(A), then w.l.o.g |X2| > k otherwise
Equation 5 will not be fulfilled. Let |X1| ≤ k then tY (X1) ≥ tY (X3) ∀X3 ≤ X2, |X3| ≤ k
in contradiction to 5. Hence, |X1| > k, |X2| > k.
”⇒”: Let |X1| ≤ k, |X2| ≤ k. W.l.o.g assume tY (X1) ≥ tY (X2). Then tY (X1) = tY (X1∪X2)
with |X1| ≤ k. This contradicts the k-injectivity of tY . �

Corollary 2.5 (The strong injectivity constraint) The mapping tY is k-injective, if and
only if ∀s ∈ A, X ∈ P(A) : |X| ≤ k =⇒

tY (s) ‖ tY (X) (6)

7

Proof: “ ⇐ ”: Assume |X1| ≤ k, |X2| ≤ k, and w.l.og. that tY (X1) ≤ tY (X2), then ∀
allergene s ∈ X1 and s /∈ X2, we have that tY (s) ≤ tY (X1), and this implies that

tY (s) ≤ tY (X2)

which contradicts 6
“⇒ ”: Same as in Corollary 2.4 with X2 = {s}. �

Corollary 2.6 The mapping tY is specified by the set of images of 1-element subsets of A.

Proof: This is an immediate conclusion of Proposition 2.3. The details of the proof are left
to the reader. �

By the last corollary, we know that we do not have to define the set Y “rowwise”, but we
can “columnwise” define the set of images {tY ({a} | a ∈ A}. This is, what we will do in the
algorithm (see Section 4). Consider Figure 3 for a visualization of that fact. There you see
(reading rowwise) a set of mixtures Y consisting of the components Y1, . . . , Y9. Columnwise,
you find the images of the one-element arguments of the respective function tY , namely
tY ({a1}), . . . , tY ({a12}). For example, the first column states tY ({a1}) = (0, 0, 0, 0, 0, 0, 1, 1, 1)
since a1 is contained in the mixtures Y7, Y8 and Y9. Indeed, these images determine the whole
function tY due to Proposition 2.3; the image of a subset of A equals to the componentwise
join of the respective columns. The function tY given by that table was found by the algorithm
described later. It is 2-injective.

Figure 3: Rowwise/columnwise definition of Y and tY .

3 Upper & Lower Bounds for the Number of Mix-

tures

We consider in this section a heuristic approach to determining the minimum number of prick
tests to do.

8

3.1 Upper bounds for the number of mixtures, q[n]

Generally, the problem of finding a k-injective function tY for n substances and q tests is
denoted by Pk(n, q). We call qk[n] the least number of tests we require to perform given n
substances and q-allergenes of a given patient.
It is intuitively clear that qk[n] cannot be smaller than qk[n− 1]. If a given problem with n
substances cannot be solved with q number of tests then it certainly will not help to try and
squeeze another substance in. The formal proof we leave to the reader.
The qk[n] is no larger than qk[n − 1] + 1. If Pk(n − 1, q − 1) is solvable, then we are able to
include another substance as shown below, which technically means conducting one additional
test. It can be easily shown that Pk(n, q) is being solvable then.

This concludes that qk[n] is either qk[n− 1] or qk[n− 1] + 1.
In the following, we outline a heuristical approach giving a k-injective function tY for the

cases k = 1, k = 2 and k = 3. These are not the best solutions, of course but supply an
upper bound for an optimal solution that, as far as we think, can not be found analytically.
We call this approach the square method as the determination of the set Y can be intuitively
described by arranging the analyzed substances a ∈ A in a square.

Proofs for the correctness of the described constructions are left to the reader.

3.2 Lower bounds for the minimum q[n]

Finally, we want to emphasize that k + 1-consistency is harder to solve than k-consistency
because it just adds more constraints, so solutions for qk[n] is a lower bound for qk+1[n].

3.3 Solution for k-injectivity

We present a short description to a heuristic approach to obtaining solutions for k-injectivity.
However, we will restrict to the cases where k = 1, 2.

A heuristic solution for 1-injectivity

Arrange the allergenes in a matrix. All rows constitute disjoint parts of a partition R.
Similar all columns constitute disjoint parts of another partition C. It is easily seen that
these two partitions are 1-connected. Thus, collecting each row and each column in Y , the
test function tY will be 1-injective.

A heuristic solution for 2-injectivity

9

First, if k = 1, then Y consists of the rows Ri and columns
Ci of the appropriate m×m-square. It can be easily shown
that the function tY defined by this scheme is indeed 1-
injective. We notice that the cardinality of Y is 2m in this
case. Hence, we have the upper bound:

n = m2, k = 1, q = 2m

In an analog way we can add the m diagonals Di (depicted
with different colors in the picture) as further compounds
and gain a function tY being 2-injective. The cardinality of
Y is 3m then. Hence, we have the upper bound:

n = m2, k = 2, q = 3m.

Finally, for the case k = 3 we have to add the other diag-
onals as well. Here, things are getting more complicated,
we find out that this is sufficient for odd m. if m is even,
the resulting tY is not 3-injective yet, s.t. we have to blow
up the square to one of size (m + 1) · (m + 1). Hence, the
cardinality of Y is 4m or 4(m + 1) respectively, i.e.

n = m2, k = 3, q = 4m (2 6 |m) or q = 4m + 4 (2|m).

Arrange the allergenes in a square matrix, adding placeholders for non-existing allergenes
if necessary. Let R be the row-partition and C the column-partition. Now imagine making
diagonals that continue from the bottom if it reaches the top, always moving in a up-right
direction. It can not only be shown that these diagonals are disjoint, but also that the set of
diagonals is 1-connected with R and C. Thus, collecting each row, column and diagonal in
Y , the test function tY will be 2-injective.

4 The Algorithm

4.1 The decimal representation of binary vectors

As stated in Corollary 2.6, it is possible to find a solution columnwise, i.e. by finding the
images {tY ({a} | a ∈ A}. These images are elements of {0, 1}q. We will denote them as
binary vectors in the following.

Reading the binary vector as a binary number, we are able to map every single combination
as a distinct integer number. In our convention, we read the top element of the binary vector
as the smallest digit of the binary number, and the bottom element as the largest. Here are

10

some examples where we use dec: binary vector→ integer, and vec : integer→ binary vector.

dec[(:)] = binary number → integer

vec[integer] = vec[binary number]→ [(:)]

Remark
By way of notation, we have used [(:)] to denote a ”binary vector”

This conversion follows that when the binary vector has q elements, the binary string will
have q digits and this will be mapped to integers between 0 and 2q−1. This interval has length
2q, which is also the number of combinations for the binary vector.The decimal representation
is valuable because we can use it as the index to an array of possibilities, if that is what is
needed.In Java and C/C++, the following holds

dec[X1 ∨X2] is the same as dec[X1] | dec[X2]

dec[X1 ∧X2] is the same as dec[X1]& dec[X2]

4.2 Comparability and Incomparability

As stated in Remark 2.1, two binary vectors tY ({a1}) and tY ({a2}) are comparable if one is
componentwise smaller or equal than the other. We want to illustrate this by two examples,
see Table 1. On the left, C1 ≤ C2 holds since C1 is elementwise smaller or equal than C2. On
the right, C3 ‖ C4 holds because of lines 2 and 4.

C1 C2

1 1
1 0
0 0
. .
. .
. .
0 0

C3 C4

1 1
1 0
1 0
0 1
. .
. .
. .
0 1

Table 1: Example of comparable and incomparable columns.

4.3 How to find Comparable binary vectors

In this subsection we want to introduce a method to quickly find all the binary vectors (i.e.
elements of {0, 1}q) being greater or smaller than a given binary vector.

In order to iterate over all possible binary vectors greater than or equal to the binary
vector y, one should start from X1 = y, and continue by

X(n) = vec[dec[X(n− 1)] + 1] ∨ y

11

which as integers is

X[n] = (X[n− 1] + 1)|y

In order to iterate over all possible binary vectors smaller than or equal to the binary vector
y, one should start from X1 = y, and continue by

X[n] = vec[dec[X(n− 1)]− 1] ∧ y

which as integers is

X[n] = (X[n− 1]− 1)&y

4.3.1 Validity of the Comparability test

Suppose X is a vector of binary numbers that is comparable to a vector y, in the sense that

X ≥ y (7)

We represent X as sequence of 1′s followed by a 0 and then some arbitrary combinations of
0′s and 1′s which we denote by bX , and whose ordering is not important. That is,

X = |1|1|1|1|0|bX |bX |bX |...

Starting with the least possible increment of X:

X + 1 = |0|0|0|0|1|bX |bX |bX |...

We make an elementwise comparison of the vector X with those of y. This means that we
take each binary element of the vector, X, independent of the other elements.
Now, let b denote each binary bit in X, different from the bX ′s such that

b ≥ by

after the increment in X. This holds for all by ∈ y.

Next, we swap corresponding 0′s in X with the by ′s from y, so far as the by 6= 0, other-
wise the change is trivial. By (5), the condition

bX ≥ by ∀bX ∈ X

is already satisfied due to comparability. Hence, the bits, bX , do not have to be changed.
Therefore, we arrive at a least possible increment given as:

(X + 1) ∪ y = |by|by|by|by|1|bX |bX |bX |...

These, we implement using an operation we call next() through the following procedure:

X[0] = y; (8)
X[n] = next(X[n− 1]), for n=1,2,3,... (9)

12

Let X[0] be the least element greater than or equal to y i.e.

X[0] ≥ y (10)

Since next() is incrementing X by at least one, and does not involve decreasing operations,
the sequence is monotonically increasing:

X[0] ≤ X[1] ≤ X[2] ≤ ... ≤ X[n− 1] ≤ X[n] (11)

Since next() uses the least possible increment to get to the next element comparable (i.e.
greater than or equal) to y,

@ X∗ ∈ X s.t. X[n] < X∗ < X[n + 1] that is comparable to y. (12)

Because of 10 and 11, we know that we are iterating over distinct elements greater than or
equal to y. Because of 12, we also know that we do not skip any elements, and that the
sequence is complete. This proves the correctness of the statement.

4.4 How to find Incomparable binary vectors

In order to iterate over all possible binary vectors incomparable to the binary vector y, one
should partition the elements of y in such a way that M0(y) contains all rows where y is
0 and M1(y) contains all rows where y is 1. Now we require that the rows of an arbitrary
incomparable binary vector X has at least a 1 in the rows of M0(y) and at least a 0 in the
rows of M1(y).

Method I-The marking process
In this method, whenever we want to ensure that some binary vector is consistent with the
rest of the columns, we check if it has been marked by any of the previous columns. This
checking can be done extremely fast using the decimal representations of binary vectors as
indexes to a marking list. We also have to check if some union (c ∪ y), for y having at most
(k − 1) elements, are marked. If it was only marked by y earlier we would have

tY (c ∪ y) ≥ tY (y)

which would not be a violation since y is a subset of c ∪ y. The question is whether it has
been marked such that

tY (c ∪ y) ≥ tY (z)

This would not be allowed. In order to distinguish this, we have different marking list for
different columns.Some set y would be marked in the list of all substances it contains since y
would be comparable to these. Now we only have to check if tY (c∪y) is marked in a list for a
substance not in the set y. When we have found a consistent binary vector for a column, we
create the marking list for the new column c. Everything that makes the consistency relation
come true for some X1 and X2 where c is included, should be marked. For y being a set of
at most (k − 1) elements to ensure k-consistency, we want all binary vectors X, satisfying
either one of the following conditions, to be marked in the list for column c.

tY (X) ≥ tY (c ∪ y) or

13

tY (c ∪ y) ≥ tY (X)

As we have seen in the Boolean lattice, this however would mark many of the same vectors
twice.

Figure 4: Boolean lattice of a set and two sets with their union, showing comparable areas.

From this, we can see that we need only to mark every X that satisfies either of

tY (X) ≥ tY (c)

tY (c ∪ y) ≥ tY (X)

Of course, here we would still be marking some binary vectors twice but at least we have
improved on the method. We have already shown how to iterate through all comparable
binary vectors. What remains is to use these methods to mark everything larger than c, and
everything smaller than c ∪ y, for all possible y sets with at most (k − 1)-elements. Later
columns that do not lead to a solution will be defined, we just have to remove every mark
from that columns list, and reinsert marks for the next possible value.

Method II-The Staircase Structure
In method I, we were marking everything that was comparable and checking if some binary
vector for the next column had been marked already. This is a sort of having a list of com-
parable vectors and check for equality. The idea for method II, is having a list of essential
vectors and check for comparability. For k-consistency, the essential binary vectors are those
which represent the possible unions of at most k-columns. These unions represents the sets
of allergies we would like to detect with the tests. This is the same as the set of allergies for
which we wanted the test-function to be injective. So what we have is a column c, and then
we are trying to iterate over all possibilities for X, to test is the condition for consistency
holds

tY (c) ≥ tY (X)

14

tY (X) ≥ tY (c)

Of course this is the same as asking the following question, for which we have already de-
scribed a method to provide the answer. tY (c) comparable to tY (X)
Each column has its own list where it stores the essential vectors X, representing a union
where the column itself is included. When arranged as below, this gives a staircase looking
structure
The 1-consistency and 2-consistency
See the illustrations in Table 2.

c1 c2 c3 c4 ...
c1 c2 c3 c4 ...

c1 c2 c3 c4 ...
c1 c1 c2 ∪ c1 c3 ∪ c1 c4 ∪ c1 ...
c2 c2 c3 ∪ c1 c4 ∪ c1 ...
c3 c3 c4 ∪ c1 ...
c4 c3 c4 ...
c5 ...

Table 2: Representation of the structure of 1-consistency and 2-consistency

The 3-consistency
This would look like a 3-dimensional table with the columns c1, c2, c3, etc. out of all three
axis. Every cell would be the union of the three columns specified on the axis. Due to sym-
metry, half of the table could be removed leaving a 3-dimensional staircase shape. in checking
if a column c is consistent with previous columns, we run over all cells in this table and check
for comparability. If accepted, we add another step to the staircase which contains the unions
which includes the accepted column. If this value is later rejected because no solution was
found, we remove the step and build it up with the next possible value.

Construction of k-injective test functions

A partition P = P1, P2, ..., Pn of the allergenes A, has the following properties:

1. The union of all parts, covers all of the allergenes: P1 ∨ P2 ∨ ... ∨ Pn = A

2. All parts are disjoint: Pi ∩ Pj = ∅, whenever i is not equal to j.

We say that two partitions R and C are 1-connected, if any part of R has exactly one allergene
in common with any part of C. That is:

|Ri ∩ Cj | = 1 for all i and j

Define Y to be a set of (k + 1) partitions that are all pairwise 1-connected. The test function
tY on any single allergene, will output exactly one reaction for each partition. That is:

|tY (s)| = k + 1

15

Furthermore, since each allergene is situated in different parts of the partitions, the specific
k + 1 parts that react is different for each allergene. Thus, no set X, not containing s, can
be found such that

tY (X) ≤ tY (s)

Also, in order to construct a set X, not containing s, such that tY (X) ≥ tY (s), we would
have to get a reaction in each the k + 1 partitions. The partitions were 1-connected, and
so did not have any other substance but s in common. Thus, this construction must satisfy
|X| ≥ k + 1. According to Corollary 2.5, this test function is k-injective.

4.5 Detecting Inconsistency

Checking whether a newly added binary vector as a column is consistent with the previous
ones (i.e. whether the resulting function tY is still k-injective), one only has to check that
tY (X1) ‖ tY (X2) holds for all X1, X2 (being subsets of the already included columns) of
cardinality equal or less than k due to Corollary 2.4. This is by far quicker than checking for
k-injectivity as given in subsection 2.1.

4.6 The Pseudocode

The method works by choosing the exact prick-tests we would like the substances to be a
part of, and then see if the choice is consistent with the choices of the previous substances.
We starts by trying to include the first substance.

define column(i)
{

for all column values
{
% check column values for consistency
if consistent column values then
define column(i+1)
else exit
}

define column(i-1)
}

Consistency means that k-element subsets are not comparable, i.e. for k = 2, if

tY ({ci, cj}) ≥ tY ({cm, cn})⇒ tY ({ci, cj}) = tY ({cicj , cmcn})

4.6.1 Consistent with previous substances

Being consistent with previous substances means the choice of which prick-tests to be a part
of should balance with the choices of the previously assigned substances in such a way that
they will produce conclusive test results for any patient with at most k-allergies. As already
discussed,we realized that we can detect inconsistency by checking if the following relationship
exists. X1 and X2 having at most k-elements and X2 not being a subset of X1 such that

tY (X1) ≥ tY (X2)

16

This could also be formulated for tY (X1) but not necessarily for tY (X3).

4.7 Possible ways of including a substance

Here, we consider various ways a substance could be included in a test.

Exploiting the need for exclusion
A substance cannot be included in all tests if we want to be able to recognize other substances
simultaneously. If a column X1 is all 1′s, any other column for example X2 would have to
respect the relation:

tY (X1) ≥ tY (X2)

From our definitions, the columns X1 and X2 would then be inconsistent with each other.

Exploiting the need for inclusion
A substance cannot be excluded from all tests if we want to be able to recognize any reactions
to it. If a column X1 is all 0′s, any other column for example X2 would have to respect the
relation:

tY (X2) ≥ tY (X1)

We would then conclude that the columns X1 and X2 are inconsistent with each other as
defined.

Exploiting ordering of substances
We do not distinguish between the individual substances and so the columns of the test-
matrix can be switched around without changing the solution. However, instead of going
through all solutions and permutations, we consider once in each distinct solution. As a
result, we are allowed to invent some kind of total ordering of the columns that will remove
the permutations and reduce the search space. We have chosen an ordering based on the
integer representation and requires

dec[c1] < dec[c2] < dec[c3] < ...

We made the order-relations strictly increasing since equality between the columns would
result in inconsistency.

Exploiting ordering of tests
As with the ordering of substances we do not distinguish between the individual tests and
so the rows of the test-matrix can be switched around without changing the solution. This
means that all permutations of columns with the same number of test-inclusions will be the
same but it does not. The columns are simply bounded too closely together by the already
established rules for this to be possible.

17

Ensuring consistency
For the first column,we have no rules that could break consistency as consistency checks are
performed by looking backwards in the method. After the first column has been defined, the
tests will no longer be the same as some test will differ in the substances they include.
However, inside of the two partitions M0(c1) and M1(c1), the tests will remain indistinguish-
able. As more columns are defined, the symmetry-groups will become very complicated to
keep hold of, and we have,thus, chosen to limit our focus to the two first columns.

Searching for all non-symmetric solutions
We have already defined that each column should be decimally greater than the previous.
For each symmetry-group, we choose exactly that permutation which has the lowest decimal
value, otherwise we would throw away an important part of the search space.
The first column is not affected by the consistency-rule. Here, we only have to make sure that
we choose the permutation with the lowest decimal value. All columns with the same number
of test-inclusions, that is, all binary vectors with the same number of 1′s, are symmetric. This
accounts for the reason to iterate the possibilities for the first column by adding 1′s to the
top of the vector as illustrated below.

1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

For the second column, we now see that the groups M1(c1) and M0(c1) are easily separated
in each of the possibilities for the first column. Moreover, for the second column, consistency
simply means that it should be incomparable to the first column,thus it should have at least
one exclusion from the tests of M1(c1) and at least one inclusion from the tests of M0(c1).
The second rule is obeyed by locating the test-inclusions (1′s) at the top of the binary vector
in each of the symmetry-group.

These possibilities could then, for example, be iterated row-wise. The two generating
methods for the first two columns contribute to reduce the number of redundant solutions
within the search space by a large factor.

Exploiting the number of substances
Our goal is to device some sort of upper bound to the number of substances that can possibly
be included from a partial solution. Whenever this upper bound falls below the number of
substances we are aiming to reach, we immediately reject this partial solution and try other
possibilities for previously assigned columns.

Exploiting solvability of subproblems
When we were trying to produce results, we found the minimum number of tests q[n] for
some number of substances n before trying to find q[n + 1]. Thus, we had the privilege of
knowing which subproblems were solvable and which were not. Here are three cases which
can not be solved unless the subproblem can be solved.

Case I: This is the simplest case where we have a test with only one substance and where

18

Figure 5: Everything incomparable to c1 and lowest decimal representative from symmetry-group

that substance is only included in the test. In this case, the subproblem is entirely indepen-
dent and we have that solvability of P (n, q)⇔ solvability of P (n− 1, q − 1)

Case II: Here, the substance is allowed to be included in more tests but since we already
have a test with nothing but this substance, we already know if we are allergic to it. Its
inclusion in the other tests are therefore completely unnecessary and actually superfluous
the test results. That is why this case is harder to solve than case I and we can say that
solvability of P (n, q)⇒ solvability of P (n− 1, q − 1)
Case III: Here, the test is allowed to contain more substances but since consistency tells us

that all columns must be incomparable, the test excludes all other substances, leading back
to case II. Again, we can state that, solvability of P (n, q)⇒ solvability of P (n− 1, q − 1)

Now we know that if the subproblem P (n − 1, q − 1) could not be solved, then all tests

19

should contain more than one substance, and all substances should be included in more than
one test.

5 Results

Test procedure
We only made a program to ensure 2-consistency.i.e for k = 2
Since q2[n] is either q2[n− 1] or q2[n− 1] + 1, we can always get a conclusion from trying to
solve the problem P2(n, q2[n−1]). If it is solvable, it is the lowest possible value and therefore
minimum. If it is not solvable, then the only other choice is q2[n− 1] + 1, which must be the
minimum. Knowing the minimum number of tests for some problem, we just tried to include
another substance. The solution to this problem will be conclusive as just shown.
We know P2(1, 0) is not solvable, so we start with P2(1, 1).
Now in general we have to consider two cases:

• If P2(n, q) is solvable, q is optimal. Try P2(n + 1, q).

• If P2(n, q) is not solvable, q + 1 is optimal. Try P2(n + 1, q + 1).

In this way, we keep adding another substance and try to solve with the number of tests that
were optimal for the problem beforehand. The final results for 2-consistency we found so far
is given by Table 3. Plotting the tabulated result, we gain the graph given in Figure 6 for
the number of substances against minimum number of tests. The next problem P2(15, 10)
did not finish after approximately 10 hours.

Possible Improvement In our implementation, we had a fixed number of tests, and stopped

20

Number of substances Minimum number of tests
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 9
11 9
12 9
13 10
14 11

Table 3: Results obtained for different number of substances.

Figure 6: A graph visualizing the algorithms results.

as soon as we had found a solution that included all of the substances we were testing for.
Otherwise, it would search the entire combinatorial space and omit to return a solution. Two
possible extensions would be:

1. If the method failed to find a solution for a particular number of tests, this number
should increase by one, and then the method should continue the search among those
combinations that took advantage of the extra test.

2. If we found a solution for a particular number of substances, this solution should just be
compared with the solution currently including the largest amount of substances, and
the method should afterwards just continue to try and include more substances.

The first extension will allow the method to continue working on its own until it has found
a solution including the requested amount of substances. The second extension will allow
the method to find the largest amount of substances that can be included with the specified
number of tests. Both of them are valuable improvements if more computational effort is put

21

into it.

6 Conclusion/Future work

At the beginning, we showed that we can conduct n tests for given n substances to obtain
1-consistency i.e. a result that is conclusive for a single allergic substance. This turns out
only to be a trivial case of the problem at hand, as it became more challenging in providing
solutions for higher consistencies.
However, using the mathematical model formulated through the use of boolean lattices we
were able to reduce the number of tests needed to be performed to achieve 2-consistency, given
n number of allergic substances. We obtained results up to 14 substances for a minimum
number of 10 tests (there are 210×14 ≈ 1042 possible tests). This also explains the fact that
we have a lower-bound for conducting higher tests.Through the heuristic model, we were able
to confirm the validity of our model for solving 2-consistency.
We recommend that the mathematical formulation should be reconsidered to impose more
constraints on the test function so as to reduce the search space, and hence the computational
cost of the algorithm. Moreover, we also recommend further work to finding optimal solution
for higher consistency .i.e. k > 2, and improving on the methods for finding upper and lower
bounds.

References

[1] B. Davey and H. Priestley, Introduction to Lattices and Order, Cambridge Univ. Press,
second edition, 2002.

22

