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Chapter 1

Introduction

1.1 Scope of this Paper

The aim of this paper is to apply specific statistical tools known and used in finance and risk
management to the area of actuarial mathematics. The need for an interdisciplinary approach
in both actuarial world and risk management has emerged and has recently been addressed
by numerous publications as well as in scientific and professional events and meetings within
the actuarial world. This approach is a must in a sophisticated market with complex financial
instruments. Examples of such an approach include equity-linked life insurance contracts,
options on mortality, and attempts to implement methodologies like Risk Adjusted Return
on Capital as a principal pricing rule by more and more insurance companies.

The trend toward reapplying financial stochastic methods in insurance can also be seen
in the theoretical field. There is an ongoing effort in finance and in actuarial science to learn
and integrate the statistical and mathematical tools used by the two traditional streams into
a single, commonly applicable, toolbox.

In this paper I want to explore two such paths. The first is the concept of failure probability
that can be used as a base model for future returns in the insurance line of business. The
second is an attempt to use option pricing techniques to hedge a portfolio of life insurance
contracts against systematic mortality risk.

The probability of failure concept is introduced in Chapter 2. The motivation for studying
this probability is given and some theoretical results are derived – a generalized version
of Prabhu’s equation is given. Queuing theory methods can be used for computing this
probability. How this can be done is demonstrated in Chapter 3.

The probability of failure for discrete claim distributions is explored in Chapter 4. Some
popular methods of exact computation of ruin probability for discrete claims are adopted
to compute failure probability. Based on the formula presented in [21] a generalization of
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a ruin probability algorithm is proposed that can also be used for failure probability. The
algorithm’s computational complexity is studied and it is proved to be more effective for
failure probability than for ruin probability. Finally, some numerical examples for failure
probability computations are given. Chapter 4 reflects the author’s earlier publication [22].

A different approach is taken in the later chapters. Life insurance is an interesting field
where the methods of risk control known from advanced finance may be applied. Chapter 5
considers the problem of the random mortality intensity (also called ’hazard rate’, ’force of
mortality’, ’mortality rate’). I examine how a discretized version of the stochastic mortal-
ity model proposed by Dahl in [10] fits the historical demographic data for some developed
countries. In addition, other stochastic mortality models are proposed and are tested against
the available data. Both one-dimensional and multi-dimensional statistical analyses are per-
formed and a comparison of the models is provided that shows that the best mortality model
is not necessarily the one proposed by Dahl. Analytical formulas for survival probability in
the new models are given. These formulas are analogous to the ones known from interest
rate modeling. Finally, a few pricing and reserving applications are given.

The idea of mortality options mentioned in Chapter 5 is further developed in Chapter
6. Two basic types of mortality-linked financial instruments are introduced and the way
they should be used to protect against the systematic mortality risk is proposed. I also give
explicit formulas, perform numerical simulations and propose two approximations that are
modifications of methods known from the Asian options’ pricing. The exactness of those
approximations is examined and their usefulness is considered.
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1.2 Symbols and Notation

The most important symbols used in this paper:

c constant premium rate,
C(s) price of a call mortality option at time s, introduced in Section 6.2.2
F (x) cumulative probability function of a single claim X,
F ∗n(x) cumulative probability function of a sum of n independent claims

(n-fold convolution),
ψ(u) probability of ruin with initial capital u, defined by (2.3),
ψ(u, T ) probability of ruin in time T with initial capital u, defined by (2.4),
ψ(u, T, w) probability of failure in time T with initial capital u, see Definition 2.1.2,
φ(u) probability of survival, i.e. 1 − ψ(u),
φ(u, T ) probability of survival in time T , i.e. 1 − ψ(u, T ),
φ(u, T, w) probability of success in time T , i.e. 1 − ψ(u, T, w),
θ relative safety loading, i.e. c

λµX
− 1,

λ intensity of the Poisson claim process,
µX expected value of a claim, i.e. E(X),
µt also (in different context) mortality intensity function,
N(t) number of claims occurred during [0, t],
MX(t) moment generating function of X,
P(s) price of a put mortality option at time s, introduced in Section 6.2.2

T−tpt standard actuarial symbol for survival probability, see 6.1,
Ru(t) risk process, see Definition 2.1.1,

S(t) cumulated claim occurred in [0, t], i.e.
∑N(t)

i=0 Xi,
S(s) time-dependent expected value of a mortality process, see (6.2.2),
Ω set of the elementary events,
σi moment when the ith claim occurs,
τ moment of ruin, see (2.2),
τi waiting time between the (i− 1)th claim and the ith claim,
u initial capital of an insurance company,
Vw(t) claim surplus process, see Definition 3.1.1,
Ww(t) virtual waiting time process, see Definition 3.1.3,
Xi size of the ith claim, i = 1, 2, 3, . . .,
X a random variable with the same distribution as X1.



Chapter 2

Failure Probability – Preliminaries

2.1 Definitions

Let u be the initial capital of an insurance company, c represent the premium rate and
N(t) be a Poisson random variable with mean tλ. Let N(t), X1, X2, . . . be independent and
X1, X2, . . . be identically distributed positive insurance claims.

Definition 2.1.1 The standard risk process

Ru(t) = u+ ct−
N(t)
∑

i=1

Xi . (2.1)

The sum
∑N(t)

i=1 Xi will be also denoted by S(t).

One of the fundamental problems in both theoretical and practical approaches in actuarial
literature (e.g. [2], [12], [7]) is the problem of the time of ruin of the company whose capital
is described by the risk process Ru(t). Let the time of ruin be denoted by

τ =

{
inf{t : t > 0 ∧ Ru(t) < 0} if the set is not empty,
+∞ otherwise.

(2.2)

Ruin probability in infinite time is defined by

ψ(u) = P (τ <∞) (2.3)

and ruin probability in the finite time horizon [0, T ] is defined by

ψ(u, T ) = P (τ ≤ T ) . (2.4)
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Although the ruin probability problem plays a central role in insurance mathematics, an-
other problem can be of equal practical importance for an insurance company. The company
usually wishes not only to survive the next year, but also expects a reasonable rate of return.
Let us define the probability of failure originally introduced in [22].

Definition 2.1.2 For 0 ≤ w the probability of failure in time T

ψ(u, T, w) = P
(
τ < T ∨ (T ≤ τ ∧ Ru(T ) < w)

)
. (2.5)

For convenience we will sometimes denote the probability of non-failure (success) by

φ(u, T, w) = 1 − ψ(u, T, w) . (2.6)

The probability of failure can be also viewed as a natural generalization of the probability
of ruin in finite time since

ψ(u, T ) = ψ(u, T,−∞) . (2.7)

Note that – unlike ruin probability – the concept of failure probability makes sense only
in the finite time case.

2.2 Motivation

The reason why the problem of failure probability is worth considering can be illustrated by a
question asked by the investor with initial capital u: what is the probability that the company
will not go bankrupt and will bring interest not smaller than the risk-free financial instruments
during time T? This probability can be mathematically expressed as 1 − ψ(u, T, (1 + i)Tu),
where i is the risk-free interest rate. Figure 2.1 illustrates the investor’s dilemma.

The popularity of the whole family of the financial ’- at Risk’ measures like Value at Risk
(VaR), Capital at Risk (CaR), Earnings at Risk (EaR) or Cashflow at Risk (CfaR) follows
from the fact that they all give some insight into the probability distribution of a future value
of some investment. The knowledge of this distribution is essential for any decision maker,
since it allows the investor to assess an investment or a line of business in a risk adjusted way.
Wide implementation of financial measures like Risk Adjusted Return on Capital (RAROC)
and other members of the ’Risk Adjusted Return’ family, is another piece of evidence that the
quantitative probabilistic methods in risk management are being appreciated by the business
community.

Insurance is no different. The subsequent lines of insurance business must be monitored
and the return on capital must meet some reasonable assumptions. If they do not meet
– the investor may want to raise the insurance premiums or decide to quit from insurance
in order to utilize the capital in a more efficient way. To make such decisions, however,
the probabilistic distribution of future profits from engaging in insurance must be known.
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Figure 2.1: None of the above realizations of the risk process causes a ruin, however one of them causes

the failure for w = 27 (or i = 1.7).

Failure probability gives the exact distribution of such profits. It is a natural generalization
of the ruin probability in a finite time horizon. In many practical cases, however, it is more
important to know the failure probability than to be able to determine ruin probability only.

2.3 Prabhu’s Formula for ψ(0, T, w)

Failure probability is not only an useful concept, but also has some nice analytical features.
In many cases it can be computed using methods known from ruin theory. This section
provides an example of such an approach.

One of the few cases where an explicit formula for finite-time ruin probability is known
is the case with zero initial capital i.e. u = 0. In this situation the Prabhu’s or Cramér’s
formula holds:

1 − ψ(0, T ) =
1

cT

∫ cT

0

F ′
T (s)ds (2.8)

where

F ′
T (s) =

∞∑

i=0

P
(
N(T ) = i

)
F ∗i(s) , (2.9)

see [12], Ch. I.6 or [2], Ch. IV.2 for proofs. Here F ∗i is the i-fold convolution of the claim
distribution. Note that this equation constitutes a direct link between ruin probability and
the distribution of the cumulative claim S(T ).
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In this section, we will prove a similar result for failure probability with zero initial capital.
Namely

Theorem 2.3.1

1 − ψ(0, T, w) =
w

cT
F ′

T (cT − w) +
1

cT

∫ cT−w

0

F ′
T (s)ds (2.10)

where F ′
T (s) is defined as in (2.9).

Proof The proof is to a large extent identical to the proof of (2.8) that can be found in [12],
Ch. I.6. Similar constructs were also used by other authors and some of them are further
researched in Section 4.1.1 of this paper. The proof uses the trick of replacing the interior
integral with an equivalent polynomial. This trick was also proposed in [12].

Let the moment of the ith claim be denoted by σi. Further, let for σi ≤ t the symbol
πt,n = πt,n(t1, t2, . . . , tn) denote the multivariate probability function for the first n claims.
Note that this function is a constant with respect to t1, . . . , tn. The formal definition is

πt,n = πt,n(t1, t2, . . . , tn)

= P
(
N(t) = n ∧ σ1 ∈ dt1 ∧ σ2 ∈ dt2 ∧ . . . ∧ σn ∈ dtn

)
. (2.11)

The first of the equations below follows from the definition of πt,n and the other one can
be easily derived in a recursive way.

P
(
N(T ) = n

)
=

∫

. . .

∫

0≤t1≤...≤tn≤T

πt,ndt1 . . . dtn

= πT,n
T n

n!
. (2.12)

Now, let’s assume that N(T ) = n. To avoid failure, the following set of conditions is
necessary and sufficient. Condition A is a constrain on the claim severities

x1 + x2 + . . .+ xn ≤ cT − w . (2.13)

Note that this condition – although very similar – is not identical with the one given in
[12]. The other condition, denoted by B, restricts the moment of claims, given their severities.







(x1 + x2 + . . .+ xn)/c ≤ tn ≤ T
(x1 + x2 + . . .+ xn−1)/c ≤ tn−1 ≤ tn
. . . . . . . . .
x1/c ≤ t1 ≤ t2 .

(2.14)
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We will use the notation

Ln(T ) = P (N(T ) = n and no failure occurs in time T ) . (2.15)

We will derive Ln(T ) by integrating πT,n with respect to conditions A and B. We have

Ln(T ) =

∫

. . .

∫

A

( ∫

. . .

∫

B

πT,ndtn . . . dt1

)

dF (x1) . . . dF (xn)

= πT,n

∫

. . .

∫

A

( ∫

. . .

∫

B

dtn . . . dt1

)

︸ ︷︷ ︸

inner integral is a function of x1,...,xn

dF (x1) . . . dF (xn) . (2.16)

If we use the notation sn = x1+...+xn

n
, we can see that the inner integral is a polynomial

in s1, s2, . . . , sn and hence in x1, x2, . . . , xn. For example if n = 2 we have:

∫ ∫

B

dt2dt1 =

∫

s2≤t2≤T

∫

s1≤t1≤t2

dt2dt1 . (2.17)

We will call two polynomials p(x1, . . . , xn) and q(x1, . . . , xn) equivalent if

∫

. . .

∫

A

p(x1, . . . , xn)dx1 . . . dxn =

∫

. . .

∫

A

q(x1, . . . , xn)dx1 . . . dxn . (2.18)

Three general facts apply and since they are identical as in [12], we will leave them without
proof.

1. If (i1, . . . , in) is a permutation of (1, . . . , n) then there is an equivalence between poly-
nomials p(x1, . . . , xn) and p(xi1 , . . . , xin).

2. From the above, it follows that (k+1)skp(x1, . . . , xn) is equivalent to ksk+1p(x1, . . . , xn)
if only k + 1 ≤ n and p(x1, . . . , xn) is symmetrical in x1, . . . , xn.

3. Applying the above in a recursive way, we get that the inner integral is equivalent to
T n(1−sn/T )

n!
.

From the last fact combined with (2.16) and (2.12) we have

Ln(T ) = P
(
N(T ) = n

)
∫

. . .

∫

A

(1 − sn

T
)dF (x1) . . . dF (xn) (2.19)

and by substitution s = csn and integrating by parts, we have

Ln(T ) = P
(
N(T ) = n

)
∫ cT−w

0

(1 − s

cT
)dF ∗n(s)

= P
(
N(T ) = n

)
(
w

cT
F ∗n(cT − w) +

1

cT

∫ cT−w

0

F ∗n(s)ds

)

. (2.20)

Finally, 1 − ψ(0, T, w) is a sum of (2.20) over n. �
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2.4 Generalization for ψ(u, T, w)

The formula from the previous section may be now generalized in the following way.

Theorem 2.4.1 Let F ′
t(s) defined by (2.9) be differentiable and for a given t the density

f ′
t(x) =

dF ′

t (x)

dx
. Then we have

1 − ψ(u, T, w) = F ′
T (u+ cT − w) −

∫ T

0

f ′
s(u+ cs)

(
1 − ψ(0, T − s, w)

)
ds . (2.21)

Proof The event {Ru(T ) > w} may occur in two mutually exclusive ways. Either success
(non-failure) occurs or Ru(T ) > w but the risk process reached zero somewhere between 0
and T – in this case ruin occurs. In this case there is a moment s such that Ru(s) = 0 for
the last time. If so, then S(s) = u+ cs.

Probability of the event {Ru(T ) > w} is F ′
T (u+ cT −w). The integral represents the ruin

and recovery and the left-hand side of equation (2.21) is the probability of survival. �



Chapter 3

Queuing Theory Methods

3.1 Important Processes Related to the Risk Process

Some processes dual to the risk process play an important role in ruin theory. They allow
us to express the ruin problem in the queuing theory language. A similar duality exist for
failure probability. This section defines two important processes: the claim surplus process
and the virtual waiting time process.

3.1.1 Claim Surplus Process

Let us consider the collective risk process introduced by Definition 2.1.1. Let the jump
moments of this process be denoted by σ1, σ2, . . .. We define the storage process Vw(t) that,
to some extent, is a mirror reflection of Ru(t). Vw(t) has positive jumps of size XN−i at
moments σ∗

i = T − σi. The ’premium’ is negative for Vw(t), but only as long as the process
itself is positive, otherwise the premium becomes zero. Formally, if

δ(x) =

{
0 if x = 0,
1 otherwise,

(3.1)

then the storage process is given by the following

Definition 3.1.1 The storage process dual to the risk process is the solution of

dVw(t) = d(S(T ) − S(T − t)) − dt cδ(Vw(t)) (3.2)

with the initial condition Vw(0) = w.

The storage process for w = 0 plays an important role in ruin theory. There is a celebrated
duality between this process and the risk process. If we consider finite time T then the
following is true.

12
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Theorem 3.1.2 If the initial capital is u then the events {τ ≤ T} and {V0(T ) > u} coincide.

Proof See [2], Theorem 3.1. �

Hence, an instant corollary is hence that

ψ(u, T ) = P (V0(T ) > u) . (3.3)

3.1.2 Virtual Waiting Time Process

We also define the virtual waiting time process Ww(t). In the queuing theory world, it
represents the time a new client arriving at the system must wait before his service starts.
The formal definition is given by

Definition 3.1.3 The virtual waiting time process dual to the risk process is the solution of

dWw(t) = dS(t) − dt cδ(Ww(t)) (3.4)

with initial condition Ww(0) = w.

From Definition 3.1.3 follows that

dWw(t) = −dR−w(t) + dt c
(
1 − δ(Ww(t))

)
(3.5)

and finally, since Ww(0) = −R−w(0), the integral equivalent to Definition 3.1.3 is

Ww(t) = −R−w(t) + c

∫ t

0

1 − δ(Ww(s))ds. (3.6)

Note that the risk process Ru(t) and the virtual waiting time process Ww(t) are right-
continuous, while the storage process Vw(t) is left-continuous.

Figure 3.1 presents a sample path of risk process Ru(t) and the corresponding paths of
Vw(t) and Ww(t) for some given u, w and ω ∈ Ω.

3.2 Failure Probability and Queuing Theory

Because the moments of jumps in the risk process are governed by the homogeneous Poisson
process and the size of the jumps are i.i.d., the following Lemma holds. We will leave it
without formal proof.

Lemma 3.2.1 For any t and x we have P (Vw(t) < x) = P (Ww(t) < x).
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Figure 3.1: Solid lines represent sample paths of Ru(t), Vw(t) and Ww(t) for u = 3, w = 1.

The following Theorem constitutes a link between failure probability and the behavior of
the storage process. The technique used in the proof is similar to the one used in [2] in the
Lemma above.

Theorem 3.2.2 If the initial capital is u then the event of failure {τ ≤ T ∨ Ru(T ) < w}
and the event {Vw(T ) > u} coincide. Hence ψ(u, T, w) = P (Vw(T ) > u).

Proof It suffices to prove the case when N > 0, since the Theorem is obvious for N = 0.

First, let us prove that {Vw(T ) > u} ⇒ {τ ≤ T ∨ Ru(T ) < w}. We define γ =
sup{σ∗

i : Vw(σ∗
i ) = 0}. If such γ does not exist, then

Ru(T ) −Ru(0) = Vw(0) − Vw(T ) (3.7)

and because Vw(0) − Vw(T ) < w − u, this means that the failure occurs. If γ exists, we
have

Vw(σ∗
N) = Vw(T ) + cσ1 −X1 > u+ cσ1 −X1 = Ru(σ1) . (3.8)
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This formula can be repeated to get Vw(σ∗
N−1) > Ru(σ2), . . .. We can continue this process

until we get 0 = Vw(γ) > Ru(T − γ) and hence the ruin occurs at T − γ.

Next, let us prove that {Vw(T ) ≤ u} ⇒ {τ > T ∧ Ru(T ) ≥ w}. We have

Vw(σ∗
N) ≤ Vw(T ) + cσ1 −X1 ≤ u+ cσ1 −X1 = Ru(σ1) , (3.9)

and we can repeat this relation for σ∗
N−1, σ

∗
N−2 and so on. Since Vw(t) ≥ 0, the ruin does

not occur until T . Moreover, from the definition of Vw(t), for any t ∈ [0, T ] it is true that
Vw(t) ≥ v +Ru(T − t) −Ru(T ). So that for t = T

Vw(T ) − w ≥ u−Ru(T ). (3.10)

Finally, from (3.10) and the assumption Vw(T ) ≤ u, we can conclude that indeed Ru(T ) ≥ w.
�

3.3 Application – Constant Claim

Having the relationship between failure probability and queuing theory models formulated
in Theorem 3.2.2, we can see that calculating failure probability is equivalent to finding
the distribution of the unserved workload in an initially non-empty single server system.
The claim arrive according to a Poisson process and the service time is deterministic (and
constant). Hence, we are interested in a queue that is denoted by M/D/1 in the Kendal
notation.

The same problem is also known as the finite time dam problem and an elementary
discussion of this issue can be found e.g. in [30]. Let us have a closer look at this model.
Here, the initial level of water is Vw(0) = w and the dam accumulates water that arrives
in blocks of constant, deterministic size h according to a homogeneous Poisson process with
intensity λ. In this model, water departs from the dam with constant rate of c.

Note that if the dam had finite capacity N (or the queue was finite with length N i.e.
a M/D/1/N queue) such that N > (u + cT )/h, the event {Vw(T ) > u} would still occur
for exactly the same ω ∈ Ω as if the dam was infinite. Due to this fact, we can use the
result from [16] to give the exact analytical solution of the failure probability problem for
deterministic claims. Below is the formalization of this concept. We will try to stick to the
notation in [16].

Let N = ⌊u+ cT ⌋ + 1 be the length of a M/D/1/N queue. Let us introduce a (N + 1) ×
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(N + 1) matrix W :

W =










−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −1 1
0 0 0 . . . 0 0










(3.11)

Theorem 3.3.1 Let h be the deterministic claim severity, w
h
∈ N, N = ⌊(u + cT )/h⌋ + 1,

matrix W be defined as in (3.11) and π0 be a (N + 1)-dimensional vector that has 1 at the

(w
h

+ 1) position and 0 elsewhere. Next, let αk =
(λ h

c
)k

k!
e−λ h

c be the probability distribution for
the number of claims in time h

c
. Let the vector function Ψ(s) =

(
d0(s), d1(s), . . . , dN−1(s), 0

)

be defined by

dk(s) =







0 for s < h
c
, k = 0, . . . , N − 1,

λαkπ0(s− h
c
) +

∑k+1
i=1 αk+1−idi(s− h

c
)

for s ≥ h
c
, k = 0, . . . , N − 2,

λ
(
1 −

∑N−2
i=0 αi

)
π0(s− h

c
) +

∑N−1
i=1

(
1 −

∑N−1−i
j=0 αj

)
di(s− h

c
)

for s ≥ h
c
, k = N − 1 .

(3.12)

Then the probability distribution πx(T ) = P (⌈Vw(T )
h

⌉ = x) for T < w
c

is given by the vector

π(T ) = π(0)














α0 α1 α2 . . . αN−2 1 −
∑N−2

k=0 αk 0

α0 α1 α2 . . . αN−2 1 − ∑N−2
k=0 αk 0

0 α0 α1 . . . αN−3 1 − ∑N−3
k=0 αk 0

0 0 α0 . . . αN−4 1 −
∑N−4

k=0 αk 0
...

...
...

. . .
...

...
...

0 0 0 . . . α0 1 − α0 0
0 0 0 . . . 0 1 0














⌊Tc
h
⌋

eλW (T−⌊Tc
h
⌋h

c
) (3.13)

and for T ≥ w
c

is given by the vector
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π(T ) = π(0)














α0 α1 α2 . . . αN−2 1 −
∑N−2

k=0 αk 0

α0 α1 α2 . . . αN−2 1 − ∑N−2
k=0 αk 0

0 α0 α1 . . . αN−3 1 − ∑N−3
k=0 αk 0

0 0 α0 . . . αN−4 1 − ∑N−4
k=0 αk 0

...
...

...
. . .

...
...

...
0 0 0 . . . α0 1 − α0 0
0 0 0 . . . 0 1 0














w
h

eλW (T−w
c
) −

−
∫ T

w
c

Ψ(s)We(T−s)λWds . (3.14)

Here the matrix exponential function is defined by

exp(xW ) =
∞∑

i=0

xi

i!
W i (3.15)

and a simple form of this expression is derived by Garcia et. al. Hence we have

1 −
1+u/h
∑

i=0

πi(T ) ≤ ψ(u, T, w) ≤ 1 −
u/h
∑

i=0

πi(T ) . (3.16)

Proof See Section 3.2 of [16] for proof in the queue context. The the north-west N × N
sub-matrix of the large matrices used in (3.13) and (3.14) are defined incorrectly in [16]. The
last formula (3.16) is due to the fact that

P (Vw(T ) > u) ≤ P (⌈Vw(T )

h
⌉ > u

h
) ≤ P (Vw(T ) > u− h) (3.17)

and

P (⌈Vw(T )

h
⌉ > u

h
) = 1 −

u/h
∑

i=0

πi(T ) . (3.18)

�

Let us illustrate this theorem with an example. Let us examine the situation of an insurer
whose claims are deterministic and constant. Such a setup is a good approximation for some
lines of insurance business. A good example would be theft coverage for cars in a given price
range. Let us assume that each car’s price is 0.1, the initial capital is 10 and the intensity
of the claim process is 10. So on average the aggregated loss in a given year is one. Relative
safety loading θ was set to 0.8 i.e. c = 1.8. We will use a good approximation of failure
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Figure 3.2: Probability of success of an insurer i.e. 1− ψ(10, t, w) for t ∈ [0, 1] where w = 10 (upper plot)

and w = 11 (lower plot).

probability provided by the upper bound of (3.16). Figure 3.2 presents the situation of this
insurer in the course of one year.

We can see that if the investor is satisfied with avoiding ruin and maintaining the initial
capital only, he will achieve this goal almost certainly, especially in the long run. If, however
the aim is to get a decent rate of return of 10%, the probability of success is merely about
1/5. Note that w (or equivalently the assumed level of return) has a great impact on the
probability of failure. Even small changes in this rate will stronglly affect the probability of
success.

The saw-shaped graph of 1−ψ(10, t, w) might look odd at first glance. It is a consequence
of the fact that success probability rapidly increases just after the cumulated capital exceeds
a level that suffices to accept one more claim of size h. This effect tents to play a less
important role as time passes.



Chapter 4

Probability of Failure with Discrete

Claim Distribution

In this chapter, we consider failure probability with discrete claim distribution i.e. P (X ∈
N) = 1. Every continuous claim distribution with probability density function p(x) can
be approximated by a discrete probability function P (x). One way to do this is to put

P (X = n) =
∫ n+1

n
p(u)du for n ∈ N, but of course there are many other approximation

possibilities. Hence the restriction applied in this chapter is not a strong limitation. For
convenience we will also assume that u+ cT ∈ N.

The chapter is organized as follows: in Section 4.1, generalizations of two ruin probability
algorithms for discrete claims are presented that allow us to calculate failure probabilities.
A brief study of computational complexity of one of them is provided. In Section 4.2, a
similar generalization is proposed for the discrete time model. Finally, Section 4.3 contains
two numerical examples of the application of probability of failure.

4.1 Continuous Time Models

4.1.1 Failure Probability Based on the Ignatov-Kaishev Method

An important approach to ruin probability was presented by Ignatov and Kaishev in [21].
Let x = (x1, x2, . . .) be subsequent discrete claims. Let the function bi(c1, . . . ci) be defined
as follows: b0 = 1, b1 = c1 and
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bi(c1, . . . ci) = det












c1
1!

1 0 . . . 0
c2
2

2!
c2
1!

1 . . . 0
...

...
...

. . .
...

ci−1

i−1

(i−1)!

ci−2

i−1

(i−2)!

ci−3

i−1

(i−3)!
. . . 1

cj
i

i!

ci−1

i

(i−1)!

ci−2

i

(i−2)!
. . . ci

1!












. (4.1)

Equation (33) from [21] states that if the vector of claims x̄ = (xi)i is given, then the
non-ruin probability is

φ(u, T | X̄ = x̄) = e−TKx̄ , (4.2)

where

Kx̄ =
kx̄−1∑

j=0

(−1)jbj(
x1 − u

c
, . . . ,

x1 + . . .+ xj − u

c
)

kx̄−1−j
∑

m=0

Tm

m!
(4.3)

and kx̄ denotes such a value, that for n = cT + u+ 1

x1 + ...+ xkx̄−1 ≤ n− 1 < x1 + ...+ xkx̄
. (4.4)

The non-conditional ruin probability can be now obtained as a sum over all possible
claims’ vectors i.e.

φ(u, T ) = e−T
∑

1≤x1,
...

1≤xn

P (X1 = x1, . . . , Xn = xn)Kx̄ . (4.5)

Note that in the recursive calculation of the Kx̄ only the determinant of the largest
matrix i.e. Bmax = bkx̄−1 is critical, as the other determinants are side effects of the recursive
calculation of Bmax.

The following claim shows how the Ignatov-Kaishev method can be generalized in order
to be used to calculate the failure probability.

Proposition 4.1.1 Let n′ = cT + u+ 1 − w and let k′x̄ denote such a value, that

x1 + ...+ xk′

x̄−1 ≤ n′ − 1 < x1 + ...+ xk′

x̄
(4.6)

and let K ′
x̄ be defined like Kx̄ but with kx̄ replaced by k′x̄. Then the probability of non-failure

as defined in (2.5) can be expressed as

φ(u, T, w | X̄ = x̄) = e−TK ′
x̄ . (4.7)
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Proof Let the claims X̄ = x̄ be given. Let τ1 denote the moment when the first claim occurs
and τi be the waiting time between the (i−1)-th and i-th claim for i > 1. Then the following
holds

P
(
τ > T ∧ Ru(T ) ≥ w | X̄ = x̄

)

= P

( k′

x̄⋂

i=1

(
τ1 + . . .+ τi ≥ min(T,

x1 + . . .+ xi − u

c
)
)
)

. (4.8)

Since the equality

P
(

k⋂

i=1

(τ1 + . . .+ τi ≥ min(T,
x1 + . . .+ xi − u

c
))

)

= e−T

k−1∑

j=0

(−1)jbj(
x1 − u

c
, . . . ,

x1 + . . .+ xj − u

c
)

k−1−j
∑

m=0

Tm

m!
(4.9)

was proved in [21] without any specific assumptions about k, exactly the same procedure can
be used to prove the claim where k is replaced by k′x̄. �

Corollary 4.1.2 Now the result of Kaishev and Ignatov can be generalized to deliver the
probability of non-failure:

φ(u, T, w) = e−T
∑

1≤x1,
...

1≤xn′

P (X1 = x1, . . . , Xn′ = xn′)K ′
x̄ . (4.10)

The problem with the above is that it contains an infinite sum. Due to this sum, equality
cannot be applied in a numerical algorithm. Therefore, a finite equivalent of formula (4.10)
is needed. It is provided by the following

Theorem 4.1.3 Let n′ = cT +u+ 1−w. Furthermore, let the singleton Cn′

1 = {(n′, n′, . . .)}
contain an infinite sequence and for m > 1 let Cn′

m be a set of sequences such that for each
element x̄ ∈ Cn′

m the following hold

(i) ∀i xi ∈ {1, 2, . . .},

(ii)
∑m−1

i=1 xi ≤ n′ − 1,

(iii) ∀i ≥ m xi = n′.
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Then

φ(u, T, w) = e−T

n′

∑

i=1

∑

x̄∈Cn′

i

P (X1 = x1, . . . , Xi−1 = xi−1, Xi ≥ n′)K ′
x̄ . (4.11)

Proof Let k′x̄ be defined as in (4.6) and let Di be such a set that x̄ ∈ Di ⇐⇒ k′x̄ = i. Since
1 ≤ k′(x) ≤ n′, it is obvious that

φ(u, T, w) =
n′

∑

i=1

∑

x̄∈Di

P (X̄ = x̄)φ(u, T, w | X̄ = x̄)

=
n′

∑

i=1

∑

x̄∈Di

P (X̄ = x̄)φ(u, T, w | X1 = x1, . . . , Xi = xi) (4.12)

=
n′

∑

i=1

∑

x̄∈Di

P (X̄ = x̄)φ(u, T, w | X1 = x1, . . . , Xi−1 = xi−1, Xi = n′, Xi+1 = n′, . . .) .

If two different vectors x̄ and ȳ are members of Di and xj = yj for j < i then φ(u, T, w | X̄ =
x̄) = φ(u, T, w | X̄ = ȳ). Hence

n′

∑

i=1

∑

x̄∈Di

P (X̄ = x̄)φ(u, T, w | X1 = x1, . . . , Xi−1 = xi−1, Xi = n′, Xi+1 = n′, . . .)

=
n′

∑

i=1

∑

x̄∈Cn′

i

P (X1 = x1, . . . , Xi−1 = xi−1, Xi = n′)φ(u, T, w | X̄ = x̄) . (4.13)

Now, applying (4.7), we have

n′

∑

i=1

∑

x̄∈Cn′

i

P (X1 = x1, . . . , Xi−1 = xi−1)φ(u, T, w | X̄ = x̄)

= e−T

n′

∑

i=1

∑

x̄∈Cn′

i

P (X1 = x1, . . . , Xi−1 = xi−1, Xi = n′)K ′
x̄ . (4.14)

�

4.1.2 Computational Complexity of the Ignatov-Kaishev Method

Since the infinite sum (4.10) was reduced to a finite sum in (4.11), this formula can now be
used in practical failure probability applications. Now, it would be interesting to determine
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the numerical complexity of calculating (4.11). Because the determination of the sum K ′
x̄

for each claim vector is the critical numerical problem, we will consider the computational
complexity of the algorithm in terms of the required number of computations of K ′

x̄.

Theorem 4.1.4 The computational complexity of the naive algorithm for determining 1 −
ψ(u, T, w) is O(2n′

) where n′ = u+ cT + 1 − w.

Proof Let us first consider #Cn′

i – the size of the set Cn′

i . #Cn′

i equals to the number of all
possible ways of packing n′ indistinguishable balls into (i− 1) + 1 = i distinguishable boxes
(the extra box is added to allow the i − 1 ’real’ boxes to contain less than n balls) in such
a way, that each of the i − 1 boxes contains at least one ball. This is equal the number of
possibilities of packing n′ − (i− 1) balls into i boxes i.e.

(
n′ − (i− 1) + i− 1

i− 1

)

=

(
n′

i− 1

)

. (4.15)

We are now interested in
n′

∑

i=1

#Cn′

i =
n′

∑

i=1

(
n′

i− 1

)

. (4.16)

The above equals the number of all possible proper subsets of a set consisting of n′

elements. Hence
∑n′

i=1

(
n′

i−1

)
= 2n′ − 1. �

It is clearly seen that the parameter n′−1, the maximal allowed total claim, plays a critical
role in the efficiency of the algorithm. In case of the ruin probability n′ − 1 is chosen as the
largest possible, namely n′ − 1 = u+ cT . Hence the complexity of O(2n′

) for this algorithm
is not satisfactory in case of ruin probability. However, it is clear that we can use the same
algorithm in a far more effective way if we are interested in computing failure probability
instead of ruin probability.

4.1.3 Failure Probability Based on Appel Polynomials

In [25] Lefevre and Picard solved the classical ruin problem using the generalized Appel
polynomials. For sake of simplicity we will assume that λ = 1. Let the auxiliary polynomial
en(x) be defined as

en(x) =

{
1 if n = 0 ,
∑n

i=0
xi

i!
P (

∑i
j=1Xj = n) if n > 0 .

(4.17)

The generalized Appel polynomial can be now defined as

An(x) =

{
en(x) if 0 ≤ n ≤ u ,
∑u

j=0
cx−n+u
cx−j+u

ej(
j−u

c
)en−j(x+ u−j

c
) if n > u .

(4.18)
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Then, according to [25], the probability of non-ruin in the finite time T can be expressed
as

P
(
τ > T ∧ Sn = n

)
= e−TAn(T )I{T≥vn}, (4.19)

where vn = n−u
c

. Namely

1 − ψ(u, T ) = e−T

∞∑

n=0

An(T )I{T≥vn}. (4.20)

Again, we can see that this non-ruin probability construction can be generalized to provide
the probability of non-failure in a very intuitive way.

Proposition 4.1.5 Non-failure probability can be expressed using the generalized Appel poly-
nomials by

1 − ψ(u, T, w) = e−T

u+cT−w∑

n=0

An(T ). (4.21)

Proof The equality is a simple consequence of (4.19). �

The problem with this elegant result is that the Appel polynomials introduce numerical
complexity, and it is not a trivial task to use them efficiently. We will not study the complexity
of this approach here. Some ideas of how the Appel polynomials can be handled numerically
and effectively can be found in [1].

4.2 Failure Probability in Discrete Time

In this section we will consider a discrete time model i.e. t = 1, 2, . . . , T . Without loss of
generality we assume that the premium revenue per time unit (say a year) is one. In this
model, the ruin may occur only at the beginning of a year i.e. for t = 1, 2, . . . , T . The claims
are i.i.d. and the number of claims is independent of their sizes as in the previous model. Let
Yi be the aggregated claim in the i-th year. Yis are also i.i.d. and we denote the aggregate
probability function by f(x) = P (Y1 = x).

The model presented in this section is a modification of the one proposed by De Vylder
and Goovaerts in [11] and recalled by Dickson in [13]. The failure in one step is simply
expressed as:

ψ(u, 1, w) = 1 −
u−w+1∑

i=0

f(i) . (4.22)



25

If we assume that the failure occurs, then either the ruin occurs in the first step, or the
ruin does not occur in the first step, but the failure occurs during the next T − 1 steps. This
can be expressed as the recursive equation:

ψ(u, T, w) = ψ(u, 1, 0) +
u+1∑

j=0

f(j)ψ(u+ 1 − j, T − 1, w) . (4.23)

To improve the numerical efficiency of this recursive algorithm, a truncation procedure
similar to the one introduced in [11] can be used. The idea is to use a function f ε(x) instead
of the original f(x). Let ε > 0 be small and k be the largest natural number such that
∑k

i=0 f(x) ≤ 1 − ε. We have

f ε(x) =

{
f(x) if x ≤ k
0 otherwise.

(4.24)

Let now ψε(u, T, w) denote the modified failure probability calculated recursively using
the modified function f ε(x) as follows:

ψε(u, 1, w) =

{
ψ(u, 1, w) if u ≤ k
0 otherwise

(4.25)

and

ψε(u, T, w) = ψε(u, 1, 0) +
u+1∑

j=0

f(j)ψε(u+ 1 − j, T − 1, w) . (4.26)

This improvement is justified by the following

Theorem 4.2.1 If k > T + u then

ψǫ(u, T, w) ≤ ψ(u, T, w) ≤ ψǫ(u, T, w) + Tǫ . (4.27)

Proof The first inequality is obvious. Let Rε
u(t) denote the modified risk process which is

a copy of the original process but with the only difference that if a claim of size larger than
k happens in the Ru(t), then a claim of size ∞ happens in the Rε

u(t). While the aggregated
claims are independent in each time unit, the probability that Ru(t) = Rε

u(t) equals (1− ε)T .
We have

(1 − ε)T ≥ 1 − Tε . (4.28)

The above inequality is clear for T = 0. Assuming that it is true for T, let us prove it for
T + 1:
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(1 − ε)T+1 = (1 − ε)(1 − ε)T ≥
(1 − ε)(1 − Tε) = 1 − Tε− ε+ Tε2 ≥

1 − Tε− ε = 1 − (T + 1)ε. (4.29)

Hence, the probability that Ru(t) > Rε
u(t) does not exceed Tε. Assuming that the failure

happened each time Ru(t) > Rε
u(t), the probability of failure can not exceed ψε(u, t, w) +Tε.

�

4.3 Numerical Examples

We present numerical examples for the calculation of failure probabilities in the discrete time
model from the previous section. We choose one heavy-tailed truncated Pareto distribution
and one light-tailed truncated exponential distribution as single claim distributions. The
same claim distributions were considered in [13].

The computations were performed using the recursive algorithm expressed with formula
(4.26). They were performed for different initial capitals u and different final capitals w.
The results are presented as functions of w. The time horizon for all calculations was set
to 10. Figure 4.1 presents failure probabilities for the risk processes and the time required
to compute them for different initial and final capitals. It is not surprising that the failure
probability grows with w and falls with the initial capital u and that for a small initial capital
and large w the failure is sure.

More interesting is the behavior of the computer processor (CPU) time required to com-
pute probability as a function of w. As could have been expected, the CPU time falls rapidly
with w. In fact the slope is largest for large initial capital. The empirical results show that
the discrete time failure probability is computationally less expensive than the ruin probabil-
ity. These results accord with the analogous result obtained in Theorem 4.1.4 for continuous
time. This can be a strong motivation for using failure probabilities instead of pure ruin
probabilities in some practical applications.

4.4 Conclusion

Many popular methods of solving the ruin probability problem with discrete claim distribu-
tion can be adopted to solve the failure probability problem as well. Moreover, in many cases
the modified methods have better computational complexity and are less time-consuming.
The above facts confirm that failure probability is an interesting and valid subject of study.
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(a) failure probability, Pareto claim (b) failure probability, exponential claim
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Figure 4.1: Failure probabilities and CPU computation times for the risk processes starting from the initial

capital of one, three, five and seven respectively (from top to bottom in the upper panel and from bottom to

top in the lower panel). The left panel was obtained for the Pareto claim distribution, the right panel – for

exponential claim distribution.



Chapter 5

Stochastic Models for Adult Mortality

Intensity

In the life insurance industry the problem concerning the unpredictable mortality intensity is
of importance. It is possible that in the future the mortality parameters of the society will be
far from those assumed in the actuarial plan of an insurance product. This can happen even if
the assumptions were very conservative. For example, a new virus or an environmental threat
may emerge that will increase the mortality of the whole population. On the other hand a
new medicine may be invented and the mortality intensity will decrease. Such changes may
affect the population as a whole or only selected age groups. Thus, a deeper consideration
of the future mortality structure is a must. This problem is crucial for both reserving and
pricing.

The aim of this chapter is to provide statistical analysis of the available demographic data.
We also propose three continuous-time stochastic models that are natural generalizations of
the Gompertz law in the sense, that they reduce to the Gompertz function when the volatility
parameter is zero. These models have some interesting features. For example, they have few
parameters only, these parameters are not functions of time, and at least one of these models
can also be efficiently used for mortality option-pricing. Statistical multivariate tests for all
three models are provided that allow us to decide which one fits the empirical data best.
Finally, we give some practical examples for our multidimensional model.

This chapter is organized as follows. A brief introduction is provided in Section 5.1.
Sections 5.2 presents three basic models that we will use in the course of this chapter. Section
5.3 presents the simplest available formula for probability of survival for the models. Section
5.4 contains a reality-check – the models are tested against the demographical data. Finally,
some applications can be found in Section 5.5.

28
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5.1 Stochastic Mortality Models

Let us consider a homogeneous cohort of people born in year y. By the standard actuarial
notation T−tp

y
t we denote the probability that a (t − y)-years old member of this cohort

survives until T . If µy
t is the hazard rate of a single life, we have

T−tp
y
t = e−

R T

t
µy

sds . (5.1)

If the environment and living conditions do not change over time, we can assume that
this cohort’s mortality intensity is a function of time only. In classical actuarial theory and
practice, µy

t is often expressed by the so called Gompertz assumption (see any actuarial
textbook e.g. [5]) as a function of t:

µy
t ≈ A+BeCt (5.2)

where A, B and C are constants. This model provides a surprisingly accurate approxima-
tion in many cases, it is commonly accepted and has been extensively used by practitioners
for over a century. Despite its obvious simplicity and usefulness, this method has a serious
drawback – it is deterministic and thus it cannot accomodate future randomness. Hence
the need for a non-deterministic model emerges and there are a few approaches toward such
models in the existing literature.

Predictions of the survival probability px, mortality intensity µx (also called: force of
mortality, mortality rate, hazard rate) as well as the central mortality rate mx are possible.
Among others, the Lee-Carter model presented in [24] and further developed by many authors
(e.g. [36], [37]) and the CMI recommendations [9] are broadly applied and recommended. The
Lee-Carter method provides not only mortality predictions but also its confidence bounds.
The fact that it provides some insight into the random nature of future mortality is of course
a useful and desirable feature.

Since the Lee-Carter method is based on time series analysis, it only provides discrete
analysis of the problem. Continuous-time stochastic mortality models are presented in [29]
and [10]. Here the models were selected mainly to enable mortality-derivative pricing, which
is the main objective of these papers. In particular the extended Cox-Ingersoll-Ross (CIR)
model is used by Dahl in [10]. The Cox-Ingersoll-Ross model is important for the stochastic
modeling of interest rates. In this model the mortality intensity process is described by the
following SDE:

dµy
t = at(bt − µy

t )dt+ ct
√

µy
t dB , (5.3)

where the parameters at, bt and ct are functions of time. In this setup µy
t is a mean

reverting process with mean bt. Mean reversion is one of Dahl’s important motivations for
using this model for mortality intensity. Also [29] uses a mean reverting process to model the
mortality intensity. Both papers suggest that mean reversion is desired or even required for
the mortality model. It certainly important for interest rate models, which John Hull explains
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in [19] this way: There are compelling economics arguments in favor of mean reversion. When
rates are high, the economy tends to slow down and there is less requirement for funds on the
part of borrowers. As a result, rates decline. When rates are low, there tends to be a high
demand for funds on the part of borrowers. As a result rates tend to rise. This motivation
does not seem to hold for the mortality intensity, though.

Another argument against mean reversion is that usually it is difficult to estimate the
mean from the data. In practical application one would probably have to assume a priori a
particular form of the mean function. One possibility is the celebrated Gompertz law.
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Figure 5.1: The empirical Spanish data. Residuals after fitting Gompertz law with the least squares

method

Finally, there is no evidence that the demographic data is mean reverting. Figure 5.1
presents a very typical situation. The Gompertz law was fitted to the Spanish data (adults
born 1937) with the least square method. If the underlying process was mean reverting
with a moderate variance and a reasonably high speed of reversion, we would not expect to
see many adjacent large residuals. Although this cannot be treated as a serious argument
against the mean-reverting hypothesis, we can see that there are no good reasons why the
mean-reverting framework should be considered the only correct approach.

We want to show that there exist a few stochastic processes that are not mean reverting
but fit the data well, have nice analytical properties and have a simple structure.

In the remainder of this chapter, we will be omitting the superscripts in µy
t and py

t if this
does not lead to confusion and hence we will write µt or pt.

5.2 Non- Mean Reverting Models

Because there can be some reservations to the idea of mean reverting mortality models, we
make a proposal to use a different group of models. These models are defined and described
in this section.
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5.2.1 One-dimensional Models

We suggest using the following diffusion processes for modeling mortality intensity:

dµt = aµtdt+ µβ
t σdB , t ∈ [t0, T ] , (5.4)

for β = 0, β = 0.5 and β = 1. Here µt0 > 0 is the starting value of the process µt. a > 0
and σ are constant and Bt is the Brownian motion. We also denote G = aµt and H = µβ

t σ.
Unique solutions exist for β = 0 and β = 1 because the Lipschitz condition holds in these
cases. For β = 0.5 we can apply a special case of the Yamada-Watanabe theorem and see
that the weakened Lipschitz condition holds.

Models of such type have many advantages over the mean reverting or even over the
Lee-Carter model. At first they are intuitive because all are very natural generalizations of
the Gompertz law. Next they have a very transparent structure and are easy to simulate and
test. They also have only two parameters (plus the starting value µt0) and these parameters
are constant over time, what makes them easy to calibrate and finally – apply.

Note that µt defined as in (5.4) does not have to follow the affine structure.

If β = 0 then the dynamics of the process is given by

dµt = aµtdt+ σdB , t ∈ [t0, T ] . (5.5)

If the famous Vacicek interest rate model dr = a′(b− r)dt+ σdB did not require a′ and b
to be strictly positive, equation (5.5) could have been viewed as a special case of the Vacicek
model. Our model is no more mean reverting.

The drawback of the process (5.5) is that it can be negative. This is not desirable for the
interest rates to be negative but it is even unacceptable for the mortality intensity to be so.
We can overcome this problem by defining µ∗

t = max(ǫ, µt) for some small, positive ǫ.

The second model that we propose for modeling continuous-time mortality intensity is
given by the following SDE:

dµt = aµtdt+ σ
√
µtdB , t ∈ [t0, T ] . (5.6)

If µt follows (5.6), it is positive for any t with probability one. This model could be viewed
as a special case of (5.3), however formally the definition of CIR requires its coefficients to
be strictly positive. Because here bt = 0 and at < 0, this model is no more mean reverting.
Surprisingly, we will see that this model fits the empirical data well and that there exist
explicit formulas for some important functionals of µt in this model.
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The last proposal (for β = 1) is to use the geometric Brownian motion as the stochastic
replacement for the Gompertz assumption. Let the behavior of µt be given by the following
SDE:

dµt = aµtdt+ σµtdBt, t ∈ [t0, T ] . (5.7)

Of course ln(µt) has the normal distribution with mean a− σ2/2 and variance σ2. Hence
µt is positive for any t. This model is well known as the model for stock dynamics. In the
interest rate literature (see e.g. [3], Ch. 3.2) it is known as the Dothan model but is not
extensively used due to obvious limitations – in this model, the interest rates converge to
infinity which is not desirable. However such behavior is reasonable in the case of mortality
intensity.

Note that the mortality intensity modeling – unlike the usual interest rate modeling –
takes place under the physical measure here.

5.2.2 Multi-dimensional Models

The models (5.5), (5.6) and (5.7) are one-dimensional – they describe the mortality intensity
of a single cohort only. Albeit the one-dimensional models seem to be reasonable for each
single cohort, one expects that there must be some dependence between the mortalities of
people of different ages. For example during a war or a pandemic, the mortality of the whole
population increases. The dependence between mortalities in people of like ages would be
especially strong. The increase of mortality in people aged say, 82 would – intuitively – be
accompanied by an increase in the mortality of those 83-years old, but not necessarily the
infants.

To incorporate this common sense rule, the k-dimensional vector of Brownian motions
must be used as the source of randomness in the models. This leads to vector-valued equations
analogous to (5.5), (5.6) and (5.7) but where the variables µt, a and µt0 are replaced with their
k-dimensional versions. Then the multiplications between these variables are understood as
multiplications over each coefficient separately. The volatility parameter σ is replaced with
a k × k matrix σ. The covariance matrix Σ = σσT .

In this setup, we can describe not only the behavior of an individual cohort but we can
also incorporate the dependencies between the mortality of people in different ages. Such
effects can now be well modeled by the covariance matrix Σ. The values Σij are expected to
decrease with |i− j| but to always stay non-negative.

5.3 Probability of Survival

Assuming we have a correct model for µt, we still need to be able to calculate some functionals
of this process to apply the model. A functional that can be especially useful is the probability
of survival.
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5.3.1 Survival of a Single Cohort

Let {Ft}t∈[t0,T ] be a filtration over the probability space (Ω,F, P ). Let µt be measurable
w.r.t. Ft. The stochastic process

p(t, T ) = E(e−
R T

t
µsds | Ft) (5.8)

denotes the probability under Ft, that a person born in the year y and aged t will survive
until the age of T . From Ito’s lemma follows that p(t, T ) is the solution of PDE:

∂

∂t
p(t, T ) +G

∂

∂µ
p(t, T ) +

H2

2

∂2

∂µ2
p(t, T ) − µp(t, T ) = 0 , (5.9)

with the condition p(T, T ) = 1, see for instance [17], Ch VIII.5. Here G and H are the
appropriate coefficients in the Ito equations (5.5), (5.6) and (5.7). For instance G = aµt and
H = σ if β = 0. It is useful to give simplest formula possible for (5.8) and this is done in the
following

Theorem 5.3.1 Let the force of mortality be defined by (5.5), (5.6) and (5.7) respectively.

Then the probability of survival p(t, T ) = E(e−
R T

t
µsds | Ft) is of the form

(i) if β = 0 then
p(t, T ) = eM(t,T )+N(t,T )µt , (5.10)

where N(t, T ) = 1
a

(
1 − ea(T−t)

)
and M(t, T ) = σ2

4a3 (2a(T − t) − 4ea(T−t) + e2a(T−t) + 3),

(ii) if β = 0.5 then
p(t, T ) = eN(t,T )µt , (5.11)

where N(t, T ) = 2(etd−eTd)
(d+a)etd+(d−a)eTd and d =

√
a2 + 2σ2,

(iii) if β = 1 then

p(t, T ) =
rp

π2

∫ ∞

0

sin(2
√
r sinh y)

∫ ∞

0

f(z) sin(yz)dzdy +
2

Γ(2p)
rpK20(2

√
r) , (5.12)

where Kq() is the modified Bessel function of second kind of order q and

f(x) = x exp
−σ2(4p2 + x2)(T − t)

8

∣
∣Γ(i

x

2
− p)

∣
∣
2

cosh
πx

2
,

r =
2µt

σ2
,

p =
1

2
− a .
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Proof The proof is similar to the corresponding proofs of the Vasicek and CIR models.
(i) Assume the affine structure p(t, T ) = eM(t,T )+N(t,T )µt where M(T, T ) = N(T, T ) = 0.

Making use of (5.9) and separating the terms that depend on µ and those that do not, we
get

{
∂
∂t
N(t, T ) + aN(t, T ) = 1 ,

∂
∂t
M(t, T ) + σ2

2
N(t, T )2 = 0 ,

so that N(t, T ) = 1
a

(
1 − ea(T−t)

)
and finally

M(t, T ) = −σ
2

2

∫

N(t, T )2dt+ C

=
σ2(T − t)

2a2
− σ2(4ea(T−t) − e2a(T−t) − 3)

4a3
.

(ii) Again assume the affine structure as in (i). Making use of (5.9) yields this time

{
∂
∂t
N(t, T ) + aN(t, T ) + σ2

2
N(t, T )2 = 1 ,

∂
∂t
M(t, T ) = 0 .

From the second equation and the boundary condition follows that M(t, T ) = 0. In the

first equation the transformation N(t, T ) = 2 ˜N(t)
′

σ2 ˜N(t)
leads to the following second-order linear

equation

˜N(t)
′′

+ a ˜N(t)
′ − σ2

2
˜N(t) = 0 .

Because a2 + 2σ2 > 0, we can introduce an auxiliary variable d =
√
a2 + 2σ2. Now the

general solution for N(t, T ) is of the form

˜N(t) = D1e
t
2
(d−a) +D2e

− t
2
(d+a) ,

for constant D1 and D2 do not depend on t. Hence

N(t, T ) =
D1(d− a)e

t
2
(d−a) −D2(d+ a)e−

t
2
(d+a)

σ2D1e
t
2
(d−a) + σ2D2e

− t
2
(d+a)

.

Applying the boundary condition yields D2 = D1
d−a
d+a

eTd so that we have the explicit
formula.

(iii) The formal proof will be omitted, since the same formula can be found in [3], Ch.
3 for the interest rates. The geometric Brownian motion as a model for interest rates was
originally introduced in [15]. �

Some practical applications of this theorem can be found later in Section 5.5.
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One could be also interested in the conditional variance of the random variable e−
R T

t
µsds.

Since

V ar(e−
R T

t
µsds | Ft) = E(e−

R T

t
2µsds | Ft) −

(

E(e−
R T

t
µsds | Ft)

)2

, (5.13)

only the expression E(e−
R T

t
2µsds | Ft) is of interest in this case. But based on Ito’s lemma

we can say that if µt is defined by (5.4), then 2µt is given by

d(2µt) =
(

2aµtdt+ 0 + 0µ2β
t σ

2
)

dt+ 2µβ
t σdB

= 2aµtdt+ 2µβ
t σdB , t ∈ [t0, T ] . (5.14)

So to give an explicit formula for E(e−
R T

t
2µsds | Ft) it suffices to reapply Theorem 5.3.1

for µt with modified parameters G and H.

5.3.2 Survival Probability for Many Cohorts

Let y = (y0, y1, . . . yk−1) and m = (m0,m1, . . .mk−1) be vector values. Then another point of
interest is the formula for the expectation of the linear combination:

pym(t, T ) = E(m× e−
R T

t
µsds | Ft)

= E(m0e
−

R T

t
µ

y0
s ds + . . .+mk−1e

−
R T

t
µ

yk−1
s ds | Ft) . (5.15)

If the insurer has a portfolio of
∑k−1

i=0 mi pure endowment policies, where mi policy holders
were born in the year yi, formula (5.15) will provide the expected number of claims from this
portfolio at time T . This problem can be solved using results from Theorem 5.3.1 for every
cohort independently.

A more interesting case is if we are interested in the variance of m× e−
R T

t
µsds. We have

V ar(m× e−
R T

t
µsds | Ft)

=
k−1∑

i=0

k−1∑

j=0

mimjCov
(

e−
R T

t
µ

yi
s ds, e−

R T

t
µ

yj
s ds | Ft

)

=
k−1∑

i=0

k−1∑

j=0

mimj

(

E(e−
R T

t
µ

yi
s +µ

yj
s ds | Ft) −

E(e−
R T

t
µ

yi
s ds | Ft)E(e−

R T

t
µ

yj
s ds | Ft)

)

. (5.16)



36

The only part of (5.16) that is problematic is the expression E(e−
R T

t
µ

yi
s +µ

yj
s ds | Ft). Since

the process µyi
s + µ

yj
s in not an Ito process anymore (unless the covariation matrix is trivial),

we cannot apply Theorem 5.3.1 to calculate E(e−
R T

t
µ

yi
s +µ

yj
s ds | Ft). Hence, in the remainder

of this paper the variance of a portfolio will be determined using Monte Carlo methods.

5.4 Statistical Analysis of the Demographic Data

We examined the life tables published by The Human Mortality Database (see [20]) for the
countries providing consistent datasets and sufficient long history i.e. Austria, Belgium,
Bulgaria, Canada, Czech Republic, Denmark, England & Wales, Finland, France, Hungary,
Italy, Japan, Latvia, Lithuania, Netherlands, Norway, Spain, Sweden, Switzerland and the
USA.

5.4.1 Preliminaries

Using these life tables, the mortality intensity was recomputed from the qx’s based on the
assumption of the constant mortality intensity in fractional ages. All the data was subject
to the following preliminary steps:

1. All the data concerning youth (24 or younger) was removed.
2. All the data concerning the elderly (76 or older) was removed due to instabilities caused

by the small size of the cohort (lx) and the possibility of effects described in [27].
3. Only cohorts currently aged 25-75 were considered (most recent data).
4. Only the most recent 15 or 40 observations for each cohort (year of birth) was of

concern.
5. If sufficient long data was not available for a cohort, this cohort was omitted.

Finally, two datasets were obtained. The first one contains the mortality intensity of
people currently aged 39-75 (37 cohorts) in 15 subsequent calendar years. Hence it is a
15× 37 matrix for each country. Each row is one observation and each column is one cohort.
We have labeled this the ’short history data’ set.

The other dataset (the ’long history data’) consists of 12 cohorts observed in 40 subsequent
calendar years. It concerns people currently aged 64-75. It is a 40×12 matrix for each country.

5.4.2 Extracting the White Noise

Continuing with the refined data we will test if it fits the discretized SDE of the three models
proposed in Section 5.2. Note that the equations (5.17), (5.20) and (??) are only Euler-type
approximations of (5.5), (5.6) and (5.7). This is due to the fact that we assume the transition
probabilities to be normally distributed, which is not exactly true. However (5.17), (5.20)
and (??) can be used as good approximations of the corresponding continuous models.



37

For β = 0 the discretized version of (5.5) i.e.

µi+1 − µi = aµi + σ(Bi+1 −Bi) (5.17)

leads to the following:
xi = µi+1 − µi − aµi . (5.18)

For each i, xi should be normally distributed with mean zero and variance diag(Σ). We
can now test if (xi) for i = t0, t0 + 1, . . . , T form (multivariate) Gaussian white noise. To
do this, we have to first estimate the parameter a by matching the first moment of xi.
E(xi) = E(µi+1 − µi − aµi) = 0 yields the following straightforward estimator:

a =

∑T−1
i=t0

(µi+1 − µi)
∑T−1

i=t0
µi

. (5.19)

Having a estimated, we will further compute (xi) and perform white-noise tests.

For β = 0.5 we will use a similar procedure as above. Hence we will test if the discretized
version of (5.6) i.e.

µi+1 − µi = aµi + σ
√
µi(Bi+1 −Bi) (5.20)

fits the demographic data. In this model

xi =
µi+1 − µi − aµi√

µi

. (5.21)

should be normally distributed with mean zero and variance diag(Σ). We will estimate
the parameter a by matching the first moment of xi analogous to the previous example.
E(xi) = E(µi+1−µi−aµi√

µi
) = 0 leads to the following estimator:

a =
T−1∑

i=t0

µi+1 − µi√
µi

/
T−1∑

i=t0

µi√
µi

. (5.22)

We will further compute (xi) and perform white-noise tests.

If β = 1, the discretized version of (5.7) will be tested against the demographic data. The
logarithm of the the sequence (µi) is a taken and differentiated. This way we get another
sequence

xi = log µi+1 − log µi (5.23)

that should form Gaussian white noise. We will test if this is indeed the case.
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5.4.3 Hypothesis Testing for One-dimensional Models

We will perform one-dimensional analysis of (xi) defined in (5.18), (5.21) and (5.23). For each
country and for each cohort the null hypothesis is that the sequence (xi) is one-dimensional
Gaussian white noise.

To test normality, we will use the one-dimensional Shapiro-Wilk test. To test the inde-
pendence of each sample, a Box-Ljung small sample test is performed for auto covariance
function with lag 1, see [28] for reference. Especially for the data of length 15, the results of
the Box-Ljung test can be used for orientation purposes only because this is an asymptotic
test and it is recommended for large samples only. Therefore, an additional turning point
test was done for each cohort.

Tables 5.1 and 5.2 list the results of all the tests for the 5% significance level for the short-
and long history data respectively. The values in the first, second and third column of each
block are the numbers of the non rejected tests. The last column is the number of cohorts
where neither the Box-Ljung nor the Shapiro-Wilk test was rejected.

Assuming that the null hypothesis is true for each cohort and that the test for each
cohort is an independent experiment, the number of passing cohorts for each test should
follow the binomial model with the 95% probability of success and 5% probability of failure
(probability of a type I error). The number of trials equals the number of examined cohorts
in each country. For example if there were 12 cohorts examined, the number of rejected tests
should not exceed 2 (with a 5% significance level). If there were 37, the number of rejected
tests should not exceed 4. An asterix next to a result in Table 5.1 or 5.2 means that the
number of tests rejected was not greater than 2 for short history data and 4 for long history
data. A plus means that only one cohort was missing from the desired number.

For the short history data and β = 0 at least one test was not rejected for a reasonably large
set of countries. However, both independence and normality tests were passed for Lithuania
only. The number of countries where the tests were not rejected may seem small, but note
that our hypothesis is that all 37 cohorts follow the model. In the rejected countries, only
some of the cohorts do not.

We can see that the model for β = 0.5 can be applied to the Hungary, Latvia and
Lithuania short history data. This is a reasonably large set and it makes this model the best
of all three considered.

We can see that the geometric Brownian model (β = 1) can be applied to the Hungarian
and Lithuanian short history data. This model is also applicable for not all, but for most
cohorts in the short history data in each country.

For the long history data the model with β = 0 or β = 1 cannot be applied to any country
as a model for all generations. However, it still fits a fair fraction of generations in all the
countries.
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Table 5.1: One-dimensional models – short history data (length 15). Box-Ljung, turning point and Shapiro-Wilk tests’ results for

95% confidence interval. The BL+SW column shows the number of cohorts passing both the Box-Ljung test and the Shapiro-Wilk test.

An asterisk means that the number of tests rejected was not greater than 4. A plus means that the number of tests rejected was not

greater than 5.

# cohorts passing β = 0 # cohorts pass. β = 0.5 # cohorts pass. β = 1
country coh. BL t.p. SW BL+SW BL t.p. SW BL+SW BL t.p. SW BL+SW

Austria 37 26 24 34* 23 28 24 36* 27 27 25 37* 27
Belgium 37 28 31 35* 26 29 31 33* 25 29 31 32+ 24
Bulgaria 37 33* 24 35* 31 33* 23 34* 30 34* 24 35* 32+
Canada 37 29 26 34* 28 32+ 25 34* 30 31 24 35* 29
Czech Rep. 37 29 31 36* 28 28 31 35* 26 27 30 33* 25
Denmark 37 27 25 35* 26 28 25 33* 25 27 25 35* 26
Engl., Wal. 37 18 33* 34* 16 20 33* 36* 19 22 33* 35* 21
Finland 37 30 28 34* 27 29 28 35* 27 27 28 36* 26
France 37 29 25 33* 26 29 25 36* 29 30 25 33* 27
Hungary 37 35* 25 33* 31 36* 23 35* 34* 35* 22 35* 33*
Italy 37 32+ 28 32+ 29 33* 28 34* 31 32+ 28 34* 29
Japan 37 33* 19 34* 30 32+ 19 33* 28 36* 21 33* 32+
Latvia 37 36* 22 33* 32+ 36* 24 35* 34* 37* 24 32+ 32+
Lithuania 37 37* 30 33* 33* 37* 30 36* 36* 37* 29 35* 35*
Netherl. 37 29 28 30 23 27 29 31 23 29 29 34* 26
Norway 37 23 27 35* 23 23 27 35* 23 22 27 35* 21
Spain 37 31 27 31 25 32+ 27 35* 30 31 27 34* 28
Sweden 37 33* 23 32+ 29 32+ 24 34* 29 30 23 35* 28
Switzerl. 37 28 28 33* 25 27 30 35* 25 27 31 35* 25
USA 37 31 31 30 24 29 30 30 22 28 29 30 21
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Table 5.2: One-dimensional models – long history data (length 40). Box-Ljung, turning point and Shapiro-Wilk tests’ results for 95%

confidence interval. The BL+SW column shows the number of cohorts passing both the Box-Ljung test and the Shapiro-Wilk test. An

asterisk means that the number of tests rejected was not greater than 2. A plus means that the number of tests rejected was not greater

than 3.

# cohorts passing β = 0 # cohorts pass. β = 0.5 # cohorts pass. β = 1
country coh. BL t.p. SW BL+SW BL t.p. SW BL+SW BL t.p. SW BL+SW

Austria 12 2 12* 9+ 1 3 12* 10* 3 3 12* 10* 2
Belgium 12 3 11* 10* 2 2 11* 10* 1 2 11* 8 1
Bulgaria 12 7 11* 4 4 6 11* 10* 4 7 11* 9+ 4
Canada 12 4 11* 10* 4 6 11* 12* 6 7 11* 7 4
Czech Rep. 12 8 11* 10* 6 10* 10* 8 8 8 10* 8 7
Denmark 12 2 12* 9+ 2 2 12* 12* 2 0 11* 11* 0
Engl., Wal. 12 1 10* 5 1 6 10* 12* 6 9+ 10* 11* 8
Finland 12 4 11* 11* 3 4 11* 11* 4 3 11* 11* 3
France 12 5 11* 12* 5 7 11* 10* 6 6 11* 11* 5
Hungary 12 9+ 11* 7 5 11* 11* 12* 11* 11* 11* 10* 9+
Italy 12 9+ 11* 8 5 8 11* 11* 7 9+ 11* 6 4
Japan 12 12* 12* 4 4 9+ 12* 11* 8 7 12* 7 6
Latvia 12 10* 12* 3 1 12* 12* 11* 11* 8 11* 12* 8
Lithuania 12 9+ 12* 10* 7 8 12* 11* 7 8 12* 10* 6
Netherl. 12 5 12* 3 0 3 12* 10* 2 5 12* 11* 5
Norway 12 4 12* 5 0 1 12* 11* 1 0 12* 12* 0
Spain 12 3 12* 12* 3 4 12* 12* 4 6 12* 4 2
Sweden 12 6 12* 9+ 5 4 12* 11* 3 5 12* 11* 5
Switzerl. 12 2 12* 11* 2 3 12* 12* 3 3 12* 9+ 3
USA 12 3 12* 5 2 4 12* 11* 4 7 12* 12* 7
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Table 5.3: 3-dimensional models (people aged 70-72). Portmantou, short-sample portamntou and multivariate Shapiro-Wilk tests’

results for long history data (length 40) and 5% conficence interval. An asterisk means that we can accept the model. A plus means

that the model was not accepted, but the p-values were relatively close to the desired threshold.

p-values for β = 0 p-values for β = 0.5 p-values for β = 1
country portm. port.s. mv-Sh. f. portm. port.s. mv-Sh. f. portm. port.s. mv-Sh. f.

Austria 1.000 1.000 0.000 0.994 1.000 0.016 0.427 0.754 0.300 *
Belgium 1.000 1.000 0.000 0.855 0.965 0.093 * 0.950 0.992 0.055
Bulgaria 0.999 1.000 0.000 0.814 0.969 0.025 * 0.954 0.995 0.064
Canada 0.992 1.000 0.086 0.973 0.997 0.041 1.000 1.000 0.000
Czech Rep. 0.545 0.865 0.001 0.320 0.678 0.222 * 0.958 0.995 0.000
Denmark 1.000 1.000 0.000 1.000 1.000 0.010 1.000 1.000 0.028
Engl., Wal. 1.000 1.000 0.000 0.999 1.000 0.071 1.000 1.000 0.006
Finland 0.994 1.000 0.022 0.989 0.999 0.065 1.000 1.000 0.020
France 1.000 1.000 0.022 0.988 0.999 0.067 0.999 1.000 0.030
Hungary 1.000 1.000 0.050 1.000 1.000 0.019 0.506 0.731 0.023
Italy 1.000 1.000 0.000 0.822 0.957 0.051 * 0.951 0.993 0.000
Japan 0.500 0.762 0.061 * 0.740 0.915 0.583 * 0.997 1.000 0.000
Latvia 0.952 0.994 0.000 0.868 0.968 0.015 0.996 1.000 0.575
Lithuania 0.996 1.000 0.001 0.922 0.989 0.147 1.000 1.000 0.000
Netherl. 0.991 0.999 0.000 0.948 0.993 0.000 0.799 0.943 0.077 *
Norway 0.992 0.999 0.000 0.435 0.748 0.007 1.000 1.000 0.040
Spain 0.961 0.995 0.000 0.974 0.998 0.041 1.000 1.000 0.000
Sweden 1.000 1.000 0.004 0.993 1.000 0.658 0.998 1.000 0.168
Switzerl. 0.990 0.999 0.000 0.826 0.954 0.058 * 0.993 0.999 0.021
USA 1.000 1.000 0.000 1.000 1.000 0.002 0.869 0.963 0.001
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The model with β = 0.5 can be fitted to all the cohorts in two countries Hungary and
Latvia. In addition it still fits half of the generations in all other countries as well.

The results may look disappointing at first, but it is important to remember that we were
testing the hypothesis that all 37 or all 12 examined cohorts follow the three models. It is
possible that in some countries one or two cohorts behave in a different way. This will cause
the hypothesis be rejected but it does not mean that the models cannot be used for some or
even most of the cohorts in those countries. To provide a better view of this issue, we give
the exact number of rejected tests in Tables 5.1 and 5.2.

5.4.4 Hypothesis Testing for Multi-dimensional Models

After a one-dimensional introduction, it is time to test the proper multi-dimensional model.
We want to check if the vector sequence (xi) defined in (5.18), (5.21) and (5.23) form a
multivariate Gaussian white noise. Most multivariate tests are designed for samples of large
sizes and low a number of dimensions. In our case the number of dimensions is the number
of cohorts in each examined country. Therefore, we will restrict our 37-dimensional and
12-dimensional data to 3 dimensions only. We will examine the cohorts who are currently
70-, 71- and 72-years old. We will restrict ourselves to the long history data because the
multivariate tests for the short data (of length 15) would not make much sense.

If xi = (x1
i , x

2
i , . . . , x

k
i ), the matrix auto covariance function of the series (xi) is defined

by Γ(h) = (γij), where

γij(h) = E
(
(xi

t − E(xi
t))(x

j
t−h − E(xj

t−h))
)
. (5.24)

Two things have to be tested to decide if (xi) forms white noise: independence and
normality. We will test the multivariate normality using the multivariate Shapiro-Wilk test,
see e.g. [14], [38]. For independence we will test the null hypothesis that the auto covariance
function Γ(h) = 0 for h = 1, 2, . . . , [n

4
], where n is the size of the sample. To do so, the

portmantou χ2 cross-correlation test is calculated (see [28], Ch 4.4). Because of little power
of this test for small samples, [28] suggests an adjustment for short data. So, additionally,
the small-sample χ2 test is also calculated and the its p-values are summarized.

Table 5.3 summarizes the obtained results. We can see that on the ground of the Shapiro-
Wilk test and the small-sample portmantou χ2 test, the β = 0 model seems to fit to Japan
only. The β = 0.5 model, however, does a better job and can be applied to Belgium,
Bulgaria, Czech Republic, Italy, Japan and Switzerland. If β = 1, the model fits Austria and
Netherlands.

The p-values of the portmanteau test suggest that in some cases the residuals do not form
white noise but do form some self dependent sequence, maybe an autoregressive time series.
However the results prove that all three models are worth considering. In general, for almost
50% of the examined countries, at least one of the considered multivariate models fits.
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5.4.5 Correlation Between Cohorts in Multi-dimensional Models

Table 5.4: Three-dimensional model: correlation tests.

β = 0 β = 0.5 β = 1
Country accepted accepted accepted

Austria * * *
Belgium *
Bulgaria * *
Czech Rep. * *
Italy
Japan
Netherl. *
Switzerl. *

We will continue with only these countries, where a model was successfully fitted. We
will try to determine if a simple form of the correlation matrix between the increments of
the Brownian motions driving two cohorts i and j can be assumed. As already discussed,
we would expect this matrix to have non-negative values only. We also expect that values
closest to the matrix’s diagonal are higher. In our three-dimensional case we will test a simple
hypothesis:

Cor(xi
t, x

j
t) =







1 for |i− j| = 0,
0.3 for |i− j| = 1,
0 for |i− j| = 2.

(5.25)

Asterisks in Table 5.4 denote those countries, where all three hypotheses from (5.25) hold.
We can see that e.g. for β = 0.5, the hypotheses were accepted for all the countries except
Italy and Japan.

This result, together with the ones described in previous sections, provides a simple and
transparent framework for modeling stochastic mortality. Randomness of cohorts is based on
a multivariate Gaussian distribution and there is also a simple form of the correlation matrix
between the cohorts.

5.5 Examples

In this section we will provide some numerical examples of how the systematic mortality risk
models can be applied in practice.
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5.5.1 Evaluating Theorem 5.3.1

First, we will review the explicit formula for p(t, T ) given by (5.5). We will numerically
evaluate the formula based on parameters estimated from the 40-years long Austrian data,
the same as used in Section 5.4. The cohort of the 70-years old will be used. Using the
estimation method given by (5.18) and (5.19) against our data, we come up with a = 0.06637
and σ = 0.00056.

So, on ground of Theorem 5.3.1, we will use formula p(t, T ) = eM(t,T )+N(t,T )µt , where
N(t, T ) = 1

a

(
1 − ea(T−t)

)
and M(t, T ) = σ2

4a3 (2a(T−t)−4ea(T−t)+e2a(T−t)+3) for T ∈ [t, t+5].
Calculation based on these simple equations will be compared with the numbers obtained
from 40 thousand Monte Carlo simulations. This is summarized by Figure 5.2.
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Figure 5.2: Left-hand side panel shows the exact probability of survival (red line) and 10 possible real-

izations of the stochastic process (black points). Right-hand side panel is the exact probability of survival

obtained from the analytical formula vs. the probability based on 40 thousand Monte Carlo simulations. The

blue plot is the identity line.

Both graphs show that the formula given by the theorem is confirmed by the Monte
Carlo simulations. The first graph shows the exact probability of survival and 10 possible

realizations of the stochastic process e−
R T

0
µsds. The other plot shows the expected value

of this process obtained from the simulations vs. the expected value obtained from the
analytical formula. The sixty points (denoting the probabilities for different T ) lay exactly
on line y = x, as expected. The simplicity of the formula given by Theorem 5.3.1 is obvious
and it makes the explicit formula advantageous over the time-consuming process of multiple
Monte Carlo simulations.

5.5.2 Pure Endowment Portfolio

Let us consider an insurer that at time 0 sold 3n pure endowment contracts to people of age
70, 71 and 72. Let us assume that the contracts were equally distributed among the ages,
i.e. each of the three age groups consist of n people. Using the notation from the previous
section, m = (n, n, n). In addition, each contract is supposed to pay 1/n if the policyholder
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is still alive at moment T . We also assume that n is large, so that only the systematic risk
is an issue for the insurer.

The actuary responsible for the pure endowment product will typically be interested in
estimating the value pym(0, T ) as defined in (5.15). Most probably, he will also be interested

in the 95% confidence interval for the value (m× e−
R T

0
µsds | F0).

We will model the mortality of this insurer’s clients using the model defined by (5.20),
so here β = 0.5. Parameter a and variances for individual cohorts will be estimated from
the Austrian data, the same as used in Section 5.4. The 40-years long dataset will be used
for the estimation. We will examine two separate scenarios and then compare the results.
First, we will assume that the three cohorts in question were described by three independent
stochastic processes. In the second scenario, we will assume that the correlation matrix is
not an identity matrix.
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Figure 5.3: The black, solid line is p(0, T ) for T ∈ [0, 10]. The red, dashed lines are the 95% confidence

intervals if the cohorts are independent and the dependent case is marked with the blue, dotted lines.

Figure 5.3 presents the results of the analysis where the quantile lines were calculated
with the Monte Carlo methods based on 40 thousand simulations with variance reduction
techniques. Of course the value of p(0, T ) for T = 0 is three and it falls with time. What
is essential, is that for T = 3 the expected value of claims is 2.11 and the 95% confidence
interval is (2.05, 2.17) so the level of uncertainty is remarkable. A conservative actuary would
typically want to set an additional reserve to cover the risk introduced by the relativelly wide
confidence intervals.
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The 95% confidence interval gets even wider if the mortalities of the cohorts are related.
If we assume the correlation matrix to have the form





1 2/3 1/3
2/3 1 2/3
1/3 2/3 1



 , (5.26)

the interval becomes (2.03, 2.20) so it is over 40% wider than if the mortalities of the three
cohorts were not correlated. Of course, the higher the correlation of mortalities between
the cohorts, the larger the amount of the systematic mortality risk the company faces. If
the cohorts are strongly correlated, the insurer cannot diversify systematic risk by selling
insurance to people of different ages. Since there are good reasons to believe that the cohorts’
mortalities are in fact correlated (see Section 5.4.5), we can conclude that the amount of the
systematic risk embeded in the pure endowment insurance can be highly significant.

5.6 Conclusion

Discretized versions of the stochastic mortality assumptions formulated in this chapter pro-
vide a surprisingly good fits to the historical demographic data. They can be used as single-
and multi-cohort models for the mortality parameters in at least some countries. Statisti-
cal tests reject these models in some cases, though. However, they can still do a good job
describing short term behavior of mortality parameters.



Chapter 6

Approximations for Pricing Mortality

Options

6.1 Mortality Options

In the stochastic mortality environment, both mortality increase and decrease can be dan-
gerous for a company that has an unbalanced, large portfolio of life insurances. In the first
situation (mortality increases) the portfolio of life insurances with the benefit payable at the
moment of death will cause unexpected losses. In the second, the portfolio of pure endow-
ments will cause high losses. The problem with this ’systematic’ mortality risk is that it
cannot be handled in the usual way – by increasing the number of policies sold. It calls for
a different hedging strategy.

The simplest way to defend against this risk would be to modify the assumed survival
probabilities to obtain ’secure’ versions for instance by a linear transformation. A better way
would be to try to predict future mortality, which was done in [9]. Time series methods are
used e.g. in [24] and further developed in [23], [36] and [37]. More on mortality projections,
their applications and model selection can be found in [33] or [18].

In this chapter we propose a few simple continuous stochastic mortality models and then
concentrate on a financial instrument that protects against systematic risk. We will call
this instrument a ’mortality option’. Unlike the instrument proposed in [29] or [10], it only
protects against mortality risk. The interest rate risk is not of concern and we will assume
it is constant, equal r.

We will use the following notation: the non-starred symbols such as µt or spt denote
actuarial values from the traditional, deterministic world. The symbols are compatible with
the notation used in most of the actuarial literature, e.g. [5].

T−tpt = P (a person born at 0 and aged t will survive until T)

= e−
R T

t
µudu , (6.1)

47
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where µu is the mortality intensity. The starred symbol µ∗
t denotes a stochastic process

and

T−tp
∗
t = e−

R T

t
µ∗

udu . (6.2)

Moreover, we will focus on a homogeneous group of people born in year y. All actuarial
symbols used in this paper will refer to this population.

This chapter is organized as follows: In Section 6.2.1 we define the underlying asset and
state that this asset can be approximated by the ordinary life insurance of pure endowment
insurance. Section 6.2.2 defines the derivatives and Section 6.2.3 presents a real-life situation
where these derivatives are needed. The simplest pricing algorithm is proposed in Section
6.3.1 for introductory purposes and finally the continuous model is presented in 6.3.2 and
6.3.3. Sections 6.3.4 and 6.3.5 give the numerical results and a comparison for the proposed
pricing approximations.

6.2 The Market

6.2.1 The Underlying Asset

Let us consider an insurance market consisting of two basic contracts. One is a pure endow-
ment contract starting at t and paying one dollar at time T to a person that survives until
T . The other one is a life insurance starting at t and paying one dollar at time T in the event
the person is dies. The last one is a modification of the standard life insurance since the life
insurance typically pays the benefit at the moment of death, not at fixed time T . Such a
simplification approximates the normal life insurance if only the interest rate is low, the time
interval T − t is short, or if we assume that the death benefit increases with time according
to the interest rate.

The insurance company settles the contracts in the following way: the premium is col-
lected and a risk free instrument is bought immediately thereafter. At T the risk-free asset
is sold and the benefits are paid. The remaining capital (positive or negative) is kept by the
insurer. This minor settlement modification does not change the significant mechanisms of
the insurance business.

In any insurance contract the mortality risk carried by the insurer is twofold. One risk
is the standard unsystematic insurance risk. It is caused by the fact that the number (or
moments) of deaths of the group’s members will almost surely differ from the expected value
of the number (moments) of deaths. This risk is especially important when the portfolio is
small. There are number of actuarial techniques to deal with this kind of risk. The other risk
is caused by the fact that the assumed risk parameters (for instance the survival probability)
of the population can differ from the real ones. The latter type of risk can be transfered
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to other parties and traded. We will model it by the following setup. Let us introduce the
probability space (Ω,F, P ). Ω represents all possible states of nature, P is the probability
measure and F = {Fs}t≤s≤T is an increasing sequence of σ-algebras. Let the process µ∗

s be
measurable w.r.t. Fs and let T−tp

∗
t be defined as in (6.2).

In the financial language the underlying instrument is the probability of death T−tp
∗
t . The

problem is that in the real world we cannot buy or sell T−tp
∗
t directly. However, we can trade

a good approximation of this instrument by selling a large portfolio of small policies on many
independent lives. This can be done either through selling these policies directly or through
reinsurance. Taking the long position is equivalent to selling a portfolio of life insurances.
The short position means to sell the pure endowments. This way, selling (or reinsurance) a
portfolio of life insurances is a substitute to buying T−tp

∗
t because the expected benefit from

this portfolio at T is proportional to T−tp
∗
t . The unsystematic risk related to this transaction

must be handled by classic actuarial techniques. These techniques are out of the scope of this
paper. Note that in this approach T−tp

∗
t can be also viewed as a bond that pays a random

amount of money at maturity.

The (actuarial) price of the underlying T−tp
∗
t at moment s ∈ [t, T ] based on the equivalence

rule under the physical probability measure P is

S(s) = e−r(T−s)EP (T−tp
∗
t |Fs) (6.3)

= e−r(T−s)
s−tp

∗
tE

P (T−sp
∗
s|Fs) . (6.4)

Hence at the moment s the price of T−tp
∗
t is proportional to the price of T−t′p

∗
t′ for any

t′ ≤ s.

6.2.2 The Derivatives

In addition to S(s) we will consider two derivatives. One is the European call option that
pays (S(T ) −K)+ and the other one is the put option paying (K − S(T ))+ at T .

Figure 6.1 shows sample trajectories of both the underlying asset and the corresponding
trajectory of the option. In addition both panels show the 0.05 and 0.95 quantile lines. The
interest rate r was set to zero. The plots were prepared assuming the de Moivre-type model
described in Section 6.3.2.

The company is considered ’secured’ if its only mortality risk is the traditional unsystem-
atic risk that can be ’hedged’ with the standard actuarial techniques. To secure against the
systematic risk, the company that has an endowment portfolio should buy call options and
the insurer that has a life insurance portfolio should buy put options. This intuitive fact is
confirmed by the following
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Figure 6.1: Sample trajectories of the underlying mortality instrument S(s) and the mortality call option

C(s) for T = 61 and b = 0.03.

Proposition 6.2.1 If the pure endowment policy for a person aged t with benefit payed at T
for a person aged t is priced based on the assumptions that T−tp

∗
t is constant and equals K,

then a call mortality option that pays T−tp
∗
t −K in case K <T−t p

∗
t fully protects the insurance

company against the systematic risk of the mortality intensity being lower than expected.

Proof The company’s expected financial obligations are proportional to the probability that
a person survives until T . In case T−tp

∗
t ≤ K the company is not exposed to any additional

risk so it does not need any protection. In case K <T−t p
∗
t the company’s obligations minus

the contract payoff equal

e−t(T−t)
(

T−t
p∗t − (T−tp

∗
t −K)

)
= e−t(T−t) K . (6.5)

And this equals the expected obligations calculated for the deterministic mortality intensity.
The risk related to K is the standard insurance risk covered by the insurance premium. �

6.2.3 Possible Risk-Trading Scenarios on the Market

The simplest scenario of risk trading between insurance companies is the following:

• company A sold N pure endowment policies to people aged t. Company A is exposed
to the systematic low-mortality risk,

• company B sold N life insurances to people aged t and hence it is exposed to the
systematic high-mortality risk,

• company A buys N call mortality options that at time T pay e−r(T−t)(T−tp
∗
t −K)+ each

and this way perfectly secures itself against low-mortality risk,

• company B buys N put mortality options that at time T pay e−r(T−t)(K−T−t p
∗
t )+ each

and this way perfectly secures itself against high-mortality risk,
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• the issuer of the put mortality options could be company B because, if the mortality is
low, B has extra incomes and can pay the option benefit without loses. On the other
hand if the mortality is high, the option will not be used by A,

• the issuer of the put options could be company A.

This basic scenario can be enriched by any kind of agents, middlemen and brokers. The
contracts can be also settled yearly by any trusted third-party like a stock exchange in a way
similar to how some derivatives are settled in the financial market.

The systematic risk can be also transferred using an instrument similar to catastrophic
options. In this scenario if A wanted to secure itself, A would lend money from B. At T A
would give back the money and interest under the condition that the mortality was high. So
there are large variety of hedging scenarios that allow one to transfer the systematic risk to
other parties.

Two additional issues are worth mentioning. All proposed contracts require both parties
to agree on the way the mortality intensity is determined. Fortunately, in most developed
countries, official bodies regularly release mortality tables that can be used as a base for the
settlement of contracts. The other thing is that the mortality tables based on demographic
data are usually released with certain delays counted in months or sometimes years so that
the settlement will always be delayed.

6.3 Pricing the Mortality Call Option

At first we want to remark that if K is the strike price of the option then for the mortality
put P(s) and call C(s) option the usual equation holds:

C(s) − S(s) = P(s) − e−r(T−s)K . (6.6)

Hence it suffices to price one type of option (call or put) only.

6.3.1 Binomial Model

We present this model for introductory purposes. Let the mortality change in the yearly
intervals only and be constant during the whole year. Let the probability of survival for the
first year 1p

∗
x−1 = 0.1. In the oncoming year 1p

∗
x can be either larger (with probability a) or

smaller than 0.1. Figure 6.2 shows this one-step situation.
It is easy to see that in such a case the value of a does not influence the price of the

call option on 1p
∗
x with strike 0.1 (paying 0.02 if the probability of survival rises and nothing

otherwise). Such an option can be replicated with the portfolio consisting of 0.5 underlying
instruments and −0.04 bonds (here r = 0). I.e. the portfolio (Φ,Ψ) = (0.5,−0.04) has
exactly the same payoff as the option, no matter what happens to T−tp

∗
t in the next year. So

the price of the call option in this case equals C(0) = 1
2
S(0) − 0.04 independently on a.
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Figure 6.2: In the previous year the probability of death of a x-year old was 0.1. In the next year it will

either rise to 0.12 with probability a or fall to 0.08 with probability 1 − a.

The price of the call option in a multi-step tree can be calculated recursively starting
from the right hand side. In this case, analogously to the financial market (see e.g. [19]), the
self-financing hedging strategy in each step is

Φ(s) =
C(s+ 1) ↑ −C(s+ 1) ↓
S(s+ 1) ↑ −S(s+ 1) ↓ (6.7)

and Ψ(s) is chosen to finance the position in S(s).

6.3.2 Continuous Mortality Proposals

In the existing literature there have been a number of mortality intensity proposals given. In
this paper we will use the diffusion modifications of the classical actuarial mortality assump-
tions. Let the geometric Brownian motion Yt be defined as a solution of the following Ito’s
equation:

dYt = aYtdt+ bYtdBt , Y0 = 1, (6.8)

where a and b are constant. Of course ln(Yt) has a normal distribution with mean ta− t b2

2

and variance tb2. The reason why we chose the geometric Brownian motion for the base
for stochastic modifications is that it is continuous and it is never negative nor zero. These
features are desirable and even required for the mortality intensity process. Some authors, e.g.
[10] propose different stochastic processes, mostly mean reverting, for similar applications.

Let us define a martingale Yt with the expected value equal one.

Yt =
Yt

E(Yt)
= Yte

−ta . (6.9)

Table 6.3.2 summarizes the basic mortality intensity assumptions used in the traditional
actuarial literature and their stochastic modifications proposed and examined in this paper.
All the modifications are simple multiplications by Yt. The deterministic assumptions and
the 0.05, 0.25, 0.75 and 0.95 quantile lines of their stochastic versions with the volatility
parameter b = 0.1 are shown in Figure 6.3. Note that from the definition of µ∗

t follows that
E(µ∗

t ) = µt. This does not hold for the survival probabilities. From the Jensen’s inequity
follows that

e−
R T

t
µudu ≤ E(e−

R T

t
µ∗

udu) . (6.10)
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Table 6.1: Deterministic mortality assumptions and their stochastic versions

Known as Originally Stochastic mortality

de Moivre µt = 1
ω−t

, µ∗
t = 1

ω−t
Yt

for sde see (6.11)

Weibull µt = ktn µ∗
t = ktnYt

for sde see (6.12)

Gompertz µt = A+BeCt µ∗
t = (A+BeCt)Yt

for sde see (6.13)

In practice more deterministic models could be used apart from the three mentioned
above. For example one of the classic models for µt could be modified to comply the recom-
mendations of the CMI Bureau [9].

The following gives the SDE for the mortality proposals and can be used for numerical
simulations.

Proposition 6.3.1 In case of the de Moivre, Weibull and Gompertz assumption’s modifica-
tions, the mortality process µ∗

t satisfies the following Ito’s stochastic differential equations:

• for de Moivre:

dµ∗
t =

(

µ∗
t

( 1

ω − t
+ a

)
+ a

e−ta

ω − t

)

dt+ b
e−ta

ω − t
dBt , (6.11)

• for Weibull:

dµ∗
t =

(

µ∗
t (
n

t
− a) + a

ktn

eta

)

dt+ b
ktn

eta
dBt , (6.12)

• for Gompertz:

dµ∗
t =

(
µ∗

t (
BCetC

A+BetC
− a) + a

A+BetC

eta

)
dt+ b

A+BetC

eta
dBt . (6.13)

Proof For de Moivre we have

µ∗
t = f(Yt, t) =

Yte
−ta

ω − t
, (6.14)

so
Yt = µ∗

t (ω − t)eta (6.15)
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Figure 6.3: Deterministic mortality assumptions and their stochastic modifications. Dashed graphs denote

0.05, 0.95 quantile lines (left panel) and 0.25 and 0.75 quantile lines (right panel).
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and

δµ∗
t

δt
= Yt

( e−ta

(ω − t)2
− ae−ta

ω − t

)
= µ∗

t

( 1

ω − t
+ a

)
,

δµ∗
t

δYt

=
e−ta

ω − t
,

δ2µ∗
t

δY 2
t

= 0 . (6.16)

Hence, on the grounds of Ito’s lemma, the proposition becomes obvious. The proof for the
remaining mortality assumptions proceeds the same way. �

6.3.3 Pricing in the Continuous Model

At first let us prove the following

Proposition 6.3.2 The discounted price of the underlying asset S(s) is an Ito process and
a Fs-martingale (w.r.t. P ).

Proof The fact that e−r(s−t)S(s) is a martingale is rather straightforward. Let s ∈ [t, T ] and
h ∈ [0, T − s]. Then the expectation of the discounted price process at s+ h

EP
(
e−r(s+h−t)S(s+ h)|Fs

)

= e−r(s+h−t)e−r(T−s−h)EP
(

s+h−t
p∗tE

P (T−s−hp
∗
s+h|Fs+h)|Fs

)

= e−r(T−t)EP (s+h−tp
∗
t T−s−hp

∗
s+h|Fs)

= e−r(T−t)
s−tp

∗
tE

P (T−sp
∗
s|Fs)

= e−r(s−t)S(s) . (6.17)

Also ∀s ∈ [t, T ] we have

EP
(
e−r(s−t)S(s)|Fs

)2 ≤ 1 . (6.18)

so, on ground of the martingale representation theorem (see e.g. [34]), there exist a unique
process Gt such that

d(e−r(s−t)S(s)) = GsdBs . (6.19)

�

So we have that P = Q is the equivalent martingale measure. Hence there is no arbitrage
on the market and there exists a unique replication strategy for the derivatives. So the fair
market price of the options exists and the price of the call option

C(s) = e−r(T−s)EQ(S(T ) −K)+ = e−r(T−s)EP (S(T ) −K)+ . (6.20)
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Moreover, recalling (6.6), it is clear that it suffices to price one type of option (call or
put) to find the price of the other one.

The simplest and therefore many practitioner’s most beloved method of pricing exotic
derivatives is the Monte Carlo method. In this chapter we will use results obtained from this
method to compare the results based on the proposed approximations. Whenever the Monte
Carlo results are used in this paper they are based on 105 simulations.

To price the call mortality option, we will concentrate on the probability distribution of
(T−tp

∗
t −K)+ or simply the probability distribution of T−tp

∗
t .

P (T−tp
∗
t < x | Fs) = P

(

T−s
p∗s <

x

s−tp∗t
| Fs

)

= P
(
e−

R T

s
µ∗

udu <
x

s−tp∗t
| Fs

)

= P
(
∫ T

s

Yuµue
−uadu > − ln

x

s−tp∗t
| Fs

)

= P
(
∫ T

s

Yu−sµue
−(u−s)adu >

eus

Ys

ln
s−tp

∗
t

x
| Fs

)

= P
(
A(s, T ) >

eus

Ys

ln
s−tp

∗
t

x
| Fs

)
, (6.21)

where

A(s, T ) =

∫ T−s

0

Y ′
ue

−uaµu+sdu (6.22)

and Y ′
u is an independent copy of Yu. The problem is that such an integral usually has an

unknown distribution (in particular it is not log-normally distributed). The methods used
in this section to bypass this problem are similar to the methods used in the average Asian
or weighted average Asian option pricing. A comprehensive study of Asian options and the
ways to price them can be found, for example, in [32], [19].

6.3.4 Levy-type Approximation

The Levy approximation was proposed in [26]. It was originally designed for pricing Asian
average options. Here we will use a modification of this method that can be applied both to
the weighted average options and to our purposes.

The fundamental idea is to approximate the distribution of A(s, T ) given in (6.22) with
the log-normal distribution. Hence we assume that lnA(s, T ) is normally distributed with
mean α(s, T ) and variance β(s, T )2 and then use these parameters in Proposition 6.3.4.
This approximation was proved to be accurate at least for the standard average options.
Comparing first two moments of the log-normal distribution with the first two moments of
the real distribution of A(s, T ), we obtain
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α(s, T ) = 2 lnE(A(s, T )) − lnE(A(s, T )2)

2
,

β(s, T )2 = lnE(A(s, T )2) − 2 lnE(A(s, T )) . (6.23)

It remains to give the formulas for E(A(s, T )) and E(A(s, T )2) and this is done by the
following

Lemma 6.3.3 For A(s, T ) defined as in (6.22)

E(A(s, T )) =

∫ T−s

0

µu+sdu , (6.24)

E(A(s, T )2) =

∫ T−s

0

∫ T−s

0

µu+sµv+se
(u∧v)b2dvdu . (6.25)

Proof Let us recall that

A(s, T ) =

∫ T−s

0

µu+se
−uaYudu . (6.26)

The equation for the first moment is apparent. As for the second moment of A(s, T ) if n < m,
we have

E(YnYm) = E(Y 2
n )E(

Ym

Yn

)

= E(Y 2
n )E(Ym−n)

= e2na+nb2e(m−n)a

= e(n+m)a+nb2 (6.27)

otherwise

E(YnYm) = e(n+m)a+mb2 . (6.28)

So

E(A(s, T )2) =

∫ T−s

0

∫ T−s

0

µu+sµv+se
−(u+v)aE(YuYv)dvdu

=

∫ T−s

0

∫ T−u

0

µu+sµv+se
−(u+v)ae(u+v)a+ub2dvdu

+

∫ T−s

0

∫ T−s

0

µu+sµv+se
−(u+v)ae(u+v)a+vb2dvdu

=

∫ T−s

0

∫ T−s

0

µu+sµv+se
(u∧v)b2dvdu . (6.29)

�
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Now, assuming the log-normality of A(s, T ) we can formulate

Proposition 6.3.4 If we assume the log-normal distribution of A(s, T ) then the price at
moment s of a call mortality option issued at t and maturing at T with strike price K can
be expressed by

e−r(T−s)EP ((T−tp
∗
t −K)+ | Fs)

=

{

e−r(T−s)
∫

s−tp∗t
K

Φ(
ln( eas

Ys
ln s−tp∗t

u
)−α(s)

β(s)
)du if K < s−tp

∗
t

0 otherwise
(6.30)

Proof If s−tp
∗
t ≤ K then the proposition is obvious. For K < s−tp

∗
t we have:

EP ((T−tp
∗
t −K)+ | Fs) = EP ((s−tp

∗
t T−sp

∗
s −K)+ | Fs)

=

∫ ∞

K

P (e−
R T

s
µ∗

vdv >
u

s−tp∗t
| Fs)du

=

∫
s−tp∗t

K

P (e−
R T

s
µ∗

vdv >
u

s−tp∗t
| Fs)du

=

∫
s−tp∗t

K

P (A(s, T ) <
eas

Ys

ln
s−tp

∗
t

u
| Fs)du

=

∫
s−tp∗t

K

P (lnA(s, T ) < ln(
eas

Ys

ln
s−tp

∗
t

u
) | Fs)du

≈
∫

s−tp∗t

K

Φ(
ln( eas

Ys
ln s−tp∗t

u
) − α(s)

β(s)
)du . (6.31)

�

Note, that the price of the call mortality option is always less than one.
The accuracy of this approximation was checked against the result obtained with the

Monte Carlo method for different volatility parameters b. All three basic stochastic mortality
assumptions presented in (6.11), (6.12) and (6.13) were tested. Their parameters were esti-
mated from the Polish mortality table for men for the year 2003, see [8]. Thus ω = 104.0071
for de Moivre, k = 1.7565 · 1011, n = 5 for Weibull, A = −2.4366 · 10−5, B = 7.5436 · 10−5

and C = 0.0794 for Gompertz assumption. Here a = 0. We price the options at the moment
of issue i.e. t = s and they mature at T = 61. For each moment t = s the strike price
K(t) = E(T−tp

∗
t ) and Yt = 1. Interest rate r is zero. Exact values and the ratio Levy price

exact price
are

summarized in Tables 6.2, 6.3, 6.4. Figure 6.4 shows the price surfaces and the comparison
between the exact Monte Carlo price and the approximated one.
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Figure 6.4: Gompertz assumption. Price of the call mortality option for different volatility and moments

of issue. Exact (Monte Carlo) results, Levy-like approximations and their comparison.

As can expected, the option price falls with t and grows with b, at least for small b. Such
properties are known from the traditional options on the financial market, priced with the
Black-Sholes formula. The option price falls again for b > 0.5 what may be surprising. This is
because for large b the price of a single underlying instrument falls and hence the derivative’s
price does. The approximation seems to be sufficiently exact in the critical regions where
the option price reaches its maximum. The approximation does not fit well for very large
volatility (overestimates) nor for very short time to expiration (underestimates). However,
in the later case, the exact price of the option is close to zero so the systematic risk can be
anyway neglected. Moreover, even in those cases the Levy-like approximation can be used

Table 6.2: De Moivre assumption. Exactness of the Levy-like approximation. (m) - Monte Carlo results,

(l) - Levy-like approximation, (r) - ratio = l/m.

t=26 t=36 t=46 t=56

l m r l m r l m r l m r

b=0.1 0.044 0.045 0.980 0.032 0.033 0.954 0.018 0.019 0.954 0.003 0.004 0.693

b=0.4 0.134 0.0945 1.4206 0.104 0.084 1.238 0.063 0.060 1.038 0.012 0.017 0.711

b=0.7 0.136 0.071 1.843 0.120 0.072 1.663 0.087 0.065 1.340 0.020 0.027 0.774

b=1.1 0.076 0.042 1.800 0.082 0.046 1.778 0.079 0.049 1.617 0.030 0.032 0.919
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Table 6.3: Weibull assumption. Exactness of the Levy-like approximation. (m) - Monte Carlo results, (l)

- Levy-like approximation, (r) - ratio = l/m.

t=26 t=36 t=46 t=56

l m r l m r l m r l m r

b=0.1 0.022 0.022 0.981 0.017 0.017 0.966 0.010 0.010 0.924 0.002 0.003 0.702

b=0.4 0.050 0.046 1.010 0.050 0.050 1.100 0.035 0.035 1.027 0.075 0.010 0.733

b=0.7 0.028 0.023 1.233 0.042 0.033 1.286 0.045 0.037 1.220 0.013 0.016 0.805

b=1.1 0.008 0.006 1.295 0.019 0.014 1.400 0.035 0.024 1.410 0.019 0.202 0.930

Table 6.4: Gompertz assumption. Exactness of the Levy-like approximation. (m) - Monte Carlo results,

(l) - Levy-like approximation, (r) - ratio = l/m.

t=26 t=36 t=46 t=56

l m r l m r l m r l m r

b=0.1 0.016 0.017 0.983 0.012 0.012 0.965 0.007 0.007 0.922 0.001 0.002 0.704

b=0.4 0.043 0.037 1.144 0.039 0.035 1.114 0.025 0.025 1.026 0.005 0.007 0.730

b=0.7 0.027 0.021 1.325 0.035 0.027 1.319 0.034 0.028 1.214 0.009 0.011 0.803

b=1.1 0.010 0.007 1.393 0.018 0.012 1.433 0.027 0.019 1.398 0.013 0.140 0.932

as a first order approximation for the call mortality option price.

6.3.5 Vorst-type Approximation

The Vorst-like approximation of the distribution of the value introduced in equation (6.22) is
based on the fact that the arithmetic average can be approximated by the geometric average
i.e.

A(s, T ) =

∫ T−s

0

Yue
−uaµu+sdu

≈ (T − s)
1

T − s

T−s∑

i=1

Yie
−iaµi+s

≈ (T − s)
T−s∏

i=1

(
Yie

−iaµi+s

) 1

T−s . (6.32)

See e.g. [31], Ch. 6. Now, we have

lnA(s, T ) ≈ ln (T − s) +
T−s∑

i=1

lnYi − ia+ µi+s

T − s
. (6.33)
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This expression has a normal distribution with central moments

m1(s, T ) = ln (T − s) + (T − s+ 1)
b2

2
+

T−s∑

i=1

lnµi+s

T − s
,

m2(s, T ) =
T−s∑

i=1

V ar(lnYi)

(T − s)2
=
T − s+ 1

T − s

b2

2
. (6.34)

Now we can use these parameters as in Proposition 6.3.4. From Table 6.5 follows that
the results are apart from the exact values. Even the usual modifications of the strike price,
see [32], are not likely to help in this case.

Table 6.5: Weibull assumption. Exactness of the Vorst-like approximation. (m) - Monte Carlo results, (v)

- Vorst-like approximation, (r) - ratio = v/m.

t=26 t=36 t=46 t=56

v m r v m r v m r v m r

b=0.1 0.000 0.022 0.000 0.000 0.017 0.000 0.000 0.010 0.000 0.000 0.003 0.000

b=0.4 0.000 0.046 0.000 0.000 0.050 0.002 0.098 0.035 2.826 0.047 0.010 4.665

b=0.7 0.000 0.023 0.000 0.054 0.033 1.637 0.073 0.037 1.959 0.046 0.016 2.786

b=1.1 0.000 0.006 0.000 0.020 0.014 1.449 0.040 0.024 1.619 0.040 0.020 1.988

6.4 Conclusion

We proposed a few stochastic mortality models and mortality derivatives that seem to be
useful in practice to fully protect against systematic mortality risk. This way insurers can
price their product not worrying about the future mortality parameters and do business
on the basis of deterministic mortality models. We showed how such derivatives, called
’mortality options’ can be priced in the stochastic environment and we have proposed some
approximations that allow us not to use Monte Carlo simulations. The proposed Levy-like
approximation is proved to be accurate at least for the cases, in which the mortality risk is
large and the protection is most needed. The other proposed approximation does not seem to
provide reliable results. The mortality derivatives can be uniquely and efficiently priced and
might help the insurance company hedge against a potentially dangerous risk that cannot be
diversified.
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[7] Burnecki, K.; Místa, P.; Weron, A. Ruin probabilities in finite and infinite time: in Č́ıžek,
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