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Inference for Markov-regime switching models
of electricity spot prices

Joanna Janczura and Rafat Weron

1 Introduction

The basic idea that underlies Markov regime-switching (NR$hat of represent-
ing the behavior of an observed time series by separate stategimes, which can
be driven by different stochastic processes. Unlike tholestype regime-switching
models (e.g. TAR, STAR, SETAR), in MRS models the regimeaig latent and,
hence, these models do not require an upfront specificatithre threshold variable
and level. This flexible specification has led to their pogtyanot only in econo-
metrics (Choi, 2009; Hamilton, 2008) but also in other fieddiscience including
traffic modeling (Cetin and Comert, 2006), population dyim@r{Luo and Mao,
2007), river flow analysis (Vasas et al., 2007) and pattecogeition (Fink, 2008).
In energy economics MRS models have seen extensive use dheit@bility

to capture the unique behavior of electricity spot priceei@auer et al., 2004,
2007; De Jong, 2006; Erlwein et al., 2010; Hirsch, 2009; khais, 2009; Huisman
and Mahieu, 2003; Janczura and Weron, 2010, 2012a; Kanandf@hashi, 2008;
Karakatsani and Bunn, 2008; Kholodnyi, 2005; Mari, 2008;uxtbet al., 2006;
Weron, 2009). And recall that electricity is a very specif@ronodity. Firstly, it
is practically non-storable and requires immediate defivéecondly, end-user de-
mand is weather and business cycle dependent. Thirdly;teffike power plant
outages, transmission grid reliability and strategic riddadd complexity and ran-
domness. The resulting spot prices exhibit significant@saity on the annual,
weekly and daily level, as well as, mean reversion, very higlatility and gener-
ally short-lived extreme price spikes and/or drops.
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Fig. 1 Deseasonalized mean daily electricity spot price from the Negldfwl power market
(NEPOOL, U.S)) in the period August 1 — December 26, 2010. Theeprclassified as spikes
are denoted by dots (see Section 5 for deseasonalization and detaiés). The regime switches
and spike clustering are clearly visible.

These extreme price movements tend to cluster (Bierbradusr, 004; Chris-
tensen et al., 2009; Janczura and Weron, 2010, see alsceFiguwhich makes
the very popular class of jump-diffusion models impradtiea they cannot exhibit
consecutive spikes with the frequency observed in powekenaata (Weron et al.,
2004). On the other hand, MRS models allow for consecutilkespn a very natural
way. Also the return of prices after a spike to the ‘normatfinee is straightforward,
as the regime-switching mechanism admits temporal chaoigesdel dynamics.
MRS models are also more versatile than the popular classldéh Markov mod-
els (HMM; in the strict sense, see Cappe et al., 2005), shmedllow for temporary
dependence within the regimes, in particular, for meanrstee. As the latter is a
characteristic feature of electricity prices it is impattéo have a model that cap-
tures this phenomenon. Indeed, in the energy economicatlite the base regime
is typically modeled by a mean-reverting diffusion (Benthak, 2008; Huisman,
2009; Weron, 2006), sometimes heteroskedastic (Jancadré/aron, 2009), while
for the spike (or drop) regime(s) a number of specificatiomgehbeen suggested,
ranging from mean-reverting diffusions to heavy tailedd@m variables (for a re-
view see Janczura and Weron, 2010).

After selecting the model class (i.e. MRS), the type of dejeaice between the
regimes has to be defined. Dependent regimes with the samiemamoise process
in all regimes (but different parameters — hence the altemaame ‘parameter-
switching’; an approach dating back to Hamilton, 1989) lémadomputationally
simpler models. On the other hand, independent regimew &tloa greater flexi-
bility and admit qualitatively different dynamics in eagtgime. They seem to be
a better choice for electricity spot price processes, whaih exhibit a moderately
volatile and symmetric (in terms of the marginal distribali behavior in the base
regime and a very volatile and an asymmetric one in the spiffiene, see Figure 1.
We will look more closely at these independent regime moiteBection 2.

Once the electricity spot price model is specified we arenéft the problem of
calibrating it to market data. Due to the unobservable $witg mechanism, esti-
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mation of MRS models requires inferring model parametetssate process val-
ues at the same time. The situation becomes more complizéte the individual
regimes are independent from each other and at least onerofifmean-reverting.
Then the temporal latency of the dynamics in the regimesdae ttaken into ac-
count. We have recently proposed a method that greatly esdihe computational
burden in such a case (Janczura and Weron, 2012a). As weewilihsSection 3,
the method allows for a 100 to over 1000 times faster caltmathan a compet-
ing approach utilizing probabilities of the last 10 obséinss. Instead of storing
conditional probabilities for each of the possible statecpss paths, it requires con-
ditional probabilities for only one time-step. Since MRSdats can be considered
as generalizations of HMM (Cappe et al., 2005), this resait lsave far-reaching
implications also for many problems where HMM have beeniapfsee e.g. Ma-
mon and Elliott, 2007). In Section 3 we will also show that thiecan be further
improved by optimizing the cutoff(s) used for separating tbgimes, instead of ar-
bitrarily setting them to the median (Janczura and Wero@p20r the 1st and 3rd
quartiles (Janczura and Weron, 2012a) of the deseasamdiiaset.

While the existence of distinct regimes in electricity psés generally unques-
tionable (being a consequence of the non-linear, hetesmyensupply stack struc-
ture in the power markets, see e.g. Eydeland and Wolynid@;20eron, 2006), the
actual goodness-of-fit of the models requires statistiabtlation. However, recent
work concerning the statistical fit of regime-switching retsdhas been mainly de-
voted to testing parameter stability versus the regimee$ivig hypothesis. Several
tests have been constructed for the verification of the numbregimes. Most of
them exploit the likelihood ratio technique (Cho and Whit@0?; Garcia, 1998),
but there are also approaches related to recurrence tinreesai® Hsieh, 2009),
likelihood criteria (Celeux and Durand, 2008) or the infation matrix (Hu and
Shin, 2008). Specification tests, like tests for omittedeaitrelation or omitted ex-
planatory variables based on the score function technigees proposed earlier
by Hamilton (1996). On the other hand, procedures for gosshoé-fit testing of
the marginal distribution of regime-switching models hdeen derived only re-
cently. Janczura and Weron (2012b) have proposed two aralplistribution func-
tion (edf) based testing techniques built on the Kolmogesavirnov test. As we
will see in Section 4, the procedure is readily applicablesgime-switching mod-
els of electricity spot prices.

We conclude this paper with applications of the presenteldnigues to whole-
sale electricity prices from two major power markets — then@an EEX and the
North American NEPOOL (Section 5). Finally, in the Conctuss we summarize
the presented results and provide suggestions for futurie wehis interesting area.

2 Regime-switching models

Assume that the observed procégsnay be in one of. states (regimes) at tinte
dependent on the state proc&ss
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Xl.l If Rt:j-a
X2 if Re=2,

= co : 1)
XL if R=L.

Possible specifications of the procdgsmay be divided into two classes: those
where the current state of the process is observable (liksltiold models, e.g. TAR,
SETAR) and those where it is latent. Probably the most prentirepresentatives of
the second group are the hidden Markov models (HMM; for eefg\see e.g. Cappe
et al., 2005) and their generalizations allowing for tenapdependence within the
regimes — the Markov regime-switching models (MRS). LikeHNIM, in MRS
modelsR; is assumed to be a Markov chain governed by the transitiomxmat
containing the probabilitieg;; of switching from regime at timet to regimej at
timet+1, fori, j ={1,2,...,L}:

P11 P12 ... P1L

P21 P22 ... PaL )
P=(pij)=| . . . . [,wih pii=1—§_|0ij- )
-l IE2

PL1 PL2 --- PLL

The current stat®; at timet depends on the past only through the most recent value
R:_1. Consequently, the probability of being in regirpat timet + m starting from
regimei at timet is given by

P(Rim=j|R=i)=(P)™ 8, ®3)

whereP’ denotes the transpose®findg is theith column of the identity matrix.

The definitions of the individual regimes can be arbitraciypsen depending on
the modeling needs. In this paper we focus on the indepemneginte (spike) model
(Bierbrauer et al., 2007; De Jong, 2006; Huisman and de J2B@3; Janczura
and Weron, 2010), as it seems to be a reasonable choice &rigty spot price
processes which can exhibit qualitatively different dyiearin each regime. At
the same time, however, it is more computationally chailegghan the popu-
lar parameter-switching model (for a detailed descriptibithe latter we refer to
Janczura and Weron, 2012a).

In the independent regime (spike) modél,is defined by (1) with at least one
regime given by:

Xej = 0+ (1= B)X—1i + G |[X—1i|" &, (4)

wherea;, 3, g; andy; are constants ang ;’s are i.i.d. Gaussian random variables.
The absolute value in the above formula is needed if negatite is analyzed.
Note, that formula (4) is a discrete-time version of the mesuerting, possibly
heteroskedastic process given by the following Ornstditebbeck-type stochastic
differential equation:
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Fig. 2 A sample trajectory of a MRS model with three independent regitblesk solid line)
superimposed on the observable and latent values of the procedisesegimes. Observe, that the
valuesX; 1 of the mean-reverting regime become latent when the processimther state. The
simulation was performed for a 3-regime model defined by eqns.(24)see Section 5, with the
following parametersP = (pjj) = [0.90,0.05,0.05; 0.25,0.70,0.05; 0.25,0.05,0.70], a1 = 10,
B1=0.3,0?2=20,4=0,0,=25,0% =05, a3 =25,02= 05,0, = g3 = 30.

dX = (a — BX)dt + o|X|Ydw, (5)

whereW is the Wiener process. The remaining regimes constitute samples
from specified continuous, strictly monotone distribusié:

Xei ~ F(x). (6)

An example of such a specification is the 3-regime model wiglamareverting,
heteroskedastic base regime (i.e. ‘normal’ prices) dynamind independent spikes
and drops, as proposed by Janczura and Weron (2010). lroSéxtive apply it
to electricity spot prices from the EEX and NEPOOL power retsk Note, that
in such a model the values of the mean reverting regime bedateiet when the
process is in another state, see Figure 2 for an illustration

3 Calibration

Calibration of MRS models is not straightforward since tkgimes are not di-
rectly observable. Hamilton (1990) introduced an appiicebf the Expectation-
Maximization (EM) algorithm of Dempster et al. (1977), wlehe whole set of
parameterd is estimated by an iterative two-step procedure. The alyoriwas

later refined by Kim (1994). In Section 3.1 we briefly desctitbe general estima-
tion procedure. Next, in Section 3.2 we discuss the comijomiatproblems induced
by the introduction of independent regimes and presentfanesft remedy. Finally,

in Section 3.4 we show that the fit can be further improved kynuping the cut-

off(s) used for separating the regimes.
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3.1 Expectation-Maximization (EM) algorithm

The algorithm starts with an arbitrarily chosen vector dfiah parameters(© =
(r/<°>7P(°),pi<O)), fori=1,2,....L, Wherepi(O> =P(Ry =i) andn'? is a vector of
parameters defined by equations (4) and (6). In the first dtéeadterative proce-
dure (the E-step) inferences about the state process avedieSinceR; is latent
and not directly observable, only the expected values ofsthge process, given
the observation vectoE (Ig—i|x1,X2....XT;8), can be calculated. These expecta-
tions result in the so called ‘smoothed inferences’, i.e.dbnditional probabilities
P(R = j|x1,...,xr; 0) for the process being in reginjat timet. Next, in the second
step (the M-step) new maximum likelihood (ML) estimatesha parameter vector
6, based on the smoothed inferences obtained in the E-sieegaliulated. Both
steps are repeated until the (local) maximum of the likadhéunction is reached.
A detailed description of the algorithm is given below.

3.1.1 The E-step

Assume thaB" is the parameter vector calculated in the M-step during theip
ous iteration. Lek; = (Xq, X2, ...% ). The E-part consists of the following steps (Kim,
1994):

(i) Filtering: based on the Bayes rule fo=1,2,..., T iterate on equations:

PR =ilx—1;0")f (x|R =i;x_1;0M)
L
3 PR =ix—1;00)f(x|R =1:%-1;0")

P(R =i[x;0") =

)

where f(x|R = i;x_1;0") is the probability density function (pdf) of the
underlying process at timeconditional that the process was in regime €
1,2,..,L,

and

L
PRea =16 = 3 pil'P(R = ib; 6",

until P(Rr = i|x7;8") is calculated.
The starting point for the iteration is chosenR{&R, = i|xo; 8M) = p".
(i) Smoothing: fort =T —1, T —2,..., 1 iterate on

Re = i[x;0)P(Ry1 = jlxr; 6))pl”
P(Rs1 = j[x; 0M)

P(R = ilxr;6) :i il
: 3
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3.1.2 The M-step

In the second step of the EM algorithm, new and more exact manxi likeli-
hood (ML) estimates)™1 for all model parameters are calculated. Compared
to standard ML estimation, where for a given pitthe log-likelihood function

S logf(x,n™Y) is maximized, here each component of this sum has to be
weighted with the corresponding smoothed inference, stach observatior be-
longs to theith regime with probabilityP(R, = i|x7;68("). Namely, the ML esti-
mates are derived maximizing the log-likelihood functidrre following form:

L T
log[L(n™4)] -y zya:i|xT;e<“>>log[f<xt|Rt:i,xt_l;n<"+1>> G
1I=1t=

Finally, as in Hamilton (1990), we hayg™™" = P(R; =i|xr; 6(") and the tran-
sition probabilities are estimated according to the follgyformula (Kim, 1994):

) ZP(RtZJ}RtAZHXT;@("))
o= - ©
> P(R-1=ilx7;6M™)

t=2

™M=

il (VPR 1=i[x_1;0™
— - g(n) Aij (R—1=iXt—1; )
tZZP(Rt jxr; 8 e

T )
> P(R1=i[x7;0M)
t=2

where pfjm is the transition probability from the previous iteratidxl values ob-
tained in the M-step are then used as a new parameter veetoY = (n(",
P(““),pi("”)), i =1,2,...,L, in the next iteration of the E-step.

3.2 Independent regimes

Both steps of the EM algorithm require derivation of the dtiodal probability
density functionsf (x|R = i;x_1;0("). For the regime(s) described by i.i.d. ran-
dom variables, see eqn. (6), this is just the model specifiédHowever, for the
mean-reverting regime(s), see eqn. (4), the situation imomplicated due to the
dependence structure of the driving process. If the regimnesndependent from
each other, the values of the mean-reverting regime becateet Wwhen the process

is in the other states, see Figure 2. This makes the digtibat X; dependent on the
whole history(x, %o, ...,%_1) of the process. As a consequence, all possible paths
of the state proces®;, Ry, ..., R;) should be considered in the derivation of the pdf,
implying that f (x|R =i,R_1 #1i,...,R_j #i,R_j_1 =i;%_1;0™) and the whole
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set of probabilitie(R = it,R—1 = it_1,...,R—j = it_j[x—1; 8) should be used
in the EM algorithm.

Obviously, this leads to a high computational complexisyttee number of pos-
sible state process realizations is equalt@8d increases rapidly with sample size.
To be more precise, the total number of probabilities reglby the EM algorithm
to be stored in computer memory is equal 82 — 1). Assuming that each prob-
ability is stored as a double precision floating-point num{@bytes), estimating
parameters from a sample ®f= 30 observations would require 32 gigabytes of
memory! For samples of typical size (a few hundred to a fewusland observa-
tions) this is clearly impossible with today’s computers.

As a feasible solution to this problem Huisman and de Jon@4p6uggested
to use probabilities of the last 10 observations. Apart fiibien fact that such an
approximation still is computationally intensive (reasrstoring 2219(T — 9) — 1}
probabilities in computer memory), it can be used only if pnebability of more
than 10 consecutive observations from the other regimesghgible.

Instead, following Janczura and Weron (2012a), we suggespproximate the
latent variables;_1 ; from the mean-reverting regimes by their expectations; =
E(X_1i|%_1;0") based on the whole information available at timel. A simi-
lar approach was used by Gray (1996) in the context of regiwieching GARCH
models to avoid the problem of the conditional standardat®n path dependence.
Note that ifx_1; was observable, thexy given R, =i andx_1; would be Gaus-
sian distributed with meafl — Bi(n))xt—l,i + aim) and variance{ai(n))zpq_l’i|2VI(").
Hence, the estimation procedure described in Section ibeapplied with the
following approximation of the mean-reverting regime pdf:

— 1 .
Ve g 1"
(e (18" 5w -a")

2 (O’i(n))z %1 |2M(”)

f (xt\Rt = i;xt71;6<”>)

-exp

(9)

The expected values;"= E(X.i|x; 8™) can be computed using the following re-
cursive formula (for the derivation see Janczura and We0h2a):

E (xt,i\xt; 9<”>) —-p (Rt —ilx; e“‘)) % +P (Rt il e<”>) : (10)
.{ai<n) I (1*ﬁi(n)) E (thl,i|xtfl; e(n)) }

Moreover, these expected values are linear combinatiottseeofbserved vectog
and the probabilitie®(R; = i|xj; 6!") calculated during the estimation procedure
(see the filtering part of the E-step):
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r (Xt.,i IXt; e(n)) = t§><t—k (1— Bi(n)> ‘p (Rt—k =i|x i 6<”>> :
k=0
. a . i a4 (n)) +
DP (Rt jr1 7 1% j11; 0

t—1

+a® (1 B")° rLP( A 6™).

Hence, by usinge”1i = E(X_1i|X_1;0™) in formula (9), instead ok_1, the
computational complexity of the E-step is greatly redudedact, the total number
of probabilities stored in computer memory is now only. & his means that for a
sample ofT = 30 observations only 1 kilobyte of memory is required, coragdo
335 kilobytes in the approach utilizing probabilities oétlast 10 observations and
32 gigabytes in the standard EM algorithm.

3.3 Time-varying transition probabilities

The independent regime models discussed above can pralédgiate fits to elec-
tricity spot prices in terms of the marginal distributionmt not in terms of the
temporal behavior. As Mount et al. (2006) and Cartea et 8092 have shown, the
timing of spikes could be improved by incorporating forwéwdking information
on capacity constraints. Unfortunately, the availabilityevery market participant)
of the reserve margin data is limited. If temperature is @&sea proxy for the reserve
margin (as in Huisman, 2008), the results are not as good.

A relatively simple, yet potentially rewarding alternatiis to admit a transition
matrix with time-varying probabilities of a one year periqg (t) = pij(t + lyeay.
Following Janczura and Weron (2010) the probabilities cacdlibrated in a two-
step procedure in the last part of the E-step of the EM algarif-irst, the probabil-
ities are estimated independently for each of the four seasbinter (months XlI-
1), Spring (I1I-V), Summer (VI-VIII) and Autumn (IX-XI). Then they are smoothed
using a kernel density estimator with a Gaussian kerneleMomplex annual struc-
tures and smoothing techniques can be used as well. Hereveavior simplicity
we will limit the analysis to the original approach.

3.4 Optimizing the cutoffs

To eliminate spike misclassification in some early MRS medeicluding the
unwanted feature of negative ‘expected spike sizes’,H(& spike) < E(X pase),

Janczura and Weron (2009) proposed to use median-shiftieel rggime distribu-
tions. This was motivated by a common-sense assumptiorsthall fluctuations
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should be driven by the base regime dynamics and only the Begiations by the
spike (or drop) regime dynamics. For EEX market data frompiéréod 2001-2009
they found that models with shifted spike regime distribug (which assign zero
probability to prices below the median of deseasonalize@dp) led to more realistic
descriptions of electricity spot prices.

Originally, Janczura and Weron (2009) introduced medtaifiexd log-normal:

log(Xei —X(a)) ~ N(ai, 0%),  X%i > X(q), (11)
and Pareto:

X ~ Fead0i,a) = 1- ()", x> @ > X (@), (12)

spike regime distributions, but the latter was found to b Heavy-tailed for the
analyzed datasets (Janczura and Weron, 2010). In the abonelésX (i) denotes
the gi-quantile,q € (0,1), of the dataset. Generally the choicecpfis arbitrary,
however, for simplicity it can be set to the median (which baninterpreted as a
value representing the average capacity margin in a powekahavhen the price
exceeds this value the spikes occur) or a quartile (e.g.ot$hé drop and 3rd for
the spike regime, as in Janczura and Weron, 2012a) of thaslasalized dataset.

Nothing, however, prevents us from optimizing these cuwféls, both for the
spike and drop regimes. For the 3-regime model studied itide5, this can be
achieved by running a 2-dimensional optimization (e.gagi$he Nelder-Mead sim-
plex routine in Matlab) with the objective of maximizing thikelihood. Precisely,
for given cutoff levels the MRS model is calibrated and thg-ligelihood function
is evaluated. Next, the log-likelihood is treated as a finmcof the cutoffs and the
optimization procedure is performed.

The computational cost is not overwhelming — typically ungi@0 calibrations
of the MRS model have to be performed before a (local) maxinsu@ached, using
the default parameters of the simplex routine in Matlabrdasing the termination
tolerance can naturally greatly speed up the process, eifeauva significant loss
of precision. In Section 5 we will check how well this optiration works and how
different form the median or the quartiles are the obtaingthwal cutoff levels.

4 Goodness-of-fit testing

The adequacy of the models can be evaluated on the base dptiesstatistics, as
well as, goodness-of-fit hypothesis tests. The former geline Inter-Quartile and
the Inter-Decile Range, i.e. the difference between threl thind the first quartiles
(IQR) or ninth and first deciles (IDR). The quantile-basecamaes rather than the
less robust to outliers moment-related statistics areepredi (Janczura and Weron,
2010). A more sound decision can be made based on a goodrfistest, tai-
lored to evaluate the fit of regime-switching models. Herdowwefly summarize the
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methods proposed by Janczura and Weron (2012b); for dierigzind performance
evaluation we refer to the original paper. The methods asedban the Kolmogorov-
Smirnov (K-S) goodness-of-fit test and verify whether thé hypothesisHg that
observations come from the distribution implied by the mageecification can-
not be rejected. The procedure can be easily adapted toeatiggrical distribution
function (edf) type tests, like the Anderson-Darling testg e.g. D’Agostino and
Stevens, 1986). For clarity of exposition we limit the dission in this Section to
2-regime models only with the first regime driven by a mearerténg process and
the second by an i.i.dr2-distributed sample. However, all presented results & al
valid for L > 2.

Recall that the Kolmogorov-Smirnov test statistic is gitsmn

Dn = v/nsup|Fa(x) — F(x)], (13)

xeR

wheren is the sample sizdy, is the empirical distribution function (edf) arelis
the corresponding theoretical cumulative distributiondtion (cdf). Hence, having
an i.i.d. sampldyi,yo,...,Vn), the test statistic can be calculated as

dn = v/n max

1<t<n

n1
z ﬁﬂ{ykgyt} - F<yt) ) (14)
k=1

wherel is the indicator function. If hypothesidg is true, then the statistiDy,
asymptotically has the Kolmogorov-Smirnov distributiddS). Therefore ifn is
large enough, the following approximation holds

P(Dn > c|Hp) =~ P(k > c), (15)

wherek ~ KS andc is the critical value. Hence, the-value for an i.i.d. sample
(Y1,¥2,..-,Yn) can be approximated B(k > dy).

4.1 The ewedf approach

The described above testing scheme is valid for i.i.d. sasaph order to apply it
in the framework of MRS models, we have to overcome two probleFirst, the
regimes are only latent, so we cannot unambiguously disishgpbservations from
different regimes (and consequently from different digttions). Second, there is a
dependence structure within the mean-reverting regime.

The first issue can be resolved by performing an identificatb the state
process. Recall that, as a result of the estimation proeedescribed in Section
3, the so called ‘smoothed inferences’ about the state psoaee derived. The
smoothed inferences are the probabilities thattttie observation comes from a
certain regime given the whole available informatR(fR = i|x1,X,...,X7). Hence,
a natural choice is to relate each observation with the masigble regime by
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letting Ry =i if P(R =i|xq,X2,...,x7T) > 0.5. However, we have to mention, that
the hypothesidy now states thatxs, xo, ..., x) is driven by a regime-switching
model with known state process values. We call this appr@eedf’, which stands
for ‘equally-weighted empirical distribution functionJédnczura and Weron, 2009,
2012b).

Now, we focus on the problem of dependence between meartingveegime
observations. Provided that the values of the state prd&ease known, observa-
tions can be split into separate subsamples related to éaoh cegimes. Namely,
subsample consists of all value¥; satisfyingR; = i. The regimes are indepen-
dent from each other, but the i.i.d. condition must be satisifiithin the subsamples
themselves. Therefore the mean-reverting regime obsengatre substituted by
their respective residuals. Using the Euler scheme andargging terms of formula
(5), we get that
X — (1— BAt) X at — At

VAo X pi |

has the standard Gaussian distribution, whtrés the time interval between con-
secutive mean-reverting regime observations. Howewvecesthe Euler scheme is
an approximation of a continuous process, formula (16) lish\wnly for small At.

In contrast, if the mean-reverting regime dynamics is gibgrihe AR(1) process,
i.e. the process defined by (4) wigh= 0, exact residuals can be derived. Precisely,
the residuals are derived from all pairs of consecutive ARfkervations as:

et,l = ’ (16)

k
X — (1— B1)f%_1 — g AR
il A (17)
1-(1-py )
M\ T pmp

where(k — 1) is the number of latent observations from the mean reveréggne
(or equivalently the number of observations from the seaegime that occurred
between two consecutive AR(1) observations) and 3; and o1 are the model
parameters, see (4).

Transformation (16), or (17) in the AR(1) case, ensures thatsubsample
containing observations from the mean-reverting regimd.@& Since the second
regime is i.i.d. by definition, the standard Kolmogorov-8mi test can be applied
to each of the subsamples.

The goodness-of-fit of the marginal distribution of the indual regimes can be
formally tested, using the test statistic (14). For the memerting regimef is the
standard Gaussian cdf aty, Yo, ..., yn, ) is the subsample of the standardized resid-
uals obtained by applying transformation (17), while fa tither regimesd; is the
model specified cdf (i.52) and(y1, Y2, ...,Yn,) is the subsample of respective obser-
vations. Observe that the ‘whole model’ goodness-of-fitlsamlso verified, using
the fact that forX ~ F2 we have thay = (F)~1[F?(X)] is F-distributed. Indeed,

a sample(y1,y3, ... Yo, Y5, Y3, .- Ya,), Whereyl's are the standardized residuals of
the mean-reverting regime, whij€’s are the transformed variables corresponding
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to the second regime, i.¢2 = (F)1[F?(x )] with F being the standard Gaussian
cdf, is i.i.d.N(0, 1)-distributed and, hence, the testing procedure is appécab

4.2 The wedf approach

Now, we briefly mention another potentially useful testimpeach dealing with
the latency of the state process. Observe, that in the stgd@dness-of-fit test-
ing approach based on the edf each observation is takendntuat with weight
% (i.e. inversely proportional to the size of the sample). ldegr, in MRS models
the state process is latent. The estimation procedure {¢halgorithm) only yields
the probabilities that a certain observation comes fromvargregime. Moreover,
in the resulting marginal distribution of the MRS model eabiservation is, in fact,
weighted with the corresponding probability. Thereforesjrailar approach could
be used in the testing procedure. As Janczura and Weronl§p@a2e shown, this
is possible for independent regime models with homoskedastan-reverting dy-
namics, i.e. withy= 0 in formula (4). The approach uses the concept of the waighte
empirical distribution function (wedf):

= Welliy <x

FW(X) = )
" e

(18)

where(yi,Y2,...,¥n) is a sample of observations afwh, ..., w,) are the correspond-
ing weights, such that & wy <M, V;—1 __n. A natural choice of weights seems to
bew; = P(R = i|x1,X2,....XT) = E(I[{Rt:i}\xl,xz,...,xT) for thei-th regime obser-
vations. Indeed, it can be shown that, if tHg hypothesis is true, the test statistic

Dy = vnsup|Ry'(x) — F(X)], (19)
xeR

converges weakly to the Kolmogorov-Smirnov distributiasith F¥ derived for the
sample(yl,yi, ... v+ 1,¥2,3,....,¥2), where (yi,y3,....y* ;) are the transformed
variables of the mean-reverting regime aiyd,y3,...,y2) are the variables corre-
sponding to the second regime, iy8.= (F) 1[F?(x)] with F being the standard
Gaussian cdf. The transformation of the mean-revertingmegbservations is, sim-
ilarly as in the ewedf approach, based on deriving the psEsduals. We have:

P X1—a—(1-B)E(X-11/X-1)
1=

7 \/(1—[3)2Var(xt_1’1|xt_1)+02’

whereE(X_1,1/x—1) andVar(X_11|%-1) can be calculated using the following
formulas:

(20)
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E(X.1/xt) = P(R = 1|x¢)% +
+P(R # 1x¢) [0 + (1 — B)E(%—1,1/%t—1)] , (21)
E(XA4/xt) = P(R = 1[x )% +
+P(R # 1|x) [a +2a (1 - B)E(X-1.1/%-1) +
+(1-BPE(XE 11/x-1) +07]. (22)

Finally, the p-value for the sampldyl,y3, ....y+ ,y3,y3,...,y2) can be approxi-
mated byP(k > dy), where

B N
dh = v/n max max|F'(%) — F(%)| (23)
is the test statistic. Note, that for a given valuedaf P(k > dy,) is the standard
Kolmogorov-Smirnov tesp-value, so that the K-S test tables can be applied in the
wedf approach.

4.3 Critical values

Note, that the described above testing procedure is valglibthe parameters of
the hypothesized distribution are known. Unfortunatelyyipical applications the
parameters have to be estimated beforehand. If this is the then the critical
values for the test must be reducétji(ek et al., 2011). In other words, if the value
of the test statisticdy is d, then thep-value is overestimated B¥(d, > d). Hence,

if this probability is small, then the-value will be even smaller and the hypothesis
will be rejected. However, if it is large then we have to obtai more accurate
estimate of the-value.

To cope with this problem, Ross (2002) recommends to use &/©atlo simula-
tions. In our case the procedure reduces to the followingsstéirst, the parameter
vector 6 is estimated from the dataset and the test statifitis calculated accord-
ing to formula (14). Nextp is used as a parameter vector simulated samples
from the assumed model. For each sample the new parameter feis estimated
and the new test statistit! is calculated using formula (14). Finally, tipevalue is
obtained as the proportion of simulated samples with thestatistic values higher
or equal tody, i.e. p-value= S#{i : df > dn}.

5 Application to electricity spot prices

In this study we present how the techniques introduced iti®e8 can be used to
efficiently calibrate MRS models to electricity spot pricGes test their goodness-
of-fit using the ewedf approach described in Section 4. Wenesmn daily (baseload)
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Fig. 3 Mean daily spot EEXtpp) and NEPOOL [fottom) prices and the estimated long-term
seasonal components (LTSC; thick blue lines).

spot prices from two major power markets: the European Bnerghange (EEX;
Germany) and the North American New England power markefR@EL, U.S.).

Using baseload data is quite common in the energy econoritécature, partly
due to the fact that baseload is the most common underlyisiguiment for en-
ergy derivatives. Both samples total 1820 daily obsermat{or 260 full weeks) and
cover the roughly 5-year period January 2, 2006 — Decemhe2®@R), see Figure
3.

When modeling electricity spot prices we have to bear in mivad electricity
is a very specific commodity. Both electricity demand andspme extent) sup-
ply exhibit seasonal fluctuations, arising due to changiimgate conditions, like
temperature and the number of daylight hours, and busitis#ya These seasonal
fluctuations can be then observed in electricity spot pricethe mid- and long-term
also the fuel price levels (of natural gas, oil, coal) infloerlectricity prices.

Not wanting to focus the paper on modeling the fundamente¢dy of electric-
ity prices, a single non-parametric long-term seasonalpmmant (LTSC) is used
here to represent the long-term non-periodic fuel pricelkvthe changing cli-
mate/consumption conditions throughout the years antegirabidding practices.
As shown by Janczura and Weron (2010), a wavelet-estimat8c lpretty well re-
flects the ‘average’ fuel price level, understood as a coatliin of NG, crude oll
and coal prices; see also Eydeland and Wolyniec (2012) anakisitsani and Bunn
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(2010) for a treatment of fundamental and behavioral dsiérelectricity prices.
On the other hand, as discussed recently in Janczura andh\(29bd2a), the use of
the wavelet-based LTSC is somewhat controversial. Piadidt beyond the next
few weeks is a difficult task, because individual waveletctions are quite local-
ized in time or (more generally) in space. Preliminary resleauggests, however,
that despite this feature the wavelet-based LTSC can bepoiated into the fu-
ture yielding a better on-average prediction of the levefutfire spot prices than
an extrapolation of a sinusoidal LTSC (Nowotarski et al120 As mentioned by
Janczura and Weron (2010), a potentially promising, adiiare approach would
be to use forward looking information, like smoothed fordviaurves (Benth et al.,
2007; Borak and Weron, 2008). The information carried byéod prices provides
insights as to the future evolution of spot prices. Howef@wryard prices also in-
clude the risk premium (Benth et al., 2008; Weron, 2008),ciwishould somehow
be separated from the spot price forecast for it to be useful.

In this empirical study we assume that the electricity spaepPR, can be rep-
resented by a sum of two independent parts: a predictaldsdral) componerf
and a stochastic componexy i.e. R = f; + X;. Further, we letf; be composed of
a weekly periodic party, and a LTSC]I;. The deseasonalization is then conducted
in three steps. First, the long term tremdis estimated from daily spot pricd®
using a wavelet filtering-smoothing technique (for detai® Tiick et al., 2007;
Weron, 2006). This procedure, also known as low pass filjesiields a traditional
linear smoother. Here we use tBgapproximation, which roughly corresponds to
bi-monthly (® = 64 days) smoothing. The estimated long term seasonal compo-
nents are plotted in Figure 3.

The price series without the LTSC is obtained by subtradtieds approxima-
tion from B. Next, the weekly periodicitg is removed by subtracting the ‘average
week’ calculated as the mean of prices corresponding to @éaglof the week (the
German and U.S. national holidays are treated as the eiglufdae week). Finally,
the deseasonalized prices, M= R — T; — &, are shifted so that the mean of the
new processt is the same as the mean Rf The resulting deseasonalized time
seriesX = B — T; — & can be seen in Figures 4 and 5.

The second well known feature of electricity prices are tidden, unexpected
price changes, known as spikes or jumps. The ‘spiky’ natfigpot prices is the
effect of non-storability of electricity. Electricity toebdelivered at a specific hour
cannot be substituted for electricity available shortleabr before. Extreme load
fluctuations — caused by severe weather conditions oftenritbmnation with gen-
eration outages or transmission failures — can lead to pdees. On the other
hand, an oversupply — due to a sudden drop in demand and ¢ethniitations of
an instant shut-down of a generator — can cause price draphef, electricity spot
prices are in general regarded to be mean-reverting andiettie so called ‘inverse
leverage effect’, meaning that the positive shocks ineeatatility more than the
negative shocks. Knittel and Roberts (2005) attributes phienomenon to the fact
that a positive shock to electricity prices can be treatedragnexpected positive
demand shock. Therefore, as a result of convex margina$,cpesitive demand
shocks have a larger impact on price changes relative tdinegdocks.
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Fig. 4 Calibration results of a MRS model with three independentmegifitted to the deseason-
alized EEX prices depicted in the top panel of Fig. 3. Thishis ‘optimal’ calibration scenario
with the cutoffsg, andgs obtained as a result an optimization procedure. The lowerpdisplay
the conditional probabilitieB(S) = P(R = 2|x1,%2, ...,x7) andP(D) = P(R: = 3|Xq, X2, ..., xT) Of
being in the spike or drop regime, respectively, and the timgivgrunconditional probabilities
P(R: = s) of being in the spike regime. The prices classified as spikes osdirepwithP(S) > 0.5

or P(D) > 0.5, are denoted by dots or ‘X’ in the upper panel.

Motivated by these features of electricity spot prices weHe stochastic com-
ponentX; be driven by a Markov regime-switching model with three ipeledent

states:
X1 ifR=1,
X =4 %2 ifR =2, (24)
X3 if R =3.

The first (base) regime describes the ‘normal’ price behaail is given by the
mean-reverting, heteroskedastic process of the form:

Xe1=01+ (1—B1)X-11+ 01]%_11|"&, (25)
whereg; is the standard Gaussian noise. The second regime reékergudden

price jumps (spikes) caused by unexpected supply shortagkss given by i.i.d.
random variables from the shifted log-normal distribution

log(X.2— X(02)) ~ N(a2,0%), %2> X(0). (26)
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Fig. 5 Calibration results of a MRS model with three independentmegifitted to the deseason-
alized NEPOOL prices depicted in the bottom panel of Fig. l8sTs the ‘optimal’ calibration
scenario with the cutoffg, and gz obtained as a result an optimization procedure. The lower
panels display the conditional probabiliti®$S) = P(R. = 2|xq,X2,...,x7) andP(D) = P(R =
3|X1,X2,...,x7) of being in the spike or drop regime, respectively, and the tiarging uncondi-
tional probabilitiesP(R;. = s) of being in the spike regime. Like in Figure 4, the prices clagbiie
spikes or drops, i.e. witR(S) > 0.5 orP(D) > 0.5, are denoted by dots or X’ in the upper panel.

Finally, the third regime (responsible for the sudden pdie#ps) is governed by the
shifted ‘inverse log-normal’ law:

log(—X;3+X(ds)) ~ N(a3,0%), X3 < X(dg). (27)

In the above formulaX(q;) denotes thej-quantile,q; € (0,1), of the dataset.

The deseasonalized pricks the conditional probabilities of being in the spike
P(R = 2|x1,%p,...,xt) or drop P(R = 3|x1,Xp,...,xr) regime for the analyzed
datasets and the time-varying unconditional probalslfieR; = s) of being in the
spike regime are displayed in Figures 4 and 5. The pricesifies as spikes or
drops, i.e. withP(R; = 2|xq,X2,...,X7) > 0.5 or P(R = 3|Xq,X2,...,x7) > 0.5, are
additionally denoted by dots or ‘x’. The estimated modekpaeters and the num-
bers of observations classified as spikes or drops are givEable 1. The calibration
results are reported for three different scenarios caltgatimal’ (with the cutoffs
02 andqgz obtained as a result an optimization procedure), ‘quatt{ieith the cut-
offs being arbitrarily set to the 1st and 3rd quartiles of deseasonalized dataset:
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Table 1 Calibration results under three different scenarios for tHeSvimodel with three in-
dependent regimes (25)-(27) fitted to the deseasonalized EEXN&POOL prices. For sce-
nario definitions see text. The numbers of observations classifiegpikes (#S), i.e. witR(R; =
2|X1,X2,...,x7) > 0.5, or drops (#D), i.e. witlP(R; = 3|x1,%2,...,X7) > 0.5, are additionally pro-
vided in the last two columns.

Calibration Parameters Probabilities
scenario a1 B 02 v ax 02 a3 02 pu P2 Pss #S #D
EEX

optimal (025%, 069%) 18.82 0.40 0.40 0.51 2.21 0.86 2.37 0.39 0.90 0.68 0.80123

quartiles (025%, Q75%) 18.95 0.40 0.64 0.45 2.23 0.91 2.38 0.38 0.91 0.64 0.@1189

median (05%, 05%) 18.47 0.39 0.28 0.55 2.62 0.51 2.59 0.29 0.90 0.68 0.662200
NEPOOL

optimal (024%, 065%) 14.68 0.25 0.86 0.35 2.61 0.50 2.04 0.26 0.95 0.75 0.87123

quartiles (025%, Q75%) 15.12 0.26 3.28 0.19 2.45 0.66 2.07 0.25 0.95 0.74 0.8712D

median (05%, 05%) 14.84 0.25 0.33 0.47 2.84 0.33 2.55 0.10 0.95 0.76 0.871834

Table 2 Goodness-of-fit statistics for the MRS model with three independegimes (25)-(27)
fitted to the deseasonalized EEX and NEPOOL prices. For parapstierates see Table 1.

Calibration K-S tesp-values LogL
scenario Base Spike Drop Model
EEX

optimal (025%, 069%) 0.8433 0.3106 0.9323 0.5887 -5432.17

quartiles (025%, 075%) 0.8912 0.1940 0.7898 0.4370 -5459.58

median (05%, 05%)  0.8857 0.0156 0.2767 0.1355 -5492.59
NEPOOL

optimal (024%, 065%) 0.1480 0.4556 0.9529 0.3690 -5222.08

quartiles (025%, 075%) 0.1159 0.3233 0.9655 0.2339 -5233.92

median (05%, 05%)  0.1925 0.7821 0.9195 0.2988 -5232.62

02 = 0.75%,q3 = 0.25%) and ‘median’ (with the cutoffs being arbitrarily seth®
median of the deseasonalized dataget- g3 = 0.5%).

Although the estimated parameters, probabilities and thebers of identified
spikes and drops differ between the scenarios, the obtdiasd regime parame-
ters are consistent with the well known properties of eieityrprices. In particular,
B1 € [0.25,0.40] indicates a relatively high speed of mean-reversion, wholgtive
values ofy € [0.19,0.55] are responsible for the ‘inverse leverage effect’. Conside
ing probabilitiesp;; of staying in the same regime we obtain quite high values for
each of the regimes, ranging from 0.60 for the drop regimé&énBEEX market up
to 0.95 for the base regime in the NEPOOL market. As a consegen aver-
age there are many consecutive observations from the sajimeereFinally, since
both analyzed markets are characterized by relativelyl&irdiimate conditions the
patterns of spike intensity, as measured by the periodionditional probabilities
P(R: =), are similar (see the bottom panels in Figures 4 and 5). Tike 8giensity
is the highest in Winter and the lowest in Spring.

In order to check the statistical adequacy of the fitted MRSlefowe perform
a Kolmogorov-Smirnov (K-S) goodness-of-fit type test focteaf the individual
regimes, as well as, for the whole model (for test detailsSeetion 4 and Janczura
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Fig. 6 Log-likelihoods of the best fitted models for each of the possipi&e and drop regime
cutoffs (0, 0.01, ..., 1) for EEXI¢ft panels) and NEPOOL (ight panels) deseasonalized daily
prices. Bottom panels display contour plots of the upper paiNgte, that for both datasets high
values for the spike cutoff and low for the drop cutoff are prefd. The optimal cutoffs for the
EEX dataset arep = 0.69% andgs = 0.25%, while for the NEPOOL datasgt = 0.65% and
gz = 0.24%, see Table 2.

and Weron, 2012b). The goodness-of-fit results are reporiEable 2, together with
the log-likelihood values. All but one (EEX prices, spikgirae, ‘median’ scenario)
K-S testp-values are higher than the commonly used 5% significan&s, leence
we cannot generally reject the hypotheses that the datidlets the fitted MRS
models. Looking at the optimal cutoffsgs = 0.69% andqgs = 0.25% for the EEX
dataset and, = 0.65% andgz = 0.24% for the NEPOOL dataset — we can observe
that in both cases high values for the spike cutoff and lowttierdrop cutoff are
preferred, see also Figure 6. What is interesting, theseegeadve relatively close
to the 3rd and 1st quartiles, yet the ‘quartiles’ scenarinds always better than
the ‘median’ scenario. It seems that by arbitrarily settimg cutoffs to the quartiles
too many spikes in the NEPOOL dataset were excluded frongbsassified into
the spike regime. This resulted in a relatively low log-likeod value. Overall, we
suggest to use the ‘optimal’ scenario as it yields signitigamgher log-likelihood
values and highep-values of the K-S type test for the whole model, see Table 2.
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6 Conclusions

In this paper we have reviewed the calibration and stasiktialidation techniques
for Markov regime-switching (MRS) models of electricityaprices. In particu-
lar, in Section 3 we have presented an efficient parametienagin algorithm for
independent regime MRS models. Instead of storing conditiprobabilities for
each of the possible state process paths, it requires aomaliprobabilities for only
one time-step. This allows for a 100 to over 1000 times fastdibration than in
case of a competing approach utilizing probabilities ofl#fts 10 observations. We
have further shown how to improve the temporal fit of the medeklectricity spot
price data by introducing time-varying (periodic) trarit probabilities and how
to modify the calibration scheme by optimizing the cutoféfiding the spike and
drop regimes. The latter improvement results in signifigamigher log-likelihood
values and highep-values of the goodness-of-fit test for the whole model.

While most of the electricity spot price models proposed &liferature are ele-
gant, their fit to empirical data has either been not examtineughly or the signs
of a bad fit ignored. This can have far-reaching consequehsesh misspecified
models are used for forecasting or risk management applisatThe goodness-of-
fit tests discussed in Section 4 provide an efficient tool tmeating or rejecting a
given MRS model for a particular dataset.

Finally, in Section 5 we have put the theoretical tools to asd built models
of deseasonalized wholesale spot prices from the EEX andJX#Pmarkets. The
studied independent regime model fits market data well aswdraplicates the major
stylized facts of electricity spot price dynamics. In pautar, the parametgrcan be
treated as a parameter representing the ‘degree of inexe®be’. Its positive value
indicates ‘inverse leverage’, which reflects the obseovathat positive electricity
price shocks increase volatility more than negative shocks

This paper does not resolve, however, all problems encrathtghen modeling
wholesale electricity spot prices. In particular, we hae¢ checked whether the
studied MRS model recovers the market observed term staiofuvolatility. As
Janczura and Weron (2012a) have reported, the electrimityafd prices implied
by the considered spot price models exhibit the so-calledustson effect (i.e. a
decrease in volatility with increasing time to maturityy tbhe considered models
the volatility scales as #(T-Y), but the rate of decrease is completely determined
by the speed of mean-reversiBnEmpirical evidence shows, however, that the rate
of decrease should be large only for maturities up to a yemsg@{ et al., 2009). Per-
haps, incorporating another stochastic factor would learore realistic forward
price curve.
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