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Inference for Markov-regime switching models
of electricity spot prices

Joanna Janczura and Rafał Weron

1 Introduction

The basic idea that underlies Markov regime-switching (MRS) is that of represent-
ing the behavior of an observed time series by separate states or regimes, which can
be driven by different stochastic processes. Unlike threshold type regime-switching
models (e.g. TAR, STAR, SETAR), in MRS models the regimes areonly latent and,
hence, these models do not require an upfront specification of the threshold variable
and level. This flexible specification has led to their popularity not only in econo-
metrics (Choi, 2009; Hamilton, 2008) but also in other fieldsof science including
traffic modeling (Cetin and Comert, 2006), population dynamics (Luo and Mao,
2007), river flow analysis (Vasas et al., 2007) and pattern recognition (Fink, 2008).

In energy economics MRS models have seen extensive use due totheir ability
to capture the unique behavior of electricity spot prices (Bierbrauer et al., 2004,
2007; De Jong, 2006; Erlwein et al., 2010; Hirsch, 2009; Huisman, 2009; Huisman
and Mahieu, 2003; Janczura and Weron, 2010, 2012a; KanamuraandŌhashi, 2008;
Karakatsani and Bunn, 2008; Kholodnyi, 2005; Mari, 2008; Mount et al., 2006;
Weron, 2009). And recall that electricity is a very specific commodity. Firstly, it
is practically non-storable and requires immediate delivery. Secondly, end-user de-
mand is weather and business cycle dependent. Thirdly, effects like power plant
outages, transmission grid reliability and strategic bidding add complexity and ran-
domness. The resulting spot prices exhibit significant seasonality on the annual,
weekly and daily level, as well as, mean reversion, very highvolatility and gener-
ally short-lived extreme price spikes and/or drops.
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Fig. 1 Deseasonalized mean daily electricity spot price from the New England power market
(NEPOOL, U.S.) in the period August 1 – December 26, 2010. The prices classified as spikes
are denoted by dots (see Section 5 for deseasonalization and model details). The regime switches
and spike clustering are clearly visible.

These extreme price movements tend to cluster (Bierbrauer et al., 2004; Chris-
tensen et al., 2009; Janczura and Weron, 2010, see also Figure 1), which makes
the very popular class of jump-diffusion models impractical, as they cannot exhibit
consecutive spikes with the frequency observed in power market data (Weron et al.,
2004). On the other hand, MRS models allow for consecutive spikes in a very natural
way. Also the return of prices after a spike to the ‘normal’ regime is straightforward,
as the regime-switching mechanism admits temporal changesof model dynamics.
MRS models are also more versatile than the popular class of hidden Markov mod-
els (HMM; in the strict sense, see Cappe et al., 2005), since they allow for temporary
dependence within the regimes, in particular, for mean reversion. As the latter is a
characteristic feature of electricity prices it is important to have a model that cap-
tures this phenomenon. Indeed, in the energy economics literature the base regime
is typically modeled by a mean-reverting diffusion (Benth et al., 2008; Huisman,
2009; Weron, 2006), sometimes heteroskedastic (Janczura and Weron, 2009), while
for the spike (or drop) regime(s) a number of specifications have been suggested,
ranging from mean-reverting diffusions to heavy tailed random variables (for a re-
view see Janczura and Weron, 2010).

After selecting the model class (i.e. MRS), the type of dependence between the
regimes has to be defined. Dependent regimes with the same random noise process
in all regimes (but different parameters – hence the alternative name ‘parameter-
switching’; an approach dating back to Hamilton, 1989) leadto computationally
simpler models. On the other hand, independent regimes allow for a greater flexi-
bility and admit qualitatively different dynamics in each regime. They seem to be
a better choice for electricity spot price processes, whichcan exhibit a moderately
volatile and symmetric (in terms of the marginal distribution) behavior in the base
regime and a very volatile and an asymmetric one in the spike regime, see Figure 1.
We will look more closely at these independent regime modelsin Section 2.

Once the electricity spot price model is specified we are leftwith the problem of
calibrating it to market data. Due to the unobservable switching mechanism, esti-



Inference for Markov-regime switching models of electricity spot prices 3

mation of MRS models requires inferring model parameters and state process val-
ues at the same time. The situation becomes more complicatedwhen the individual
regimes are independent from each other and at least one of them is mean-reverting.
Then the temporal latency of the dynamics in the regimes has to be taken into ac-
count. We have recently proposed a method that greatly reduces the computational
burden in such a case (Janczura and Weron, 2012a). As we will see in Section 3,
the method allows for a 100 to over 1000 times faster calibration than a compet-
ing approach utilizing probabilities of the last 10 observations. Instead of storing
conditional probabilities for each of the possible state process paths, it requires con-
ditional probabilities for only one time-step. Since MRS models can be considered
as generalizations of HMM (Cappe et al., 2005), this result can have far-reaching
implications also for many problems where HMM have been applied (see e.g. Ma-
mon and Elliott, 2007). In Section 3 we will also show that thefit can be further
improved by optimizing the cutoff(s) used for separating the regimes, instead of ar-
bitrarily setting them to the median (Janczura and Weron, 2010) or the 1st and 3rd
quartiles (Janczura and Weron, 2012a) of the deseasonalized dataset.

While the existence of distinct regimes in electricity prices is generally unques-
tionable (being a consequence of the non-linear, heterogeneous supply stack struc-
ture in the power markets, see e.g. Eydeland and Wolyniec, 2012; Weron, 2006), the
actual goodness-of-fit of the models requires statistical validation. However, recent
work concerning the statistical fit of regime-switching models has been mainly de-
voted to testing parameter stability versus the regime-switching hypothesis. Several
tests have been constructed for the verification of the number of regimes. Most of
them exploit the likelihood ratio technique (Cho and White, 2007; Garcia, 1998),
but there are also approaches related to recurrence times (Sen and Hsieh, 2009),
likelihood criteria (Celeux and Durand, 2008) or the information matrix (Hu and
Shin, 2008). Specification tests, like tests for omitted autocorrelation or omitted ex-
planatory variables based on the score function technique,were proposed earlier
by Hamilton (1996). On the other hand, procedures for goodness-of-fit testing of
the marginal distribution of regime-switching models havebeen derived only re-
cently. Janczura and Weron (2012b) have proposed two empirical distribution func-
tion (edf) based testing techniques built on the Kolmogorov-Smirnov test. As we
will see in Section 4, the procedure is readily applicable toregime-switching mod-
els of electricity spot prices.

We conclude this paper with applications of the presented techniques to whole-
sale electricity prices from two major power markets – the German EEX and the
North American NEPOOL (Section 5). Finally, in the Conclusions we summarize
the presented results and provide suggestions for future work in this interesting area.

2 Regime-switching models

Assume that the observed processXt may be in one ofL states (regimes) at timet,
dependent on the state processRt :
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Xt =



















Xt,1 if Rt = 1,
Xt,2 if Rt = 2,

...
...

...
Xt,L if Rt = L.

(1)

Possible specifications of the processRt may be divided into two classes: those
where the current state of the process is observable (like threshold models, e.g. TAR,
SETAR) and those where it is latent. Probably the most prominent representatives of
the second group are the hidden Markov models (HMM; for a review see e.g. Cappe
et al., 2005) and their generalizations allowing for temporal dependence within the
regimes – the Markov regime-switching models (MRS). Like inHMM, in MRS
modelsRt is assumed to be a Markov chain governed by the transition matrix P
containing the probabilitiespi j of switching from regimei at timet to regime j at
time t +1, for i, j = {1,2, ...,L}:

P= (pi j) =











p11 p12 . . . p1L

p21 p22 . . . p2L
...

...
. . .

...
pL1 pL2 . . . pLL











, with pii = 1−∑
j 6=i

pi j. (2)

The current stateRt at timet depends on the past only through the most recent value
Rt−1. Consequently, the probability of being in regimej at timet +m starting from
regimei at timet is given by

P(Rt+m = j | Rt = i) = (P′)m · ei, (3)

whereP′ denotes the transpose ofP andei is theith column of the identity matrix.
The definitions of the individual regimes can be arbitrarilychosen depending on

the modeling needs. In this paper we focus on the independentregime (spike) model
(Bierbrauer et al., 2007; De Jong, 2006; Huisman and de Jong,2003; Janczura
and Weron, 2010), as it seems to be a reasonable choice for electricity spot price
processes which can exhibit qualitatively different dynamics in each regime. At
the same time, however, it is more computationally challenging than the popu-
lar parameter-switching model (for a detailed descriptionof the latter we refer to
Janczura and Weron, 2012a).

In the independent regime (spike) model,Xt is defined by (1) with at least one
regime given by:

Xt,i = αi +(1−βi)Xt−1,i +σi|Xt−1,i|γiεt,i, (4)

whereαi,βi,σi andγi are constants andεt,i’s are i.i.d. Gaussian random variables.
The absolute value in the above formula is needed if negativedata is analyzed.
Note, that formula (4) is a discrete-time version of the mean-reverting, possibly
heteroskedastic process given by the following Ornstein-Uhlenbeck-type stochastic
differential equation:
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Fig. 2 A sample trajectory of a MRS model with three independent regimes(black solid line)
superimposed on the observable and latent values of the processes in the regimes. Observe, that the
valuesXt,1 of the mean-reverting regime become latent when the process is inanother state. The
simulation was performed for a 3-regime model defined by eqns. (24)-(27), see Section 5, with the
following parameters:P = (pi j) = [0.90,0.05,0.05; 0.25,0.70,0.05; 0.25,0.05,0.70], α1 = 10,
β1 = 0.3, σ2

1 = 20,γ1 = 0, α2 = 2.5, σ2
2 = 0.5, α3 = 2.5, σ2

3 = 0.5, q2 = q3 = 30.

dXt = (α −βXt)dt +σ |Xt |γ dWt , (5)

whereWt is the Wiener process. The remaining regimes constitute i.i.d. samples
from specified continuous, strictly monotone distributions F i:

Xt,i ∼ F i(x). (6)

An example of such a specification is the 3-regime model with mean-reverting,
heteroskedastic base regime (i.e. ‘normal’ prices) dynamics and independent spikes
and drops, as proposed by Janczura and Weron (2010). In Section 5 we apply it
to electricity spot prices from the EEX and NEPOOL power markets. Note, that
in such a model the values of the mean reverting regime becomelatent when the
process is in another state, see Figure 2 for an illustration.

3 Calibration

Calibration of MRS models is not straightforward since the regimes are not di-
rectly observable. Hamilton (1990) introduced an application of the Expectation-
Maximization (EM) algorithm of Dempster et al. (1977), where the whole set of
parametersθ is estimated by an iterative two-step procedure. The algorithm was
later refined by Kim (1994). In Section 3.1 we briefly describethe general estima-
tion procedure. Next, in Section 3.2 we discuss the computational problems induced
by the introduction of independent regimes and present an efficient remedy. Finally,
in Section 3.4 we show that the fit can be further improved by optimizing the cut-
off(s) used for separating the regimes.
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3.1 Expectation-Maximization (EM) algorithm

The algorithm starts with an arbitrarily chosen vector of initial parametersθ (0) =

(η(0),P(0),ρ(0)
i ), for i = 1,2, ...,L, whereρ(0)

i ≡ P(R1 = i) andη(0) is a vector of
parameters defined by equations (4) and (6). In the first step of the iterative proce-
dure (the E-step) inferences about the state process are derived. SinceRt is latent
and not directly observable, only the expected values of thestate process, given
the observation vectorE(IRt=i|x1,x2...,xT ;θ), can be calculated. These expecta-
tions result in the so called ‘smoothed inferences’, i.e. the conditional probabilities
P(Rt = j|x1, ...,xT ;θ) for the process being in regimej at timet. Next, in the second
step (the M-step) new maximum likelihood (ML) estimates of the parameter vector
θ , based on the smoothed inferences obtained in the E-step, are calculated. Both
steps are repeated until the (local) maximum of the likelihood function is reached.
A detailed description of the algorithm is given below.

3.1.1 The E-step

Assume thatθ (n) is the parameter vector calculated in the M-step during the previ-
ous iteration. Letxt = (x1,x2, ...xt). The E-part consists of the following steps (Kim,
1994):
(i) Filtering: based on the Bayes rule fort = 1,2, ...,T iterate on equations:

P(Rt = i|xt ;θ (n)) =
P(Rt = i|xt−1;θ (n)) f (xt |Rt = i;xt−1;θ (n))

L
∑

i=1
P(Rt = i|xt−1;θ (n)) f (xt |Rt = i;xt−1;θ (n))

,

where f (xt |Rt = i;xt−1;θ (n)) is the probability density function (pdf) of the
underlying process at timet conditional that the process was in regimei, i ∈
1,2, ...,L,

and

P(Rt+1 = i|xt ;θ (n)) =
L

∑
j=1

p(n)ji P(Rt = j|xt ;θ (n)),

until P(RT = i|xT ;θ (n)) is calculated.

The starting point for the iteration is chosen asP(R1 = i|x0;θ (n)) = ρ(n)
i .

(ii) Smoothing: for t = T −1,T −2, ...,1 iterate on

P(Rt = i|xT ;θ (n)) =
L

∑
j=1

P(Rt = i|xt ;θ (n))P(Rt+1 = j|xT ;θ (n))p(n)i j

P(Rt+1 = j|xt ;θ (n))
.
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3.1.2 The M-step

In the second step of the EM algorithm, new and more exact maximum likeli-
hood (ML) estimatesη(n+1) for all model parameters are calculated. Compared
to standard ML estimation, where for a given pdff the log-likelihood function
∑T

t=1 log f (xt ,η(n+1)) is maximized, here each component of this sum has to be
weighted with the corresponding smoothed inference, sinceeach observationxt be-
longs to theith regime with probabilityP(Rt = i|xT ;θ (n)). Namely, the ML esti-
mates are derived maximizing the log-likelihood function of the following form:

log
[

L(η(n+1))
]

=
L

∑
i=1

T

∑
t=1

P(Rt = i|xT ;θ (n)) log
[

f (xt |Rt = i,xt−1;η(n+1))
]

. (7)

Finally, as in Hamilton (1990), we haveρ(n+1)
i = P(R1 = i|xT ;θ (n)) and the tran-

sition probabilities are estimated according to the following formula (Kim, 1994):

p(n+1)
i j =

T
∑

t=2
P(Rt = j,Rt−1 = i|xT ;θ (n))

T
∑

t=2
P(Rt−1 = i|xT ;θ (n))

= (8)

=

T
∑

t=2
P(Rt = j|xT ;θ (n))

p(n)i j P(Rt−1=i|xt−1;θ (n))

P(Rt= j|xt−1;θ (n))

T
∑

t=2
P(Rt−1 = i|xT ;θ (n))

,

wherep(n)i j is the transition probability from the previous iteration.All values ob-

tained in the M-step are then used as a new parameter vectorθ (n+1) = (η(n+1),

P(n+1),ρ(n+1)
i ), i = 1,2, ...,L, in the next iteration of the E-step.

3.2 Independent regimes

Both steps of the EM algorithm require derivation of the conditional probability
density functionsf (xt |Rt = i;xt−1;θ (n)). For the regime(s) described by i.i.d. ran-
dom variables, see eqn. (6), this is just the model specified pdf. However, for the
mean-reverting regime(s), see eqn. (4), the situation is more complicated due to the
dependence structure of the driving process. If the regimesare independent from
each other, the values of the mean-reverting regime become latent when the process
is in the other states, see Figure 2. This makes the distribution of Xt dependent on the
whole history(x1,x2, ...,xt−1) of the process. As a consequence, all possible paths
of the state process(R1,R2, ...,Rt) should be considered in the derivation of the pdf,
implying that f (xt |Rt = i,Rt−1 6= i, ...,Rt− j 6= i,Rt− j−1 = i;xt−1;θ (n)) and the whole
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set of probabilitiesP(Rt = it ,Rt−1 = it−1, ...,Rt− j = it− j|xt−1;θ (n)) should be used
in the EM algorithm.

Obviously, this leads to a high computational complexity, as the number of pos-
sible state process realizations is equal to 2T and increases rapidly with sample size.
To be more precise, the total number of probabilities required by the EM algorithm
to be stored in computer memory is equal to 2(2T+1−1). Assuming that each prob-
ability is stored as a double precision floating-point number (8 bytes), estimating
parameters from a sample ofT = 30 observations would require 32 gigabytes of
memory! For samples of typical size (a few hundred to a few thousand observa-
tions) this is clearly impossible with today’s computers.

As a feasible solution to this problem Huisman and de Jong (2002) suggested
to use probabilities of the last 10 observations. Apart fromthe fact that such an
approximation still is computationally intensive (requires storing 2{210(T −9)−1}
probabilities in computer memory), it can be used only if theprobability of more
than 10 consecutive observations from the other regimes is negligible.

Instead, following Janczura and Weron (2012a), we suggest to approximate the
latent variablesxt−1,i from the mean-reverting regimes by their expectations ˜xt−1,i =

E(Xt−1,i|xt−1;θ (n)) based on the whole information available at timet −1. A simi-
lar approach was used by Gray (1996) in the context of regime-switching GARCH
models to avoid the problem of the conditional standard deviation path dependence.
Note that ifxt−1,i was observable, thenXt given Rt = i andxt−1,i would be Gaus-

sian distributed with mean(1−β (n)
i )xt−1,i +α(n)

i and variance(σ (n)
i )2|xt−1,i|2γi

(n)
.

Hence, the estimation procedure described in Section 3.1 can be applied with the
following approximation of the mean-reverting regime pdf:

f
(

xt |Rt = i;xt−1;θ (n)
)

=
1

√
2πσ (n)

i |x̃t−1,i|γ
(n)
i

·

·exp











−

(

xt −
(

1−β (n)
i

)

x̃t−1,i −α(n)
i

)2

2
(

σ (n)
i

)2
|x̃t−1,i|2γi

(n)











. (9)

The expected values ˜xt,i = E(Xt,i|xt ;θ (n)) can be computed using the following re-
cursive formula (for the derivation see Janczura and Weron,2012a):

E
(

Xt,i|xt ;θ (n)
)

= P
(

Rt = i|xt ;θ (n)
)

xt +P
(

Rt 6= i|xt ;θ (n)
)

· (10)

·
{

α(n)
i +

(

1−β (n)
i

)

E
(

Xt−1,i|xt−1;θ (n)
)}

.

Moreover, these expected values are linear combinations ofthe observed vectorxt

and the probabilitiesP(R j = i|x j;θ (n)) calculated during the estimation procedure
(see the filtering part of the E-step):
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E
(

Xt,i|xt ;θ (n)
)

=
t−1

∑
k=0

xt−k

(

1−β (n)
i

)k
P
(

Rt−k = i|xt−k;θ (n)
)

·

·
k

∏
j=1

P
(

Rt− j+1 6= i|xt− j+1;θ (n)
)

+

+ α(n)
i

t−1

∑
k=0

(

1−β (n)
i

)k k

∏
j=0

P
(

Rt− j+1 6= i|xt− j+1;θ (n)
)

.

Hence, by using ˜xt−1,i = E(Xt−1,i|xt−1;θ (n)) in formula (9), instead ofxt−1, the
computational complexity of the E-step is greatly reduced.In fact, the total number
of probabilities stored in computer memory is now only 4T . This means that for a
sample ofT = 30 observations only 1 kilobyte of memory is required, compared to
335 kilobytes in the approach utilizing probabilities of the last 10 observations and
32 gigabytes in the standard EM algorithm.

3.3 Time-varying transition probabilities

The independent regime models discussed above can provide adequate fits to elec-
tricity spot prices in terms of the marginal distributions,but not in terms of the
temporal behavior. As Mount et al. (2006) and Cartea et al. (2009) have shown, the
timing of spikes could be improved by incorporating forwardlooking information
on capacity constraints. Unfortunately, the availability(to every market participant)
of the reserve margin data is limited. If temperature is usedas a proxy for the reserve
margin (as in Huisman, 2008), the results are not as good.

A relatively simple, yet potentially rewarding alternative is to admit a transition
matrix with time-varying probabilities of a one year period: pi j(t) = pi j(t +1year).
Following Janczura and Weron (2010) the probabilities can be calibrated in a two-
step procedure in the last part of the E-step of the EM algorithm. First, the probabil-
ities are estimated independently for each of the four seasons: Winter (months XII-
II), Spring (III-V), Summer (VI-VIII) and Autumn (IX-XI). Then they are smoothed
using a kernel density estimator with a Gaussian kernel. More complex annual struc-
tures and smoothing techniques can be used as well. Here, however, for simplicity
we will limit the analysis to the original approach.

3.4 Optimizing the cutoffs

To eliminate spike misclassification in some early MRS models, including the
unwanted feature of negative ‘expected spike sizes’, i.e.E(Xt,spike) < E(Xt,base),
Janczura and Weron (2009) proposed to use median-shifted spike regime distribu-
tions. This was motivated by a common-sense assumption thatsmall fluctuations
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should be driven by the base regime dynamics and only the large deviations by the
spike (or drop) regime dynamics. For EEX market data from theperiod 2001-2009
they found that models with shifted spike regime distributions (which assign zero
probability to prices below the median of deseasonalized prices) led to more realistic
descriptions of electricity spot prices.

Originally, Janczura and Weron (2009) introduced median-shifted log-normal:

log(Xt,i −X(qi))∼ N(αi,σ2
i ), Xt,i > X(qi), (11)

and Pareto:

Xt,i ∼ FPareto(σi,αi) = 1−
(αi

x

)σi
, x > αi ≥ X(qi), (12)

spike regime distributions, but the latter was found to be too heavy-tailed for the
analyzed datasets (Janczura and Weron, 2010). In the above formulasX(qi) denotes
the qi-quantile,qi ∈ (0,1), of the dataset. Generally the choice ofqi is arbitrary,
however, for simplicity it can be set to the median (which canbe interpreted as a
value representing the average capacity margin in a power market; when the price
exceeds this value the spikes occur) or a quartile (e.g. 1st for the drop and 3rd for
the spike regime, as in Janczura and Weron, 2012a) of the deseasonalized dataset.

Nothing, however, prevents us from optimizing these cutofflevels, both for the
spike and drop regimes. For the 3-regime model studied in Section 5, this can be
achieved by running a 2-dimensional optimization (e.g. using the Nelder-Mead sim-
plex routine in Matlab) with the objective of maximizing thelikelihood. Precisely,
for given cutoff levels the MRS model is calibrated and the log-likelihood function
is evaluated. Next, the log-likelihood is treated as a function of the cutoffs and the
optimization procedure is performed.

The computational cost is not overwhelming – typically under 100 calibrations
of the MRS model have to be performed before a (local) maximumis reached, using
the default parameters of the simplex routine in Matlab. Increasing the termination
tolerance can naturally greatly speed up the process, even without a significant loss
of precision. In Section 5 we will check how well this optimization works and how
different form the median or the quartiles are the obtained optimal cutoff levels.

4 Goodness-of-fit testing

The adequacy of the models can be evaluated on the base of descriptive statistics, as
well as, goodness-of-fit hypothesis tests. The former include the Inter-Quartile and
the Inter-Decile Range, i.e. the difference between the third and the first quartiles
(IQR) or ninth and first deciles (IDR). The quantile-based measures rather than the
less robust to outliers moment-related statistics are preferred (Janczura and Weron,
2010). A more sound decision can be made based on a goodness-of-fit test, tai-
lored to evaluate the fit of regime-switching models. Here webriefly summarize the
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methods proposed by Janczura and Weron (2012b); for derivations and performance
evaluation we refer to the original paper. The methods are based on the Kolmogorov-
Smirnov (K-S) goodness-of-fit test and verify whether the null hypothesisH0 that
observations come from the distribution implied by the model specification can-
not be rejected. The procedure can be easily adapted to otherempirical distribution
function (edf) type tests, like the Anderson-Darling test (see e.g. D’Agostino and
Stevens, 1986). For clarity of exposition we limit the discussion in this Section to
2-regime models only with the first regime driven by a mean-reverting process and
the second by an i.i.d.F2-distributed sample. However, all presented results are also
valid for L > 2.

Recall that the Kolmogorov-Smirnov test statistic is givenby:

Dn =
√

nsup
x∈R

|Fn(x)−F(x)|, (13)

wheren is the sample size,Fn is the empirical distribution function (edf) andF is
the corresponding theoretical cumulative distribution function (cdf). Hence, having
an i.i.d. sample(y1,y2, ...,yn), the test statistic can be calculated as

dn =
√

n max
1≤t≤n

∣

∣

∣

∣

∣

n

∑
k=1

1
n
I{yk≤yt}−F(yt)

∣

∣

∣

∣

∣

, (14)

where I is the indicator function. If hypothesisH0 is true, then the statisticDn

asymptotically has the Kolmogorov-Smirnov distribution (KS). Therefore ifn is
large enough, the following approximation holds

P(Dn ≥ c|H0)≈ P(κ ≥ c), (15)

whereκ ∼ KS andc is the critical value. Hence, thep-value for an i.i.d. sample
(y1,y2, ...,yn) can be approximated byP(κ ≥ dn).

4.1 The ewedf approach

The described above testing scheme is valid for i.i.d. samples. In order to apply it
in the framework of MRS models, we have to overcome two problems. First, the
regimes are only latent, so we cannot unambiguously distinguish observations from
different regimes (and consequently from different distributions). Second, there is a
dependence structure within the mean-reverting regime.

The first issue can be resolved by performing an identification of the state
process. Recall that, as a result of the estimation procedure described in Section
3, the so called ‘smoothed inferences’ about the state process are derived. The
smoothed inferences are the probabilities that thet-th observation comes from a
certain regime given the whole available informationP(Rt = i|x1,x2, ...,xT ). Hence,
a natural choice is to relate each observation with the most probable regime by
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letting Rt = i if P(Rt = i|x1,x2, ...,xT ) > 0.5. However, we have to mention, that
the hypothesisH0 now states that(x1,x2, ...,xT ) is driven by a regime-switching
model with known state process values. We call this approach‘ewedf’, which stands
for ‘equally-weighted empirical distribution function’ (Janczura and Weron, 2009,
2012b).

Now, we focus on the problem of dependence between mean-reverting regime
observations. Provided that the values of the state processRt are known, observa-
tions can be split into separate subsamples related to each of the regimes. Namely,
subsamplei consists of all valuesXt satisfyingRt = i. The regimes are indepen-
dent from each other, but the i.i.d. condition must be satisfied within the subsamples
themselves. Therefore the mean-reverting regime observations are substituted by
their respective residuals. Using the Euler scheme and rearranging terms of formula
(5), we get that

εt,1 =
Xt − (1−β1∆ t)Xt−∆ t −α1∆ t√

∆ tσ1|Xt−∆ t |γ1
, (16)

has the standard Gaussian distribution, where∆ t is the time interval between con-
secutive mean-reverting regime observations. However, since the Euler scheme is
an approximation of a continuous process, formula (16) is valid only for small∆ t.
In contrast, if the mean-reverting regime dynamics is givenby the AR(1) process,
i.e. the process defined by (4) withγ = 0, exact residuals can be derived. Precisely,
the residuals are derived from all pairs of consecutive AR(1) observations as:

εt,1 =
xt − (1−β1)

kxt−1−α1
1−(1−β1)

k

β1

σ1

√

1−(1−β1)2k

1−(1−β1)2

, (17)

where(k−1) is the number of latent observations from the mean revertingregime
(or equivalently the number of observations from the secondregime that occurred
between two consecutive AR(1) observations) andα1, β1 and σ1 are the model
parameters, see (4).

Transformation (16), or (17) in the AR(1) case, ensures thatthe subsample
containing observations from the mean-reverting regime isi.i.d. Since the second
regime is i.i.d. by definition, the standard Kolmogorov-Smirnov test can be applied
to each of the subsamples.

The goodness-of-fit of the marginal distribution of the individual regimes can be
formally tested, using the test statistic (14). For the mean-reverting regime,F is the
standard Gaussian cdf and(y1,y2, ...,yn1) is the subsample of the standardized resid-
uals obtained by applying transformation (17), while for the other regimes,F is the
model specified cdf (i.e.F2) and(y1,y2, ...,yn2) is the subsample of respective obser-
vations. Observe that the ‘whole model’ goodness-of-fit canbe also verified, using
the fact that forX ∼ F2 we have thatY = (F)−1[F2(X)] is F-distributed. Indeed,
a sample(y1

1,y
1
2, ...,y

1
n1
,y2

1,y
2
2, ...,y

2
n2
), wherey1

t ’s are the standardized residuals of
the mean-reverting regime, whiley2

t ’s are the transformed variables corresponding
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to the second regime, i.e.y2
t = (F)−1[F2(xt,2)] with F being the standard Gaussian

cdf, is i.i.d.N(0,1)-distributed and, hence, the testing procedure is applicable.

4.2 The wedf approach

Now, we briefly mention another potentially useful testing approach dealing with
the latency of the state process. Observe, that in the standard goodness-of-fit test-
ing approach based on the edf each observation is taken into account with weight
1
n (i.e. inversely proportional to the size of the sample). However, in MRS models
the state process is latent. The estimation procedure (the EM algorithm) only yields
the probabilities that a certain observation comes from a given regime. Moreover,
in the resulting marginal distribution of the MRS model eachobservation is, in fact,
weighted with the corresponding probability. Therefore, asimilar approach could
be used in the testing procedure. As Janczura and Weron (2012b) have shown, this
is possible for independent regime models with homoskedastic mean-reverting dy-
namics, i.e. withγ = 0 in formula (4). The approach uses the concept of the weighted
empirical distribution function (wedf):

Fw
n (x) =

n

∑
t=1

wtI{yt<x}
∑n

t=1 wt
, (18)

where(y1,y2, ...,yn) is a sample of observations and(w1, ...,wn) are the correspond-
ing weights, such that 0≤ wt ≤ M, ∀t=1,...,n. A natural choice of weights seems to
be wt = P(Rt = i|x1,x2, ...,xT ) = E(I{Rt=i}|x1,x2, ...,xT ) for the i-th regime obser-
vations. Indeed, it can be shown that, if theH0 hypothesis is true, the test statistic

Dw
n =

√
nsup

x∈R
|Fw

n (x)−F(x)|, (19)

converges weakly to the Kolmogorov-Smirnov distribution,with Fw
n derived for the

sample(y1
1,y

1
2, ...,y

1
T−1,y

2
1,y

2
2, ...,y

2
T ), where(y1

1,y
1
2, ...,y

1
T−1) are the transformed

variables of the mean-reverting regime and(y2
1,y

2
2, ...,y

2
T ) are the variables corre-

sponding to the second regime, i.e.y2
t = (F)−1[F2(xt)] with F being the standard

Gaussian cdf. The transformation of the mean-reverting regime observations is, sim-
ilarly as in the ewedf approach, based on deriving the process residuals. We have:

εt,1 =
Xt,1−α − (1−β )E(Xt−1,1|xt−1)
√

(1−β )2Var(Xt−1,1|xt−1)+σ2
, (20)

whereE(Xt−1,1|xt−1) andVar(Xt−1,1|xt−1) can be calculated using the following
formulas:
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E(Xt,1|xt) = P(Rt = 1|xt)xt +

+P(Rt 6= 1|xt) [α +(1−β )E(xt−1,1|xt−1)] , (21)

E(X2
t,1|xt) = P(Rt = 1|xt)x

2
t +

+P(Rt 6= 1|xt)
[

α2+2α(1−β )E(Xt−1,1|xt−1)+

+(1−β )2E(X2
t−1,1|xt−1)+σ2]

. (22)

Finally, the p-value for the sample(y1
1,y

1
2, ...,y

1
T−1,y

2
1,y

2
2, ...,y

2
T ) can be approxi-

mated byP(κ ≥ dn), where

dn =
√

n max
1≤t≤n

max
i=1,2

∣

∣Fw
n (yi

t)−F(yi
t)
∣

∣ (23)

is the test statistic. Note, that for a given value ofdn, P(κ > dn) is the standard
Kolmogorov-Smirnov testp-value, so that the K-S test tables can be applied in the
wedf approach.

4.3 Critical values

Note, that the described above testing procedure is valid only if the parameters of
the hypothesized distribution are known. Unfortunately intypical applications the
parameters have to be estimated beforehand. If this is the case, then the critical
values for the test must be reduced (Čižek et al., 2011). In other words, if the value
of the test statisticsdn is d, then thep-value is overestimated byP(dn ≥ d). Hence,
if this probability is small, then thep-value will be even smaller and the hypothesis
will be rejected. However, if it is large then we have to obtain a more accurate
estimate of thep-value.

To cope with this problem, Ross (2002) recommends to use Monte Carlo simula-
tions. In our case the procedure reduces to the following steps. First, the parameter
vectorθ̂ is estimated from the dataset and the test statisticdn is calculated accord-
ing to formula (14). Next,̂θ is used as a parameter vector forN simulated samples
from the assumed model. For each sample the new parameter vector θ̂i is estimated
and the new test statisticdi

n is calculated using formula (14). Finally, thep-value is
obtained as the proportion of simulated samples with the test statistic values higher
or equal todn, i.e.p-value= 1

N #{i : di
n ≥ dn}.

5 Application to electricity spot prices

In this study we present how the techniques introduced in Section 3 can be used to
efficiently calibrate MRS models to electricity spot pricesand test their goodness-
of-fit using the ewedf approach described in Section 4. We usemean daily (baseload)
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Fig. 3 Mean daily spot EEX (top) and NEPOOL (bottom) prices and the estimated long-term
seasonal components (LTSC; thick blue lines).

spot prices from two major power markets: the European Energy Exchange (EEX;
Germany) and the North American New England power market (NEPOOL, U.S.).
Using baseload data is quite common in the energy economics literature, partly
due to the fact that baseload is the most common underlying instrument for en-
ergy derivatives. Both samples total 1820 daily observations (or 260 full weeks) and
cover the roughly 5-year period January 2, 2006 – December 26, 2010, see Figure
3.

When modeling electricity spot prices we have to bear in mind that electricity
is a very specific commodity. Both electricity demand and (tosome extent) sup-
ply exhibit seasonal fluctuations, arising due to changing climate conditions, like
temperature and the number of daylight hours, and business activity. These seasonal
fluctuations can be then observed in electricity spot prices. In the mid- and long-term
also the fuel price levels (of natural gas, oil, coal) influence electricity prices.

Not wanting to focus the paper on modeling the fundamental drivers of electric-
ity prices, a single non-parametric long-term seasonal component (LTSC) is used
here to represent the long-term non-periodic fuel price levels, the changing cli-
mate/consumption conditions throughout the years and strategic bidding practices.
As shown by Janczura and Weron (2010), a wavelet-estimated LTSC pretty well re-
flects the ‘average’ fuel price level, understood as a combination of NG, crude oil
and coal prices; see also Eydeland and Wolyniec (2012) and Karakatsani and Bunn
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(2010) for a treatment of fundamental and behavioral drivers of electricity prices.
On the other hand, as discussed recently in Janczura and Weron (2012a), the use of
the wavelet-based LTSC is somewhat controversial. Predicting it beyond the next
few weeks is a difficult task, because individual wavelet functions are quite local-
ized in time or (more generally) in space. Preliminary research suggests, however,
that despite this feature the wavelet-based LTSC can be extrapolated into the fu-
ture yielding a better on-average prediction of the level offuture spot prices than
an extrapolation of a sinusoidal LTSC (Nowotarski et al., 2011). As mentioned by
Janczura and Weron (2010), a potentially promising, alternative approach would
be to use forward looking information, like smoothed forward curves (Benth et al.,
2007; Borak and Weron, 2008). The information carried by forward prices provides
insights as to the future evolution of spot prices. However,forward prices also in-
clude the risk premium (Benth et al., 2008; Weron, 2008), which should somehow
be separated from the spot price forecast for it to be useful.

In this empirical study we assume that the electricity spot price, Pt , can be rep-
resented by a sum of two independent parts: a predictable (seasonal) componentft
and a stochastic componentXt , i.e. Pt = ft +Xt . Further, we letft be composed of
a weekly periodic part,st , and a LTSC,Tt . The deseasonalization is then conducted
in three steps. First, the long term trendTt is estimated from daily spot pricesPt

using a wavelet filtering-smoothing technique (for detailssee Tr̈uck et al., 2007;
Weron, 2006). This procedure, also known as low pass filtering, yields a traditional
linear smoother. Here we use theS6 approximation, which roughly corresponds to
bi-monthly (26 = 64 days) smoothing. The estimated long term seasonal compo-
nents are plotted in Figure 3.

The price series without the LTSC is obtained by subtractingtheS6 approxima-
tion from Pt . Next, the weekly periodicityst is removed by subtracting the ‘average
week’ calculated as the mean of prices corresponding to eachday of the week (the
German and U.S. national holidays are treated as the eight day of the week). Finally,
the deseasonalized prices, i.e.Xt = Pt −Tt − st , are shifted so that the mean of the
new processXt is the same as the mean ofPt . The resulting deseasonalized time
seriesXt = Pt −Tt − st can be seen in Figures 4 and 5.

The second well known feature of electricity prices are the sudden, unexpected
price changes, known as spikes or jumps. The ‘spiky’ nature of spot prices is the
effect of non-storability of electricity. Electricity to be delivered at a specific hour
cannot be substituted for electricity available shortly after or before. Extreme load
fluctuations – caused by severe weather conditions often in combination with gen-
eration outages or transmission failures – can lead to pricespikes. On the other
hand, an oversupply – due to a sudden drop in demand and technical limitations of
an instant shut-down of a generator – can cause price drops. Further, electricity spot
prices are in general regarded to be mean-reverting and exhibit the so called ‘inverse
leverage effect’, meaning that the positive shocks increase volatility more than the
negative shocks. Knittel and Roberts (2005) attributed this phenomenon to the fact
that a positive shock to electricity prices can be treated asan unexpected positive
demand shock. Therefore, as a result of convex marginal costs, positive demand
shocks have a larger impact on price changes relative to negative shocks.
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Fig. 4 Calibration results of a MRS model with three independent regimes fitted to the deseason-
alized EEX prices depicted in the top panel of Fig. 3. This is the ‘optimal’ calibration scenario
with the cutoffsq2 andq3 obtained as a result an optimization procedure. The lower panels display
the conditional probabilitiesP(S) = P(Rt = 2|x1,x2, ...,xT ) andP(D) = P(Rt = 3|x1,x2, ...,xT ) of
being in the spike or drop regime, respectively, and the time-varying unconditional probabilities
P(Rt = s) of being in the spike regime. The prices classified as spikes or drops, i.e. withP(S)> 0.5
or P(D)> 0.5, are denoted by dots or ‘x’ in the upper panel.

Motivated by these features of electricity spot prices we let the stochastic com-
ponentXt be driven by a Markov regime-switching model with three independent
states:

Xt =







Xt,1 if Rt = 1,
Xt,2 if Rt = 2,
Xt,3 if Rt = 3.

(24)

The first (base) regime describes the ‘normal’ price behavior and is given by the
mean-reverting, heteroskedastic process of the form:

Xt,1 = α1+(1−β1)Xt−1,1+σ1|Xt−1,1|γ1εt , (25)

whereεt is the standard Gaussian noise. The second regime represents the sudden
price jumps (spikes) caused by unexpected supply shortagesand is given by i.i.d.
random variables from the shifted log-normal distribution:

log(Xt,2−X(q2))∼ N(α2,σ2
2), Xt,2 > X(q2). (26)
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Fig. 5 Calibration results of a MRS model with three independent regimes fitted to the deseason-
alized NEPOOL prices depicted in the bottom panel of Fig. 3. This is the ‘optimal’ calibration
scenario with the cutoffsq2 and q3 obtained as a result an optimization procedure. The lower
panels display the conditional probabilitiesP(S) = P(Rt = 2|x1,x2, ...,xT ) and P(D) = P(Rt =
3|x1,x2, ...,xT ) of being in the spike or drop regime, respectively, and the time-varying uncondi-
tional probabilitiesP(Rt = s) of being in the spike regime. Like in Figure 4, the prices classified as
spikes or drops, i.e. withP(S)> 0.5 or P(D)> 0.5, are denoted by dots or ‘x’ in the upper panel.

Finally, the third regime (responsible for the sudden pricedrops) is governed by the
shifted ‘inverse log-normal’ law:

log(−Xt,3+X(q3))∼ N(α3,σ2
3), Xt,3 < X(q3). (27)

In the above formulasX(qi) denotes theqi-quantile,qi ∈ (0,1), of the dataset.
The deseasonalized pricesXt , the conditional probabilities of being in the spike

P(Rt = 2|x1,x2, ...,xT ) or drop P(Rt = 3|x1,x2, ...,xT ) regime for the analyzed
datasets and the time-varying unconditional probabilities P(Rt = s) of being in the
spike regime are displayed in Figures 4 and 5. The prices classified as spikes or
drops, i.e. withP(Rt = 2|x1,x2, ...,xT ) > 0.5 or P(Rt = 3|x1,x2, ...,xT ) > 0.5, are
additionally denoted by dots or ‘x’. The estimated model parameters and the num-
bers of observations classified as spikes or drops are given in Table 1. The calibration
results are reported for three different scenarios called:‘optimal’ (with the cutoffs
q2 andq3 obtained as a result an optimization procedure), ‘quartiles’ (with the cut-
offs being arbitrarily set to the 1st and 3rd quartiles of thedeseasonalized dataset:
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Table 1 Calibration results under three different scenarios for the MRS model with three in-
dependent regimes (25)-(27) fitted to the deseasonalized EEX and NEPOOL prices. For sce-
nario definitions see text. The numbers of observations classifiedas spikes (#S), i.e. withP(Rt =
2|x1,x2, ...,xT ) > 0.5, or drops (#D), i.e. withP(Rt = 3|x1,x2, ...,xT ) > 0.5, are additionally pro-
vided in the last two columns.

Calibration Parameters Probabilities
scenario α1 β1 σ2

1 γ1 α2 σ2
2 α3 σ2

3 p11 p22 p33 #S #D
EEX

optimal (0.25%, 0.69%) 18.82 0.40 0.40 0.51 2.21 0.86 2.37 0.39 0.90 0.68 0.60 238 193
quartiles (0.25%, 0.75%) 18.95 0.40 0.64 0.45 2.23 0.91 2.38 0.38 0.91 0.64 0.61 192 189
median (0.5%, 0.5%) 18.47 0.39 0.28 0.55 2.62 0.51 2.59 0.29 0.90 0.68 0.66 200240

NEPOOL
optimal (0.24%, 0.65%) 14.68 0.25 0.86 0.35 2.61 0.50 2.04 0.26 0.95 0.75 0.87 239 145
quartiles (0.25%, 0.75%) 15.12 0.26 3.28 0.19 2.45 0.66 2.07 0.25 0.95 0.74 0.87 229 140
median (0.5%, 0.5%) 14.84 0.25 0.33 0.47 2.84 0.33 2.55 0.10 0.95 0.76 0.87 234161

Table 2 Goodness-of-fit statistics for the MRS model with three independent regimes (25)-(27)
fitted to the deseasonalized EEX and NEPOOL prices. For parameterestimates see Table 1.

Calibration K-S testp-values LogL
scenario Base Spike Drop Model

EEX
optimal (0.25%, 0.69%) 0.8433 0.3106 0.9323 0.5887 -5432.17
quartiles (0.25%, 0.75%) 0.8912 0.1940 0.7898 0.4370 -5459.58
median (0.5%, 0.5%) 0.8857 0.0156 0.2767 0.1355 -5492.59

NEPOOL
optimal (0.24%, 0.65%) 0.1480 0.4556 0.9529 0.3690 -5222.08
quartiles (0.25%, 0.75%) 0.1159 0.3233 0.9655 0.2339 -5233.92
median (0.5%, 0.5%) 0.1925 0.7821 0.9195 0.2988 -5232.62

q2 = 0.75%,q3 = 0.25%) and ‘median’ (with the cutoffs being arbitrarily set tothe
median of the deseasonalized dataset:q2 = q3 = 0.5%).

Although the estimated parameters, probabilities and the numbers of identified
spikes and drops differ between the scenarios, the obtainedbase regime parame-
ters are consistent with the well known properties of electricity prices. In particular,
β1 ∈ [0.25,0.40] indicates a relatively high speed of mean-reversion, whilepositive
values ofγ ∈ [0.19,0.55] are responsible for the ‘inverse leverage effect’. Consider-
ing probabilitiespii of staying in the same regime we obtain quite high values for
each of the regimes, ranging from 0.60 for the drop regime in the EEX market up
to 0.95 for the base regime in the NEPOOL market. As a consequence, on aver-
age there are many consecutive observations from the same regime. Finally, since
both analyzed markets are characterized by relatively similar climate conditions the
patterns of spike intensity, as measured by the periodic unconditional probabilities
P(Rt = s), are similar (see the bottom panels in Figures 4 and 5). The spike intensity
is the highest in Winter and the lowest in Spring.

In order to check the statistical adequacy of the fitted MRS models we perform
a Kolmogorov-Smirnov (K-S) goodness-of-fit type test for each of the individual
regimes, as well as, for the whole model (for test details seeSection 4 and Janczura
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Fig. 6 Log-likelihoods of the best fitted models for each of the possiblespike and drop regime
cutoffs (0, 0.01, ..., 1) for EEX (left panels) and NEPOOL (right panels) deseasonalized daily
prices. Bottom panels display contour plots of the upper panels. Note, that for both datasets high
values for the spike cutoff and low for the drop cutoff are preferred. The optimal cutoffs for the
EEX dataset areq2 = 0.69% andq3 = 0.25%, while for the NEPOOL datasetq2 = 0.65% and
q3 = 0.24%, see Table 2.

and Weron, 2012b). The goodness-of-fit results are reportedin Table 2, together with
the log-likelihood values. All but one (EEX prices, spike regime, ‘median’ scenario)
K-S testp-values are higher than the commonly used 5% significance level, hence
we cannot generally reject the hypotheses that the datasetsfollow the fitted MRS
models. Looking at the optimal cutoffs –q2 = 0.69% andq3 = 0.25% for the EEX
dataset andq2 = 0.65% andq3 = 0.24% for the NEPOOL dataset – we can observe
that in both cases high values for the spike cutoff and low forthe drop cutoff are
preferred, see also Figure 6. What is interesting, these values are relatively close
to the 3rd and 1st quartiles, yet the ‘quartiles’ scenario isnot always better than
the ‘median’ scenario. It seems that by arbitrarily settingthe cutoffs to the quartiles
too many spikes in the NEPOOL dataset were excluded from being classified into
the spike regime. This resulted in a relatively low log-likelihood value. Overall, we
suggest to use the ‘optimal’ scenario as it yields significantly higher log-likelihood
values and higherp-values of the K-S type test for the whole model, see Table 2.
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6 Conclusions

In this paper we have reviewed the calibration and statistical validation techniques
for Markov regime-switching (MRS) models of electricity spot prices. In particu-
lar, in Section 3 we have presented an efficient parameter estimation algorithm for
independent regime MRS models. Instead of storing conditional probabilities for
each of the possible state process paths, it requires conditional probabilities for only
one time-step. This allows for a 100 to over 1000 times fastercalibration than in
case of a competing approach utilizing probabilities of thelast 10 observations. We
have further shown how to improve the temporal fit of the models to electricity spot
price data by introducing time-varying (periodic) transition probabilities and how
to modify the calibration scheme by optimizing the cutoffs defining the spike and
drop regimes. The latter improvement results in significantly higher log-likelihood
values and higherp-values of the goodness-of-fit test for the whole model.

While most of the electricity spot price models proposed in the literature are ele-
gant, their fit to empirical data has either been not examinedthoroughly or the signs
of a bad fit ignored. This can have far-reaching consequencesif such misspecified
models are used for forecasting or risk management applications. The goodness-of-
fit tests discussed in Section 4 provide an efficient tool for accepting or rejecting a
given MRS model for a particular dataset.

Finally, in Section 5 we have put the theoretical tools to useand built models
of deseasonalized wholesale spot prices from the EEX and NEPOOL markets. The
studied independent regime model fits market data well and also replicates the major
stylized facts of electricity spot price dynamics. In particular, the parameterγ can be
treated as a parameter representing the ‘degree of inverse leverage’. Its positive value
indicates ‘inverse leverage’, which reflects the observation that positive electricity
price shocks increase volatility more than negative shocks.

This paper does not resolve, however, all problems encountered when modeling
wholesale electricity spot prices. In particular, we have not checked whether the
studied MRS model recovers the market observed term structure of volatility. As
Janczura and Weron (2012a) have reported, the electricity forward prices implied
by the considered spot price models exhibit the so-called Samuelson effect (i.e. a
decrease in volatility with increasing time to maturity; for the considered models
the volatility scales ase−β (T−t)), but the rate of decrease is completely determined
by the speed of mean-reversionβ . Empirical evidence shows, however, that the rate
of decrease should be large only for maturities up to a year (Kiesel et al., 2009). Per-
haps, incorporating another stochastic factor would lead to a more realistic forward
price curve.
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