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Abstract—Electromagnetic field (EMF) measurements have limited
accuracy, which is additionally impaired by meter self-noise influence.
In this paper a novel noise cancellation method is proposed, based
on the Hidden Markov Model (HMM) methodology. It allows to
calculate the overall field intensity with a much higher accuracy than
that obtained from other popular approaches, especially when EMF
measurements are close to the noise level. The effectiveness of the new
method is illustrated on two EMF datasets, one recorded in an urban
and another in a rural area. Its performance is further evaluated in a
thorough simulation study using datasets representing the two distinct
noisy environments.

1. INTRODUCTION

The progress of civilization is marked by intensive growth of emissions
to the environment. The intensification of the electromagnetic field
(EMF) is a result of increasing energy demand (more and more
devices are powered by electric energy) and the popularization of radio
communication systems, especially data transmission. In the past, the
dominant EMF sources of broadcasting systems used to be radio and
TV transmitters, usually located at dedicated sites. In modern duplex
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systems, however, EMF sources can be found both in dense networks
of base stations and within mobile terminals. The latter are usually
low power sources, but exist in large quantity. Despite the fact that in
most cases the measured EMF intensity is well below hazardous levels,
there is a need for constant and preferably automated monitoring of
this exposure with the ultimate objective of predicting alarming trends
that could threaten the society [2].

To this end, we develop a novel noise cancellation method based
on the Hidden Markov Model (HMM) methodology. HMMs have
been exploited in many areas including pattern recognition, seismic
radiation and electricity markets [3, 6]. In this paper we show that
HMMs can serve as a useful tool for the decomposition of EMF
measurements into the “real” signal and noise. In Section 2 we briefly
review the methodology of EMF measurement. In the following Section
we recall commonly used methods for minimizing self-noise influence on
measurements and introduce our method. Next, in Section 4 we apply
these methods to two EMF datasets, one recorded in an urban and
another in a rural area. We also evaluate the performance of the HMM
method in a thorough simulation study using datasets representing the
two distinct noisy environments. Finally, in Section 5 we conclude.

2. EMF MEASUREMENT METHODOLOGY

The electromagnetic field is characterized by a number of parameters.
However, when considering the influence of EMF on the biosphere,
the most important information is the intensity of particular EMF
elements in defined frequency ranges. By analyzing frequency bands,
it is possible to identify the EMF source class, for example, in radio
communication: radio diffusion and mobile radio communication,
etc. This approach prefers broadband measurements or single band
measurements using meters with passive broadband probes, which
allow measurements in direct surroundings of primary and secondary
EMF sources. Broadband meters are widely used in measurements
related to work safety and environment protection. Since the meter
manufacturers have developed spherical and frequency characteristic
shaping of the probes, the resulting measurements are equivalent to
field intensity from the entire probe frequency range. The elementary
weakness of this technique is a relatively high detection threshold,
limited with detector sensitivity to a minimum of about 1 V/m (up
to 0.1 V/m in the individual projects) and measurement dynamics less
than 40 dB. These values can be found in manufacturer specifications
of most of the common broadband EMF meters. Our measurements
show that the self-noise level is oscillating between 0.12 and 0.35 V/m



Automated noise cancellation in EMF measurement 3

for more sensitive and between 0.8 and 1.7 V/m for less sensitive
probes. These values can increase in the course of time, what can
be explained by electric circuit aging and probe characteristic change
related to momentary probe overrides. As a result, even in the case
of “electromagnetic silence”, the average meter indication will take
values above mentioned levels. Among other factors limiting EMF
measurement accuracy (regardless of the method) let us mention the
field distribution around the EMF sources.

In Figure 1 we compare measurement results obtained from three
common EMF meters. Measurements were made by putting the
devices in a standard EMF with known intensity value (X axis) and
recording 50 measurement results. We can observe a dispersion of
results which illustrates meter indication instability and influence of
self-noises on measurement results. As expected, with the growth of
EMF intensity, the results are more and more repetitive and better
match the actual EMF value (Estandard). Moreover, even in the case of
“electromagnetic silence” the average meter indication will take a value
corresponding to its self-noise level. This can cause false instrument
readings when measuring EMF level trends, if the measured EMF levels
are lower than the meter self-noise.

A much lower detection threshold and significantly greater
dynamics can be reached using the selective measurement technique
preferred in EMF exposure measurements at GSM base stations [1, 12].
It is recommended to use in such systems specially designed multiband
[5] or wideband antennas [8], which allow to obtain sensitivity at the
level of a single mV/m with dynamics up to 140 dB, and to apply band-
pass filters to minimize noise influence [9]. The resulting field intensity
Eeval corresponding to a broadband measurement is calculated using
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Figure 1. Self-noise measurement of common EMF meters.
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the following formula:

Eeval =

√

∑

n
E2

n, (1)

where En is the EMF intensity from band n with width corresponding
to the RBW filter used in spectrum analyzer measurements.

In this case we also have to deal with the meter self-noise,
especially when analyzing EMF intensity from the entire meter
frequency range and relatively low measured EMF levels. In such a
situation, components affected by the meter self-noise become much
more meaningful in the resultant EMF intensity. Based on authors’
rough estimates, in the case of measurements, where EMF intensity
exceeds slightly the noise level, the errors can even reach a value of 10
dB. It is desirable to minimize this background noise influence [11].

3. METHODS OF MINIMIZATION OF SELF-NOISE
INFLUENCE ON MEASUREMENT RESULT

3.1. Commonly used methods

The simplest method of noise elimination is cutting off (or zeroing) all
the spectrum components whose level does not exceed a given value. It
is useful only when the noise level is constant, not related to frequency
and possible to obtain using only selective EMF meters. Another
method is the average noise level measurement, which is constructed
by subtracting the meter noise level from each sample En. In this
method formula (1) takes the form:

Eeval−noise =

√

∑

n
(En − En,noise)2, (2)

where En,noise is the meter noise level for the frequency corresponding
to the n-th sample of the signal. This method is applicable when the
meter self-noise is known and independent of both time and meter
settings. Using this approach it is possible to decrease the noise level
influence by a few dB.

A much better method, applicable in any conditions, is to take into
account only those sub-bands from the whole spectrum, which contain
useful signals. This can be done by selecting the signal peaks from the
noise background. In practice, when performing measurement using a
selective EMF meter, the operator chooses which signal is treated as
potentially significant and taken as a component of the EMF intensity
value. The problem with this approach is that it is subjective – it
heavily depends on the meter operator’s experience and perception of
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what is a signal and what is not. It is exactly our aim to automate the
frequency sub-band selection process and make it more objective and
meter operator-independent.

3.2. A new method based on HMM filtering

The underlying idea behind Hidden Markov Models (HMMs) is to
describe the observed phenomena by two (or more) separate phases or
regimes with different statistical properties. Since the observed EMF at
each frequency band n can be either the meter noise or the “real” EMF,
we use a two state HMM. The measurements En are described by two
separate states (phases, regimes) with different underlying properties.
The values En,i within a given regime are assumed to be independent,
identically distributed random variables following some distribution
function Fi. Here, we use the Gaussian distribution for the noise and
the log-normal distribution for the “real EMF” regime:

En =

{

En,1 ∼ N(µ1, σ
2
1) if Rn = 1,

En,2 ∼ LN(µ2, σ
2
2) if Rn = 2,

(3)

where “1” is the noise regime, “2” denotes the “real” EMF regime and
Rn is the state variable for band n. Recall, that the random variable
X is driven by the log-normal distribution with parameters µ and σ
if ln(X) ∼ N(µ, σ2). Such a choice of distributions is motivated by
a good fit to the analyzed data. However, nothing prevents us from
using other probability laws in the HMM approach.

Definition (3) implies that the statistical properties of the
measurements differ depending on the actual state Rn. The
switching mechanism between the states is assumed to be governed
by an unobserved (latent) Markov chain. Consequently, we have a
probability law that governs the transition from one state to another.
It is given by the transition matrix P which contains the probabilities
pij = P (Rn+1 = j|Rn = i) of switching from regime i to regime j,
when changing from frequency band n to n + 1.

HMM identification (regimes, parameters) can be performed in
a number of ways. Here we follow [7] and apply the expectation-
maximization (EM) algorithm, where the whole set of parameters θ
is estimated within an iterative two-step procedure. The algorithm
starts with an arbitrarily chosen vector of initial parameters θ(0) =

(µ
(0)
i , σ

(0)
i ,P(0), ρ

(0)
i ), for i = 1, 2, where ρ

(0)
i ≡ P (R1 = i). In the first

step of this iterative procedure (the E-step) inferences about the state
values, i.e., the conditional probabilities P (Rn = i|E1, ..., EN ; θ) for the
measurement being in regime i at frequency band n, are made. Next, in
the second step (the M-step) new maximum likelihood (ML) estimates
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[3] of the parameter vector θ, based on the smoothed inferences
obtained in the E-step, are calculated. Both steps are repeated until
the (local) maximum of the likelihood function is reached. A detailed
description of the algorithm is given below.

E-step: Assume that θ(k) is the parameter vector calculated in
the M-step during the previous iteration. The E-part consists of the
following steps [6, 7]:

i) Forward filtering: for n = 1, 2, ..., N iterate on equations:

P (Rn = i|En; θ(k)) =
P (Rn = i|En−1; θ(k))gi(En; θ(k))

∑2
i=1 P (Rn = i|En−1; θ(k))gi(En; θ(k))

,

where En = (E1, E2, ..., En) is the vector of measurements and

gi(En; θ(k)) is the probability density function (PDF) of the EMF
at frequency band n conditional on the measured value coming
from regime i (here, g1 and g2 are Gaussian and log-normal PDFs,
respectively); and

P (Rn+1 = i|En; θ(k)) =
∑2

j=1
p
(k)
ji P (Rn = j|En; θ(k)),

until P (RN = i|EN ; θ(k)) is calculated. The starting point for the

iteration is: P (R1 = i|E0; θ(k)) = ρ
(k)
i .

ii) Backward filtering: for n = N − 1, N − 2, ..., 1 iterate on

P (Rn = i|EN ; θ(k)) =
2

∑

j=1

P (Rn = i|En; θ(k))P (Rn+1 = j|EN ; θ(k))p
(k)
ij

P (Rn+1 = j|En; θ(k))
.

M-step: The new parameter estimates θ(k+1) can be derived by
maximizing the log-likelihood function. In the considered case:

µ
(k+1)
i =

∑N
n=1 fi,nP (Rn = i|EN ; θ(k))
∑N

n=1 P (Rn = i|EN ; θ(k))
,

(

σ
(k+1)
i

)2
=

∑N
n=1 gi,nP (Rn = i|EN ; θ(k))
∑N

n=1 P (Rn = i|EN ; θ(k))
,

where f1,n = En, f2,n = I{En>0} ln(En), I is the indicator function,

g1,n = [En − µ
(k+1)
1 ]2, g2,n = [ln(En) − µ

(k+1)
2 ]2 and i = 1, 2.
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Finally, we have ρ
(k+1)
i = P (R1 = i|EN ; θ(k)) and the transition

probabilities are estimated according to the following formula [6, 7]:

p
(k+1)
ij =

∑N
n=2 P (Rn = j|EN ; θ(k))

p
(k)
ij P (Rn−1=i|En−1;θ(k))

P (Rn=j|En−1;θ(k))
∑N

n=2 P (Rn−1 = i|EN ; θ(k))
,

where p
(k)
ij is the transition probability from the previous iteration. All

values obtained in the M-step are then used as a new parameter vector

θ(k+1) = (µ
(k+1)
i , σ

(k+1)
i ,P(k+1), ρ

(k+1)
i ), i = 1, 2, in the next iteration

of the E-step. The algorithm is terminated when |θ(k) − θ(k−1)| < δ for
some small δ.

4. EMPIRICAL RESULTS

4.1. EMF datasets and data preprocessing

We illustrate the effectiveness of the HMM-based method using EMF
intensity measurements obtained with a selective meter SRM-3000 sn.
M-0008 with an isotropic probe (band 75 MHz – 3 GHz) sn. H-0185.
Both were calibrated in a certified calibrating laboratory (calibration
certificate no. LWIMP/W/009/10). The datasets were collected in
an urban (Wroc law downtown – D1) and a rural (a small village in
the Sudety Mountains – D2) area to obtain spectra with more and
less significant spectral bands. As can be observed in the top panels
of Figure 2, the noise is non-homogeneous. The noise level changes
with frequency and the variance of the noise increases with noise level
(note, that in Figure 2 the variance seems to be stable only because
a logarithmic scale is used). Consequently, in order to deal with the
variance dependence on the noise level, we worked with the logarithm
of the signal (and not the signal itself). To cope with the changing
noise level we estimated it using a moving median of length N/10,
where N is the number of frequency bands in the dataset.

4.2. HMM filtering results

We fitted a HMM defined in Section 3.2 to the transformed datasets,
i.e., to X(n) = log(En) − log(Lnoise), where Lnoise stands for the
“moving median”-estimated noise level. The filtering results for the
transformed values X(n), i.e., the probabilities P (Rn = 2|EN ) of being
in the “real” EMF regime (conditional on the information included in
the whole dataset EN ), are plotted in the bottom panels of Figure 2.
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Figure 2. Filtering results for datasets D1 (a) and D2 (b). The
probabilities P (Rn = 2|EN ) of being in the “real” EMF regime are
plotted in the bottom panels. Values classified into the “real” EMF
regime, i.e., with P (Rn = 2|EN ) > 0.5 are denoted by dots in the top
panels depicting the original signal En on a logarithmic scale.

Table 1. EMF intensity values calculated using three different noise
reduction methods.

Data Eeval [V/m] Eeval−noise [V/m] EHMM [V/m]

D1 1.0906 1.0319 1.0647

D2 0.2505 0.0873 0.0670

In our procedure the values with P (Rn = 2|EN ) > 0.5 are classified
as belonging to the “real” EMF regime and denoted by dots in the
top panels. This classification allows for automated selection of those
frequency sub-bands from the whole spectrum, which contain useful
signals, i.e., the “real” EMF signal. Summing E2

n only over those sub-
bands yields the HMM estimate, EHMM , of the field intensity.

For comparison purposes, we calculated the field intensity values
using three different approaches, see Table 1. The Eeval values were
calculated from (1) for the whole dataset (D1 or D2) with unreduced
meter noise, the Eeval−noise values were derived using the average noise
level method (2) with a “moving median”-estimated noise level, and
the EHMM values were obtained by applying the HMM methodology.
We can observe that the differences between the three approaches are
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most pronounced for the D2 dataset, i.e., for a signal which is close
to the noise level. In the following Section we will demonstrate in a
simulation study that these results are significant and that the HMM
approach yields very accurate field intensity measurements.

4.3. Validation of the HMM-based methodology

In order to check the accuracy of the method we performed Monte
Carlo simulations [3, 10, 13] using two distinct noisy environments:
one representing an urban (dataset D1) and another a rural area (D2).
In each of the two scenarios we simulated 1000 EMF samples of the
same length as the original datasets. The simulated samples consisted
of two parts: (i) self-noise level of the meter and (ii) EMF signals
generated from a log-normal distribution, with parameters estimated
within the HMM identification procedure, added to the noise.

Next, like in Section 4.2, we calculated the field intensity values
using three different approaches to noise reduction: Eeval, Eeval−noise

and EHMM . Having the EMF intensities, we computed the respective
mean absolute percentage errors (MAPEs) [4, 13], see Table 2. The
errors were evaluated with respect to the simulated signals, for which
we knew the frequency bands with the “real” EMF signals. The HMM
results are extremely accurate, which is most visible for dataset D2
where signal to noise ratio is low. Obviously, completely ignoring the
noise leads to totally unacceptable errors of the field measurement.

Apart from the analysis of the field intensity, we also checked the
efficiency of the HMM method in classification of the measurements
into “real” EMF signal and noise. Three indicators of the performance
(or quality) of the methods are reported in Table 2. The first concerns
the proportion of the number of successfully identified signals to the
overall number of simulated signals (sensitivity), the second is the
proportion of the number of successfully identified noise values to the

Table 2. Mean absolute percentage errors (MAPE) of the EMF
intensity values calculated using three different approaches to noise
reduction, as measured for 1000 simulated samples reproducing each of
the two environments (D1 and D2). Performance measures (sensitivity,
specificity and precision; see text for details) for the HMM method are
also reported.

Data MAPE [%] Performance [%]
type Eeval Eeval−noise EHMM Sens. Spec. Prec.
D1 0.02 0.10 0 99.99 100 100
D2 154.16 9.80 0.05 99.54 99.99 100
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overall number of simulated noise values (specificity), and the third is
the proportion of the number of successfully identified signals to the
overall number of identified signals (precision) [13]. Therefore, the first
and second numbers describe the quality of identifying the real signals
and noise values respectively, while the third stands for the quality of
identified signals. They should be close to 100%. We can observe that
the HMM method works very well, since all indicators are above 99%.

5. CONCLUSIONS

In this paper we presented a new method of minimization of self-noise
influence on EMF measurements based on the HMM methodology. The
most significant advantage of the introduced method is a substantial
increase of measurement accuracy for values close to the noise level.
The method can extract real EMF intensity from the background noise
very well, which was illustrated on two distinct datasets and validated
by means of Monte Carlo simulations. Such an improvement in the
estimation of real EMF intensity could be very useful in tracking trends
of the EMF level in the environment. The identification algorithm is
fast and allows real-time post-processing in measuring devices. The
whole procedure can be fully automated. It can be widely used when
estimating the EMF intensity and its changes in time, especially in
long-term environmental monitoring measurements, where EMF levels
are close to the meter self-noise, when the elimination of its influence is
very important. The presented method could be also a useful tool for
verification of numerical simulations of radio signal propagations [14],
where noise influence can significantly affect the simulation results.
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