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Abstract

This workdiscusses potential pitfalls of applying linear regression models for explaining the rela-
tionship between spot and futures prices in electricity markets. In particular, the bias coming from
the simultaneity problem, the effect of correlated measurement errors and the impact of seasonal-
ity on the regression results. Studying a 13-year long (1998-2010) price series of spot and futures
prices at Nord Pool and employing regression models with GARCH residuals, we show that the
impact of the water reservoir level on the risk premium is positive, which is to be expected, but
contradicts the results of Botterud et al. (2010). We also show that after taking into account the
seasonality of the water level, the storage cost theory proposed by Botterud et al. (2010) to explain
the behavior of convenience yield has only limited support in the data.
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1. Introduction

The Nordic commoditymarket for electricity, known as Nord Pool, was established in 1992 as
a consequence of the Norwegian energy act of 1991 that formally paved the way for deregulation.
In the years to follow Sweden (1996), Finland (1998) and Denmark (2000) joined what became
the world’s first international power exchange. In 2002 the physical electricity marketElspot was
separated from the derivatives market and renamed Nord Pool Spot. The last few years saw the
Baltic states join Nord Pool Spot. As of 2012 over 70% of the total power consumption in the
Nordic-Baltic region is traded in the spot market, a fraction that has steadily been growing since
the inception of the exchange in the 1990s (Nord Pool Spot, 2013). In 2010 the financial derivatives
market Nord Pool, also known asEltermin, changed its name to NASDAQ OMX Commodities
Europe after an acquisition by NASDAQ OMX. In this market a range of Nordic power derivatives
are being traded: monthly, quarterly and annual forwards, daily and weekly futures, options and
contracts for difference. However, the product range is much wider now and includes Dutch,
German and UK power futures and forwards, UK Natural Gas futures and carbon products (EUA,
CER). The NordicEltermin market has been highly successful, with churn ratios – the number
of times a product is traded above its physical consumption – between 4 and 7 in the last decade
(NASDAQ OMX, 2012; Ofgem, 2009).
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Yet regardless of this commercial success it is not clear that the forward market is operating
efficiently. Christensen et al. (2007) report that significant forward premia existed at Nord Pool
in the period 2003-2006 and that they were related both to spot market volatility and abuse of
market power and manipulation in the spot and forward markets by one of the dominant producers
in Western Denmark. In a study focusing on the Nord PoolEltermin market, Kristiansen (2007)
finds inefficiencies in the pricing of synthetic seasonal contracts constructed by monthly contracts.
Also Gjolberg and Brattested (2011) find evidence of market inefficiency. Studying Nord Pool
data in the period 1995-2008 they reach a conclusion that the differences between futures prices
and subsequent spot prices are very significant and their high magnitude can hardly be explained
by the level of risk. Furthermore, Redl and Bunn (2013) argue that while forward markets in
general promote market completeness, facilitate risk management and induce greater competitive
behavior in the spot markets, the transaction costs (including premia) that prevail in the markets
may well eliminate some of these benefits in practice.

It is therefore important to be able to identify and estimate the components of the premia
implied by forward electricity prices. However, in spite of an increasing amount of literature
(see also Benth et al., 2008b; Bessembinder and Lemmon, 2002; Bunn and Chen, 2013; Diko
et al., 2006; Douglas and Popova, 2008; Handika and Trueck, 2013; Haugom and Ullrich, 2012;
Huisman and Kilic, 2012; Janczura, 2013; Longstaffand Wang, 2004; Karakatsani and Bunn,
2005; Kolos and Ronn, 2008; Redl et al., 2009; Ronn and Wimschulte, 2009; Weron, 2008), this
topic remains a challenging and relatively unresolved area of research. Much of this has to do with
the confusion around the terminology in published research (more details in the next Section).
The termsrisk premium, forward premium, forward risk premium andmarket price of risk are
not uniquely defined and is some cases used interchangeably. Furthermore, some authors analyze
ex-post (or realized) premia, others construct expectations of the spot price to computeex-ante
premia. While being conceptually attractive, the latter are highly dependent on the subjective
choice of a model for the spot price, and therefore tend to be less comparable between different
studies. Finally, different authors use different datasets, not only in terms of the generation stack
and the power market where the data originates from, but – more importantly – also in terms of
the time scale considered: short-term (days) vs. mid-term (weeks, months) forward prices.

In this paper we focus on ex-post (realized) risk premia in the Nord Pool market. We recover
them from the prices of weekly futures contracts of maturities ranging from 1 to 6 weeks. Hence,
as in Botterud et al. (2010), Gjolberg and Brattested (2011) or Lucia and Torro (2011), the time
scale used is weekly. Overall, the sample comprises 679 weekly data points in the 13-year long
period: January 1998 – December 2010. When analyzing Nord Pool data we should bear in mind
two things. First, this is a hydro-dominated market with roughly 50% of the total generation
capacity coming from this renewable source. In Norway alone the share of hydropower exceeds
95%. The precipitation in the mountains and the filling of the water reservoirs during the Spring
flood are therefore a crucial factor for the functioning of the Nord Pool market and for explaining
the relationship between futures and spot prices (Torro, 2009; Weron, 2008). Second, the Nord
Pool market is characterized by significant seasonal variations in weather conditions (including
water inflow) and in consumption. We pay special attention to the analysis of these seasonal
effects and their influence on risk premia.

The contribution of our paper is twofold. First, we point out some problems with the risk
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premium model proposed by Botterud et al. (2010) and show that after they are taken care of, the
observed relation of the water level and the risk premium is actually of opposite sign. We empha-
size potential pitfalls of making no distinction between ex-ante and ex-post risk premia. We also
analyze the convenience yield model proposed by these authors and show that existing evidence
gives less unambiguous support to the storage cost theory than initially claimed by the authors.
Second, we revisit the Nord Pool market with a longer, more recent 13-year dataset (1998-2010),
extending the former study by four years, and employ GARCH components in the regression mod-
els for the risk premium and the convenience yield. We show that the latter approach leads to a
better description of the studied phenomenon.

The remainder of the article is organized as follows. In Section 2 we discuss the spot-forward
price relationship and the concepts of the risk premium and the convenience yield. We also review
the literature and emphasize the similarities and differences between the studies and the terminol-
ogy used. In Section 3 we comment on the pitfalls of regression analysis and discuss possible
ways to avoid them. In Section 4 we describe the conducted empirical study, compare our results
with those of Botterud et al. (2010) and provide evidence in favor of the regression models with
GARCH residuals for the risk premium. Finally, in Section 5 we wrap up the results and conclude.

2. Risk premia in electricity markets

2.1. Definitions of the risk premium
For commodities, the relationship between spot and forward prices (and between prices of fu-

tures or forward contracts with different maturities) is often explained in terms of theconvenience
yield, an approach dating back to Kaldor (1939). The convenience yield is defined as the premium
to a holder of a physical commodity as opposed to a futures or forward contract written on it (see
e.g. Geman, 2005; Weron, 2006). However, electricity is a ‘flow’ rather than a ‘stock’ commodity.
It is produced and consumed continuously and is essentially non-storable, at least not economi-
cally. So does the notion of the convenience yield make sense in the context of electricity? Can
we quantify the benefit from ‘holding’ electricity, not to mention the storage cost? As there is no
consensus on this issue in the literature (we will return to this discussion in Section 2.3) let us now
focus on the second economic theory, which considers equilibrium relationships between futures
prices and expected spot prices. Within this approach, which can be traced back to Keynes (1930),
the forward price is viewed as being determined as the expected spot price plus anex-ante risk
premium. In other words, the ex-ante risk premium is the difference between the spot price fore-
cast, which is the best estimate of the going rate of commodity (e.g. electricity) at some specific
time in the future, and the forward price, i.e. the actual price a trader is prepared to pay today for
delivery of this commodity in the future (Botterud et al., 2010; Diko et al., 2006; Hirshleifer, 1989;
Janczura, 2013; Pindyck, 2001; Weron, 2006, 2008):

RP∗t,T = ln
{

Et(S t+T )
}

− ln(Ft,T ) = ln

{

Et(S t+T )
Ft,T

}

, (1)

whereEt(S t+T ) is a forecast made today (timet) regarding the the spot price at a future date
(t + T ) andFt,T is the price of a futures (or forward) contract quoted today with delivery period
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starting at this future date. Note that the above definition of the riskpremium as a log difference
and the notation for the forward price is used here for consistency with the paper of Botterud
et al. (2010). However, it is more common in the literature to consider a simple difference and
the second subscript inFt,T to define the delivery date, not the time to delivery. Note also that
the expectationEt(S t+T ) in eqn. (1) is taken at timet with respect to the ‘real-world’ or ‘risky’
probability measure, sayP, and concerns the spot priceS t+T at a future date (t+ T ). On the other
hand, the futures priceFt,T is the expectation made also at timet of the spot priceS t+T but with
respect to the ‘risk-neutral’ or ‘risk-adjusted’ measure, sayPλ (see Weron, 2008); more formally:
Ft,T = Eλt (S t+T ).

This consideration leads us to the so-calledmarket price of risk, a notion popular in the finan-
cial mathematics literature (Benth et al., 2008a,b; Geman, 2005; Janczura, 2013; Kolos and Ronn,
2008; Ronn and Wimschulte, 2009; Weron, 2006, 2008). The market price of risk can be seen as a
drift adjustment (a constant –λ, a deterministic function of time –λt) in the stochastic differential
equation (SDE) governing the spot price dynamics to reflect how investors are compensated for
bearing risk when holding the spot, i.e. the drift adjustment when moving from the original ‘risky’
probability measureP to the ‘risk-neutral’ measurePλ, like in the Black-Scholes-Merton model.
By virtue of the Girsanov theorem there exists a probability measurePλ, equivalent to the original
measureP, such that the process

Bλt ≡ Bt +
∫ t

0
λ(s)ds = Bt + λt, (2)

is a Brownian motion (i.e. a Wiener process) underPλ, see e.g. Musiela and Rutkowski (2005).
Using Itô calculus this change of measure can be applied to different kinds of SDEs, including
mean reverting processes which are commonly used for modeling commodity prices. Although
different in value, a constant market price of riskλt ≡ λt defined above is of the same sign as the
risk premium in eqn. (1).

While the ex-ante risk premium is often the main object of interest, there is a difficulty in
quantifying it. This difficulty stems from the fact that in empirical applicationsEt(S t+T ) is not a
well defined object. The expected value operates on a random variable (here:S t+T ) defined on a
specific probability space (Ω,F ,P). Just by analyzing one historical price trajectory it is hard to
gain any consensus on what actually is the probability space. Some assumptions or approximations
have to be made. For instance, that a certain SDE (i.e. model) describes the spot price dynamics
very well (see e.g. Janczura, 2013; Weron, 2008). By computing the expectation within this model,
Et(S t+T ) becomes model dependent and, hence, hardly comparable between papers using different
models. An alternative approach is to approximate the ex-ante premium RP∗

t,T by theex-post (or
realized) risk premium:

RPt,T = ln(S t+T ) − ln(Ft,T ) = ln

{

S t+T
Ft,T

}

. (3)

In theex-post risk premium we simply substitute the expectationEt(S t+T ) by its realized value at
time t + T value, i.e.S t+T .

There is mixed evidence on the sign and variability of the risk premium in power markets.
Generally, the premium can be both positive and negative; it can vary throughout the year or even
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throughout the day. The results can also differ frommarket to market. To some extent, however,
the mixed evidence has been caused by inconsistent definitions of the risk premium. In particular,
some authors (Bessembinder and Lemmon, 2002; Bunn and Chen, 2013; Christensen et al., 2007;
Douglas and Popova, 2008; Handika and Trueck, 2013; Longstaffand Wang, 2004; Redl and
Bunn, 2013; Redl et al., 2009, among others) use the notion of theforward premium or forward
risk premium defined as the negative of the risk premium:

FPt,T = −RPt,T = ln(Ft,T ) − ln
{

Et(S t+T )
}

= ln

{

Ft,T
Et(S t+T )

}

, (4)

here theex-post risk premium; analogously we can define the ex-ante forward premium as the
negative of the ex-ante risk premium: FP∗t,T = −RP∗t,T . Other authors (Benth et al., 2008a,b;
Bessembinder, 1992; Eydeland and Wolyniec, 2003; Geman, 2005; Gjolberg and Brattested, 2011;
Haugom and Ullrich, 2012; Huisman and Kilic, 2012; Ronn and Wimschulte, 2009, among others)
use the term risk premium, but define it like the forward premium, i.e. as the difference between
the forward price and the expected spot price. Note that Benth et al. (2008a) also define the market
price of risk with a minus instead of a plus sign, hence their market price of risk has the same
sign as their risk premium, i.e. the forward premium as defined by eqn. (4). Benth et al. (2008b)
define a more complicated market price of risk, composed of a diffusion and a jump part which
can have opposite signs and different contributions to the forward price. As a result there is no
straightforward dependence between their market price of risk and their risk premium (which they
also call theforward bias). On the other hand, Ronn and Wimschulte (2009) define the market
price of risk with a plus sign – as we do in eqn. (2) – but use the term risk premium for the
forward premium in eqn. (4) and their market price of risk has the oppposite sign as their risk
premium. Finally, Lucia and Torro (2011) and Torro (2009) use the forward premium but call it
interchangeably the risk premium, the futures/forward premium or the futures/forward bias.

2.2. Empirical evidence and risk premia
The risk premium theory underlines that the relationship between the futures price and the

expectation of the spot price, as defined in eqn. (1), depends on the degree of risk aversion among
market participants. If sellers are more risk-averse than buyers, which is the case in most commod-
ity markets where producers want to secure their sales, they are ready to accept a lower price of the
futures contract and thus the risk premium is on average positive. On the other hand, when buyers
are more risk averse, they are ready to pay a higher price for the contract and the risk premium
becomes negative. During peak hours electricity markets are more likely to be described by the
second situation, since buyers on the wholesale market are at the same time suppliers in the retail
market and must be ready to provide sufficient amount of energy. During off-peak hours, however,
the demand is low and retailers are not willing to pay high prices for futures contracts. Produc-
ers want to avoid the costs of shutting down base-load generation and thus are willing to accept
lower prices for securing their sales. As a result, negative risk premia are often observed during
peak hours and positive in the off-peak hours, see e.g. Bunn and Chen (2013), Diko et al. (2006),
Karakatsani and Bunn (2005) and Longstaffand Wang (2004). Note that Diko et al. (2006) study
risk premia, while in the other three papers forward premia are analyzed. Furthermore, Ronn and
Wimschulte (2009) work in the market price of risk context and conclude that it is significant and
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negative, usually higher (more negative) for peakload than for baseload.Although the conclusions
from these studies seem contradictory at first, after taking into account the different premia used
they are not.

The specific nature of electricity markets and the inapplicability of the storage cost theory gave
rise to the model of Bessembinder and Lemmon (2002) in which risk-averse electricity produc-
ers and retailers maximize expected profits by making decisions on their activity in the spot and
forward markets. In equilibrium, the observed risk premium is positively related to the expected
variance of the spot price, but negatively related to its expected skewness. This may be interpreted
less formally in terms of assessing the probability of price spikes. When market participants be-
lieve that there is high probability of a price spike (i.e. they expect high skewness), they are willing
to buy more forward/futures contracts and thus drive the price up and the risk premium down.

Bessembinder and Lemmon (2002) also provide some initial evidence of model applicability in
the PJM market, but due to the short (1997-2000) and not fully representative sample the evidence
cannot be considered as strong. Using PJM real-time (called ‘spot’) and day-ahead (‘forward’)
data, Longstaffand Wang (2004) generally confirm the findings of the Bessembiner-Lemon (B-L)
model. Diko et al. (2006) come to similar conclusions using European data. Other works, on
the other hand, confirm the implications of the B-L model only partially or do not confirm them
at all. Douglas and Popova (2008) obtain results for the PJM market which are in line with the
predictions of the B-L model expanded to include the availability of stored gas, which they claim
to be an important factor in determining the size of the risk premium. Also Redl and Bunn (2013)
confirm the importance of gas and oil for the determination of the risk premium. Haugom and
Ullrich (2012) repeat the study of Longstaffand Wang (2004) for a longer dataset (2001-2010).
They observe that the premia are still negative (in their setup – positive) and significant but that
they have decreased in the more recent period. They analyze the stability of the parameters of
variance and skewness in the risk premium regression. Their conclusion is that the parameters
vary significantly and that the results are not consistent with the B-L model. Handika and Trueck
(2013) do not confirm the B-L model for Australian data, with coefficients being often insignificant
or of other sign than expected. Redl et al. (2009), who analyze EEX and Nord Pool data give very
weak support of the B-L model obtaining, as expected, a positive skewness coefficient for EEX,
but insignificant coefficients of mixed signs in all other cases. Ronn and Wimschulte (2009) check
whether investors are willing to pay a premium for securing the price earlier in the day by buying
power in the Austrian EXAA market which trades 2 hours earlier than the German EEX market.
Then they try to relate this premium to the variance and skewness in the market, but the results are
insignificant and do not support the B-L model.

As emphasized by Huisman and Kilic (2012), the risk premium may behave differently de-
pending on the characteristics of the market. Botterud et al. (2010) analyze Scandinavian data
from the Nord Pool power exchange and argue that in this hydro-dominated market the level of
water in the reservoirs plays a crucial role in determining the spot-forward price relationship. They
analyze both the risk premium and the convenience yield (which we discuss in Section 2.3), show-
ing that they are on average negative. The authors make an argument in favor of the storage cost
theory which – they claim – can be indirectly applied to the Nord Pool market through the storage
of water. Concerning the risk premium, Botterud et al. (2010) use weekly spot and futures data
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from the period 1996-2006 to estimate the following model (see eqn.(6) in their article):

RPt,T = α0 + α1RESt + α2INFDt,T + α3CONSDt,T + α4S t + α5VARt + α6SKEWt + ǫt, (5)

where RESt is the level of water reservoirs in Norway as a fraction of total capacity, INFDt and
CONSDt are respectively the total deviations of the inflow of water and electricity consumption
from long-term (1996-2006) averages between weekt and t + T , S t is the average spot price in
weekt and VARt and SKEWt are variance and skewness of the spot price, respectively.

The coefficient of the water reservoir level, RESt, is estimated to be significant and negative –
a result which Botterud et al. (2010) claim to be expected. In Section 4.2 the authors write:For
instance, the demand for futures contracts is likely to be higher when reservoir levels are low, since
this increases the likelihood of price spikes in the spot market. Hence, there should be a negative
relationship between risk premium and reservoir levels. In our opinion, the second sentence should
be the opposite – since demand for futures contracts (and thus their price) is higher when reservoir
levels are low, there should be a positive relationship between the risk premium and the reservoir
level. But how come Botterud et al. (2010) arrive at a significant coefficient with the sign opposite
to the one predicted by theory? We believe this is because of model misspecification. This issue
is more deeply analyzed in Section 3.

Finally, it should be mentioned that Botterud et al. (2010) analyze ex-post (or realized) risk
premia. At the same time equation (2) in their article defines the risk premium as an ex-ante pre-
mium. We believe that a sharp distinction between those two concepts should be drawn, especially
because the regression results obtained by Botterud et al. (2010) cannot be interpreted in terms of
the ex-ante risk premium model, as shown below in Section 3.2.

2.3. Convenience yields and storage
In addition to the risk premium analysis, Botterud et al. (2010) conduct an analysis of the

second commonly used measure of the spot-forward price relationship – the convenience yield:

CYt,T = ln(S t) − ln(Ft,T ) = ln

(

S t
Ft,T

)

, (6)

whereS t is thespot price at timet andFt,T is the price of a futures contract with delivery period
starting at timet + T , quoted at timet. Botterud et al. (2010) argue that this relation between
today’s spot and forward price may be explained by storage cost theory and the storage of water.
Depending on how costly it is to store the water (the total cost is determined by potential cost of
water spillover which is high when reservoir levels are high) and what are the benefits of storing
the water (they are determined by the future value of the water, which depends on expectations
about prices in the future; in particular, high reservoir levels decrease the probability of high prices
in the future and thus decrease the future value of the water), producers may decide to produce
now or to store the water for a later generation. As a result, the observed convenience yield should
negatively depend, among else, on the level of water in the reservoirs. This hypothesis is confirmed
by regression results with a negative and significant coefficient of water reservoir levels.

The provided evidence is, however, insufficient and cannot be used to convincingly argue for
storage cost theory. By a simple algebraic transformation we can see that the convenience yield is
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Figure 1:Top panel: Thewater reservoir level, RESt, in the period from week #1 of 1998 to week #52 of 2010. The
median reservoir level, RESMt, for each week of the year in the 1971-2005 period is provided for reference. Note,
that the reservoir levels reach the minimum in the Spring, in weeks #16-#17.Bottom panel: The deviation, RESDt, of
the reservoir level (RESt) from the median level (RESMt). Note that the values in both panels are given in percent of
total reservoir capacity.

nothing else but the realized risk premium minus a component representing the relative change of
the spot price in the period fromt to t + T :

CYt,T = ln

(

S t
Ft,T

)

= ln

(

S t+T
Ft,T
·
S t
S t+T

)

= RPt,T − ln

(

S t+T
S t

)

≈ RPt,T −%∆S t,T , (7)

where %∆S t,T denotes the percentage change of the spot price in the period fromt to t + T . As
already discussed, the relationship between the risk premium and the reservoir levels should be
positive. Therefore, if we obtain a negative coefficient of the water level in the regression for the
convenience yield, it must be due to the positive relationship of the water level and the component
representing the change of price, i.e. %∆St,T .

A reason for this positive relationship can be a similarity of seasonal patterns in both variables.
It is well known that the Nord Pool spot price is the lowest in the Summer. This means that the
seasonal component of the expected change of price, approximately, reaches the minimum in the
Spring: if the spot price has a (roughly) sinusoidal pattern with the minimum in the Summer, then
its derivative also has a sinusoidal pattern with the minimum1

4 of theannual period, ca. 13 weeks,
earlier. Reservoir levels, as shown in Figure 1, also reach the minimum in the Spring. Therefore
there may be a positive correlation between seasonal components, which obviously does not mean
any causality and which can explain the negative coefficient of the water level in the regression
for convenience yield. Nevertheless, storage cost theory may be another, plausible explanation. In
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such a case, one should check whether the deseasonalized reservoirlevels also have a significant,
negative impact on the observed convenience yield. If the answer is positive, it will be evidence in
favor of the storage cost theory. We address this question in Section 4.4.

3. Pitfalls of regression analysis

Ordinary Least Squares (OLS) is the most commonly used tool in the analysis of econometric
data. Although very simple, the method continues to be the workhorse of econometrics because
of its simplicity and favorable properties, i.e. unbiasedness, consistency and efficiency, which
are achieved in many circumstances. Those properties, however, are guaranteed only if certain
assumptions regarding the data are fulfilled. In social sciences, where the data rarely comes from
controlled experiments, those assumptions are often not met. This section briefly discusses some
pitfalls of regression analysis in the context of electricity markets and the risk premium. For a more
detailed discussion of OLS properties see Hayashi (2000) or Wooldridge (2002) and references
therein.

For the purpose of this section we define a basic regression model as follows:

y = β1x1 + β2x2 + u, (8)

wherey is the dependent variable,x = (x1, x2) are the regressors andu is a random disturbance.
We define and analyze the model in terms of a unit from underlying population but it can easily be
translated to the sample counterpart.

The OLS formula allows for obtaining an unbiased and consistent estimate of the coefficients
vectorβ = (β1, β2)′ as long asE(x′x)−1 exists (which almost never poses a problem and will not
be discussed further) and Cov(x, u) = 0. The latter assumption is always fulfilled when we are
willing to make a popular, stronger assumption ofE(u|x) = 0. The violation of this assumption
is calledendogeneity of regressors. There are three potential reasons of endogeneity: (i) omitted
variables, (ii) simultaneity and (iii) measurement errors. In what follows we discuss the latter two
reasons.

3.1. Simultaneity
Let us use the model fory as given by equation (8) and assume that at the same timex1 satisfies:

x1 = α1y + α2x3 + v. (9)

Under this assumptionx1 is partially determined byy but at the same timey is partially determined
by x1. Such a situation is calledsimultaneity and precludes using OLS for obtaining consistent
estimates of any coefficient in (8). This is because under simultaneityx1 andu are correlated;
observe thatu is part ofy andy determinesx1. We can say that we fail to estimate the real effect
of x1 on y because we cannot distinguish whether an observed high value ofx1 is the reason for
the high value ofy or whether we observe a high value ofx1 only becausey is large for some other
reason.

The bias caused by simultaneity is proportional to Cov(x, u) and it potentially influences
all model coefficients if the independent variables are correlated. In case of equation (8), if
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Cov(x1, u) , 0, we cannot consistently estimateβ1 and we can consistently estimateβ2 only if
Cov(x1, x2) = 0, which is rarely the case in typical problems. The magnitude of the simultaneity
bias is often very difficult to assess. In economic systems very few variables can be treated as
unambiguously exogenous, i.e. not determined by the response variable in any way. We often
apply OLS even in the potential presence of endogeneity, hoping that the induced bias will be very
small. However, in some cases simultaneity is more evident and a significant bias may occur.

What is the potential source of the simultaneity bias in model (5)? In the first place, it is the spot
price. We can easily imagine that the spot priceS t may be influenced by the current situation in
the futures market and therefore by the futures priceFt,T and the risk premium RPt,T . In reality, the
prices in the spot and futures markets are determined at the same time and are subject to common
shocks. Botterud et al. (2010) in Section 5.5 note that the spot price follows futures prices very
closely. Potential problems with a simultaneous determination of spot and futures prices are also
mentioned by Redl et al. (2009). All this suggests that direct inclusion of the spot price in the
model may be a potential source of bias.

3.2. Correlated measurement errors
Another potential reason for endogeneity are measurement errors. What is usually meant under

this term is the error in measuring an independent variable which causes the regressors to be
correlated with the random disturbance; see Wooldridge (2002) for the analysis of the behavior of
the OLS estimator in this case. Here, however, we analyze simultaneous, correlated measurement
errors both in the dependent and the independent variable. To this end, we introduce a notation
which is consistent with the notation for the risk premium in Section 2.1. Namely, the true or
‘ex-ante’ values are denoted by a star, while the observed or ‘ex-post’ values have no superscript.

Let us assume that we want to analyze the impact of true valuex∗1 on the true valuey∗, control-
ling for the observed valuex2:

y∗ = β1x∗1 + β2x2 + u. (10)

However, instead of observing the true valuesy∗ and x∗1 we can only observey = y∗ + ǫ0 and
x1 = x∗1 + ǫ1, whereǫ0 andǫ1 are zero-mean and uncorrelated with any variable from the structural
model; we allow for non-zero correlation betweenǫ0 and ǫ1, though. By construction we also
have the correlation betweenǫ0, ǫ1 andy, x1. We can rewrite model (10) in terms of the observed
variables:

y = β1(x1 − ǫ1) + β2x2 + u + ǫ0 = β1x1 + β2x2 + w, (11)

wherew = ǫ0 − β1ǫ1 + u. If there is no endogeneity in model (10),x2 is not correlated with the
new error. However, as long asǫ0 and−β1ǫ1 do not cancel each other out (for which there is no
reason to happen in general),x1 is correlated with the new error. Therefore we cannot consistently
estimate regression coefficients by OLS.

Using the Frisch-Waugh-Lovell Theorem (FWL; see Lovell, 1963), from equation (11) we can
obtain the expressions for the probability limits of the OLS estimates:

β̂n1 = β1 +
Cov(ǫ0, ǫ1) + β1Var(ǫ1)

Var(ux∗1|x2)
, β̂n2 = β2 +

Cov(x∗1, x2) ·
{

Cov(ǫ0, ǫ1) + β1Var(ǫ1)
}

Var(ux2|x∗1)
, (12)
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see Zator (2013) for details. Here Var(ux∗1|x2) and Var(ux2|x∗1) denote variances of residuals from
regressingx∗1 on x2 and x2 on x∗1, respectively. What is important is that the denominators are
always positive but signs of the numerators are unknown and depend on correlations observed in
the data. This means that if the correlations between measurement errors and between regressors
are sufficiently large, the regression coefficients obtained by OLS from equation (11) may be
significantly different from the original coefficients from equation (10).

How is this discussion related to the model of Botterud et al. (2010)? Recall the definition of
the ex-ante risk premium RP∗t,T . In equation (1),S t+T is the spot price at timet + T andFt,T is the
price of a weekly futures contract quoted at timet with delivery starting at timet + T . Therefore
the risk premium defined in such a way, i.e. the ex-ante risk premium, is a function of the futures
priceFt,T and the expectationEt(S t+T ) at timet of the spot price at timet + T . Unfortunately, the
expectations of the future spot price cannot be observed in the market and we can only collect the
data on the ex-post (or realized) risk premium RPt,T , see equation (3). If we are willing to assume
that expectations of market participants are on average correct (which is often done), the ex-post
premium should be on average a good proxy for the ex-ante one. This may be formalized in a
measurement error setup as:

RPt,T = RP∗t,T + ǫt, with E(ǫt) = 0. (13)

Among other regressors, Botterud et al. (2010) use realized deviations in consumption and water
inflow, CONSDt,T and INFDt,T , defined as the sum of deviations from the long-term average in the
period between trade and delivery. If those realized values of deviations were to be interpreted in
the context of modeling the ex-ante risk premium, they could be treated as a proxy for the forecasts
that market participants have at dayt. We could formalize it as:

CONSDt,T = CONSD∗t,T + e1,t and INFDt,T = INFD∗t,T + e2,t, (14)

where the starred variables denote the forecasts. It is straightforward to argue thatǫ ande1,2 are
correlated – if the realized consumption is higher or realized inflow is lower than predicted, it
is likely thatS t+T will be higher than expected at timet. The correlation of those measurement
errors implies that the obtained coefficients cannot be interpreted in the context of the ex-ante risk
premium model.

Observe, however, that forecasts of deviations of consumption and water inflow can have some
power in explaining the ex-ante risk premium, therefore including them in the model is desirable.
The only problem is that including realized at timet+T values as proxies for the forecasts made at
time t can lead to biased estimates. One viable alternative may be to use realized at timet values
of deviations of consumption and inflow as they do not possess this unwanted property. Since
the series of both deviations are likely to be persistent, realized at timet values may be treated
as proxies for the expectations made at timet about these values at a not very distant future time
point, sayt + T .

3.3. Seasonality
In the context of time series analysis we need more assumptions to obtain meaningful estimates

of the regression coefficients. First, we need the process to be stationary – so that the distribution of
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the series stays constant across time – and second, to be ergodic –so that an observation becomes
approximately independent of its lagged values when we increase the length of the lag; for a
detailed discussion of these issues see e.g. Davidson and MacKinnon (1993). In the analysis of
economic data, and perhaps especially in the context of electricity markets, the assumption of
stationarity is often violated because of the visible seasonal behavior of the series. The topic of
seasonality and seasonal adjustments of the data is very broad and has been heavily investigated in
the literature, see e.g. the original papers by Lovell (1963) and Sims (1974), and the more recent
reviews by Brendstrup et al. (2004) and Hylleberg (1986). Here we briefly discuss only selected
aspects of this problem.

We employ a framework similar to that in Section 3.2, decomposing the two independent
variablesx1 andx2 into the seasonal (xsi ) and stochastic (xdi ) parts:

x1 = xs1 + x
d
1 and x2 = xs2 + x

d
2. (15)

This lets us rewrite the original regression model, see eqn. (8), in the following form:

y = βs1x
s
1 + β

d
1x
d
1 + β

s
2x

s
2 + β

d
2x
d
2 + u. (16)

We assume that the seasonal components have no effect on the dependent variabley, so that it
does not exhibit a seasonal pattern, and that the seasonal components are not correlated with the
stochastic ones but are correlated with each other. Since we know that seasonal components have
no effect ony, we haveβs1 = β

s
2 = 0.

We are interested in estimating the coefficients of the stochastic components but in reality
we do not observe the seasonally decomposed variables. Instead, we only observex1 and x2

and can only estimate the original regression model. But how are the parameters of the original
regression model related to those of the seasonal model in eqn. (16)? Using the OLS formula for
the coefficients vector and the above seasonal decomposition, we can derive the probability limits
of the coefficients in the original model (for details see Zator, 2013):

β̂n1 =

{

Var(xs2) + Var(xd2)
}

Cov(xd1, y) −
{

Cov(xd1, x
d
2) + Cov(xs1, x

S
2 )

}

Cov(xd2, y)
Var(x1)Var(x2)(1− r2

x1,x2
)

,

β̂n2 =

{

Var(xs1) + Var(xd1)
}

Cov(xd2, y) −
{

Cov(xd1, x
d
2) + Cov(xs1, x

s
2)
}

Cov(xd1, y)
Var(x1)Var(x2)(1− r2

x1,x2
)

,

(17)

whererx1,x2 is thecorrelation coefficient betweenx1 andx2. Similarly, we can derive expressions
for the probability limits of the coefficients in the seasonal model:

β̂
d,n
1 =

Var(xd2)Cov(xd1, y) − Cov(xd1, x
d
2)Cov(xd2, y)

Var(xd1)Var(xd2)(1− r2
xd1,x

d
2

)
,

β̂
d,n
2 =

Var(xd1)Cov(xd2, y) − Cov(xd1, x
d
2)Cov(xd1, y)

Var(xd1)Var(xd2)(1− r2
xd1,x

d
2

)
.

(18)

Note thatboth the numerators and the denominators in (18) are different than in (17). However,
since the denominators are always positive, the crucial difference is the lack of Cov(xs1, x

s
2) in eqn.
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(18). When the covariance between seasonal components is large (whichis very likely), this term
may dominate the entire expression and thus, in general, the coefficients of the original regression
model are not very much related to those of the seasonal model.

In the model of Botterud et al. (2010) two variables – the level of water and the spot price
– have a strong seasonal component. The above analysis shows that the obtained coefficient of
the water reservoir level can be very different from the coefficient of its stochastic part. But why
are we interested in the coefficient of the stochastic part and not of the total reservoir level in the
first place? The reason is that the seasonal component of water level captures the influence of
the seasonal behavior of all omitted variables, the most important being probably the demand for
electricity. In econometric terms we could say that the seasonal component of the water level is
correlated with omitted variables and thus its coefficient cannot be consistently estimated. The
stochastic component, on the other hand, is less likely to be correlated with any omitted variable
and its coefficient should reflect the real influence of the varying water level. Therefore, if we want
to capture the real effect of the water level on the risk premium, we either have to control for all
potentially significant variables with a seasonal pattern (which seems to be nearly impossible) or
to concentrate on the effect of the stochastic part of the water level.

All three reasons discussed in this Section – simultaneity, correlated measurement errors and
seasonality – may have introduced bias in the coefficients obtained by Botterud et al. (2010) and
may explain why their coefficient of water level is of different sign than predicted by theory. This
discussion also casts some doubt on the regression results for the convenience yield obtained by
using exactly the same set of regressors. In the following Section we revisit the Nord Pool market
and try to go around the mentioned problems in the analysis of empirical data.

4. Empirical analysis

4.1. The data
In this paper we focus on ex-post risk premia in the Nord Pool market. We recover them from

realized spot prices and the prices of weekly futures contracts of maturities 1W, 2W, 3W, 4W, 5W
and 6W (W≡weeks). Note that in most cases we report the results only for some of the maturities
(typically 1W, 3W and 6W). As in Botterud et al. (2010), Gjolberg and Brattested (2011) and
Lucia and Torro (2011) the time scale used is weekly. More precisely, for each time point or week
t, the weekly spot priceS t is calculated as the arithmetic (unweighted) average of the 168 hourly
prices in weekt. Likewise, the weekly spot priceS t+T is calculated as the average of the 168
hourly prices in weekt + T . On the other hand, the futures pricesFt,T , with T = 1,3 or 6 weeks,
are closing prices from the last trading day in weekt and with delivery in weekt + T . All prices
are quoted in Norwegian kroner (NOK). Since in the later part of the studied period EUR became
the primary quotation currency, we convert EUR prices to NOK using the official exchange rate
of the Norges Bank for a given day. Overall, the sample comprises 679 weekly data points in the
13-year long period: January 1998 – December 2010.

Spot and futures prices are used to calculate the ex-post risk premia, as defined by eqn. (3),
and convenience yields, as defined by eqn. (6), which are our response variables. Our main
explanatory variable is the water level in the Norwegian reservoirs as a fraction of total capacity,
RESt. Next, we define the seasonal and stochastic parts of the reservoir level. The seasonal one,
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Figure 2: Spot price, 1W and 6W futures prices in the studied period (January1998– December 2010). Note that 1W
futures prices closely follow the spot price and are hardly visible at this scale. Futures prices are end of week values
(quoted 1 or 6 weeks earlier) and the spot price is the arithmetic average of the 168 hourly prices in a given week.

RESMt, is defined as the median water level in a particular week of a year in the 1971-2005 period.
The stochastic component is defined as the difference between the observed value and the seasonal
component, i.e. RESDt = RESt − RESMt. To compare our results with those of Botterud et al.
(2010), we create variables representing deviations of energy consumption and water inflows from
long term averages: CONSDt,T and INFDt,T , respectively. They are defined as sums of deviations
in the period betweent andt + T from the 1998-2010 average for a given week in the year. The
notation CONSDt or INFDt represents the deviations from weekt alone. We refer to Section 3.2
for the discussion of selecting proxies for the forecasts of market participants.

As suggested by Bessembinder and Lemmon (2002), we include the variance and skewness
of the spot price in the regression model. While the B-L model suggests that the risk premium
should depend on the forecast of future variance and skewness, market participants may use the
last realized values of variance and skewness in the process of creating expectations. Therefore
we include the realized variance and realized skewness of hourly prices from weekt, denoted as
VARt and SKEWt.

The descriptive statistics are presented in Table 1. As we can see, both risk premia and conve-
nience yields can vary significantly which is a consequence of high volatility of prices. In Figure
2 we graphically present selected prices and dependent variables. The reservoir levels with their
seasonal and stochastic components were plotted in Figure 1.
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Table 1: Descriptive statistics of the main considered variables. Two last columns are the 5th and 95th percentiles of
the sample.Upper part: Spot and futures prices for 1, 3 and 6 week contracts, see also Figure 2. All futures prices
are end of week values, while the spot price is the average of the 168 hourly prices in a given week.Middle part:
Corresponding realized risk premia and convenience yields, see Figure 3. Note that premia and yields are calculated as
log differences and, hence, values exceeding±100% are attainable.Bottom part: Reservoir level (RESt) and deviation
(RESDt) of the reservoir level from the long-term median level, see Figure 1. The values are given in percent of total
reservoir capacity.

Variable Mean Median Min Max St.dev. 5 perc. 95 perc.

Spot and futures prices [NOK/MWh]
S t 253.78 239.18 41.59 791.57 126.68 88.99 484.87
Ft,1 250.90 236.40 46.26 877.93 129.31 84.28 498.76
Ft,3 256.99 244.00 63.88 875.00 128.47 87.50 511.13
Ft,6 257.87 244.63 70.00 822.50 124.91 88.75 483.65

Realized risk premia and convenience yields [%]
RPt,1 1.83 1.26 -37.97 43.47 7.37 -8.23 14.33
RPt,3 -0.73 0.08 -89.47 62.88 16.35 -26.77 23.66
RPt,6 -1.17 -1.93 -83.68 87.89 22.29 -38.61 35.18
CYt,1 1.64 1.61 -63.24 51.49 8.87 -12.75 15.51
CYt,3 -1.27 -1.05 -63.79 50.76 12.14 -20.26 17.08
CYt,6 -2.17 -2.04 -85.97 58.94 16.38 -28.05 19.73

Water reservoir levels [%]
RESt 63.67 65.15 18.12 94.64 19.40 30.72 91.66
RESDt -2.96 -0.90 -27.78 16.60 9.67 -21.22 10.02

4.2. OLS estimates for the risk premium
We startour analysis by neglecting all remarks made in Section 3 and simply re-estimating the

model proposed by Botterud et al. (2010), see eqn. (5), both for the full 13-year dataset and for a
dataset similar to the one used by the cited authors, i.e. limited to years 1998-2006. The results for
1W and 6W maturities are presented in Table 2. As we may observe, the findings of Botterud et
al. (2010) are robust with respect to extending the sample by four years. Although there are some
differences in values of the coefficients and significance, the main conclusion remains the same
and the coefficient of water level is negative.

As discussed in Section 3, the model of Botterud et al. (2010) may suffer from at least three
problems. In order to solve them, in what follows we try to respecify the model and obtain new,
hopefully more credible estimates of the water level coefficient. First, we eliminate the realized
deviations of consumption and inflow from the model. As argued in Section 3.2, their presence
prevents us from interpreting the coefficients in terms of the ex-ante risk model, which is of our
main interest. At the same time, however, we agree that forecasts of abnormal consumption or
water inflows can play a role in determining the risk premium. What could be a reasonable proxy
for these forecasts? Exploiting the fact that there exists a relatively high degree of persistence in
both series – the partial autocorrelation function (PACF) for the first lag varies from 0.5 to 0.95 –
we may use realized values of deviations from weekt: CONSDt and INFDt.

Second, to solve the problem with the seasonality of water level, which captures the influence
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Figure 3: Ex-ante (realized) risk premia for the 1W and 6W futures contractsdepicted in Figure 2. Weekly data in the
period 1998-2010.

of other seasonal variables, we divide the water level into seasonal and stochastic parts, as dis-
cussed in Section 4.1. Both of them are included in the regression. Third, the endogeneity of the
spot price is probably the hardest to tackle. It is difficult to come up with a convincing instrumen-
tal variable for the spot price and therefore the only remaining solutions are (i) to eliminate spot
price from the model or (ii) to simply leave it there. The first approach may lead to the omitted
variables bias while the second may cause the simultaneity bias. Nevertheless, if estimates from
these two approaches are consistent with each other, we can hope that the conclusions from the
analysis are reliable. Finally, after the above adjustments, our regressionModel 1 for the realized
risk premium is as follows:

RPt,T = β1+β2RESDt+β3RESMt+β4INFDt+β5CONSDt+β6VARt+β7SKEWt+β8S t+ut. (19)

All variables are as previously defined: RPt,T is the risk premium for aT -week futures contract,
RESDt and RESMt are the stochastic and seasonal components of water level, INFDt and CONSDt
are the deviations of water inflow and energy consumption from long-term averages in a given
week, VARt and SKEWt are the variance and skewness of the spot price, andS t is the average spot
price in weekt. Model 2 is obtained by settingβ8 ≡ 0, i.e. by discarding the spot price from the
regression.

Estimation is performed in GRETL using Ordinary Least Squares (OLS). The literature does
not provide a clear guidance as to the order of integration of spot prices and other considered
variables (Torro, 2009). Since for our sample the unit root hypothesis is rejected, we do not
consider first differences but work with raw data. This approach is also consistent with the one of
Botterud et al. (2010). Heteroskedasticity is clearly present, as is autocorrelation. We therefore use
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Table 2: Regression results for the risk premium model (5) estimated usingthe full dataset studied in this paper
(1998-2010,upper part) and a truncated dataset (1998-2006,middle part). The dependent variable is the realized risk
premium for weekly contracts with different maturities (T= 1 and 6W).p-values based on HAC standard errors are
given in parentheses. Stars∗,∗∗ and∗∗∗ denote significance at the usual levels of 10%, 5% and 1%, respectively. Note
that model (5) ignores the critique of Section 3 and therefore the coefficients can be biased. The original results of
Botterud et al. (2010), Table 6, are presented for comparison in thebottom part of the table.

T Const. RESt INFDt CONSDt VARt SKEWt S t
(×105) (×105) (×104) (×104)

Years 1998-2010 (full sample)
1W 0.084∗∗∗

(0.000)
−0.054∗∗∗

(0.000)
−1.064∗∗∗

(0.000)
4.935∗∗∗

(0.001)
−2.300∗

(0.123)
0.016
(0.845)

−1.506∗∗∗
(0.000)

6W 0.098∗∗
(0.050)

−0.095
(0.112)

−2.024∗∗∗
(0.000)

5.544∗∗∗
(0.000)

−3.033
(0.355)

−0.298
(0.266)

−3.826∗∗∗
(0.002)

Years 1998-2006
1W 0.105∗∗∗

(0.000)
−0.070∗∗∗

(0.000)
−1.241∗∗∗

(0.000)
5.114∗∗∗

(0.006)
−1.516

(0.264)
0.016
(0.826)

−2.347∗∗∗
(0.000)

6W 0.154∗∗
(0.010)

−0.130
(0.044)

∗∗ −1.989∗∗∗
(0.000)

6.410∗∗∗
(0.000)

−2.114
(0.495)

−0.386
(0.144)

−6.718∗∗∗
(0.002)

Years 1996-2006, results from Botterud et al. (2010), Table 6
1W 0.062∗∗∗ −0.053∗∗∗ −1.900∗∗∗ 7.300∗∗∗ −0.001∗∗ −0.001 −1.900∗∗∗

6W 0.210∗∗∗ −0.179∗∗∗ −1.800∗∗∗ 8.100∗∗∗ −28.000 −0.000 −7.100∗∗∗

Newey-West standard errors to account for them. The models havea rather low explaining power,
resulting inR2 between 0.05 and 0.08. The high variance of the error term makes it difficult to
observe significant coefficients. Nevertheless, some statistically significant results are obtained,
see Table 3. As we can observe, the coefficient of RESDt (the stochastic component of the water
level) is positive, which is to be expected, but contradicts the results of Botterud et al. (2010).
The significance of the coefficient is low, especially when we include the spot price (Model 1)
but nonetheless this clearly does not support the hypothesis of a negative relationship between
the risk premium and the reservoir level. Please note that the general picture does not change if
we analyze only the first or the second half of the sample, although the coefficients become then
highly insignificant and some of them are negative (not reported here).

The weak evidence in favor of a positive relationship between the risk premium and the reser-
voir level is a bit disappointing. However, the relatively low fit of Models 1 and 2 suggests that a
large amount of variation is unexplained. Possibly due to omitted but important factors, the lin-
earity of the model or drawbacks related to the used variables. We have tried to include non-linear
terms in the model, i.e. squares and interactions of the variables, but this has not led to any signifi-
cant improvement. However, when we test for the presence of ARCH effects, the hypothesis of no
effect is unambiguously rejected for all contract maturities. In the following Section we therefore
turn to the estimation of regression models with GARCH residuals.

4.3. Models with GARCH residuals
We expand Models 1 and 2 by takingut in eqn. (19) to be a GARCH(p, q) process. For all

contract maturities we find that GARCH(1,1) is the best choice in terms of minimizing standard
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Table 3: Regression results forModels 1 and2, see eqn. (19), and the full 1998-2010 dataset. The dependent variable
is the realized risk premium for weekly contracts with different maturities (T= 1,3 and 6W).p-values based on HAC
standard errors are reported in parentheses. Stars denote significance at usual levels of 10%, 5% and 1%.

T Const. RESDt RESMt INFDt CONSDt VARt SKEWt S t
(×105) (×105) (×104) (×104)

Model 1
1W 0.077∗∗∗

(0.000)
0.042
(0.288)

−0.050∗∗∗
(0.000)

−0.672∗∗∗
(0.005)

1.853
(0.114)

−2.833∗
(0.065)

0.021
(0.812)

−1.019∗∗
(0.012)

3W 0.071∗∗
(0.023)

0.044
(0.722)

−0.060
(0.134)

−1.214∗
(0.055)

5.596∗
(0.942)

1.362
(0.835)

0.205
(0.405)

−1.795
(0.132)

6W 0.076
(0.143)

0.007
(0.977)

−0.052
(0.433)

−0.829
(0.388)

12.662
0.017)

∗∗ −1.376
(0.777)

0.519
(0.140)

−2.823
(0.119)

Model 2
1W 0.052∗∗∗

(0.000)
0.134∗∗∗

(0.002)
−0.046∗∗∗

(0.000)
−0.651∗∗∗

0.007)
1.128
(0.329)

−2.796∗
(0.062)

−0.003
(0.969)

–

3W 0.027
(0.256)

0.206
(0.119)

−0.053
(0.202)

−1.176∗
(0.065)

4.320
(0.197)

1.427
(0.824)

0.163
(0.500)

–

6W 0.007∗∗
(0.854)

0.262
(0.241)

−0.041
(0.551)

−0.770
(0.420)

10.654∗∗
(0.037)

−1.273
(0.789)

−0.453
(0.187)

–

information criteria. The resulting models are calledModel 3 and4, respectively. We estimate
them in GRETL using robust QML standard errors. The results are presented in Table 4, this time
for all six futures contracts – from one week (1W) to 6 week (6W).

The coefficient of RESDt is always positive, though not always significant, no matter if we
include (Model 3) or exclude (Model 4) the spot price. This result is also robust with respect to the
time range – separate analyzes of the truncated subsamples, i.e. the first or second half of the 13-
year period, yield qualitatively the same results (not reported here). This confirms the hypothesis
that the impact of water level on the risk premium is actually positive, which is consistent with our
expectations, but contradicts the results of Botterud et al. (2010). The coefficient of water level
generally lies between 0.1 and 0.25, depending on the contract maturity and on whether we control
for the spot price or not. Is it economically significant? If the reservoir level changes by 10% of its
total capacity – which is a reasonable value, even if we do not count seasonal changes, see Table 1
– the risk premium changes by 0.01 to 0.025, i.e. 1-2.5 percentage points. Since the average risk
premium, depending on contract maturity, is more or less -1.5%, the deviation of reservoir level
may change the risk premium quite significantly.

Furthermore, the deviation of the consumption, CONSDt, usually has a positive sign, as op-
posed to the deviation of the inflows, INFDt. However, the coefficients are insignificant in most of
the cases. The higher is the expected consumption (the lower the inflow of water), the higher the
realized spot price, which suggests that the market does not fully incorporate all the information
into futures prices (see e.g. Gjolberg and Brattested, 2011, for a discussion of the risk premium
and market inefficiency). The coefficients of variance and skewness are of mixed sign and low
significance. Therefore our results cannot provide evidence in favor of the Bessembinder-Lemon
model. However, they also cannot be treated as evidence against the model.
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Table 4: Regression results forModels 3 and4 with GARCH residuals, see Section 4.3, and the full 1998-2010 dataset.
The dependent variable is the realized risk premium for weekly contracts with different maturities (T= 1, ...,6W).
p-values based on robust QML standard errors are reported in parentheses. Stars denote significance at usual levels
of 10%, 5% and 1%.

T Const. RESDt RESMt INFDt CONSDt VARt SKEWt S t
(×105) (×105) (×104) (×104)

Model 3
1W 0.071∗∗∗

(0.000)
0.041
(0.311)

−0.043∗∗∗
(0.000)

−0.463∗∗
(0.023)

1.931
(0.115)

−0.087
(0.980)

0.056
(0.706)

−0.773∗∗∗
(0.004)

2W 0.071∗∗∗
(0.000)

0.109∗∗
(0.046)

−0.052∗∗
(0.025)

−0.649∗∗
(0.019)

2.215
(0.200)

−10.241∗∗∗
(0.002)

0.156
(0.275)

−1.305∗∗
(0.015)

3W 0.096∗∗∗
(0.021)

0.087
(0.234)

−0.127∗∗∗
(0.000)

−0.341
(0.298)

4.220∗
(0.065)

4.712
(0.218)

−0.082
(0.622)

−1.003
(0.198)

4W 0.095∗∗∗
(0.000)

0.177∗∗
(0.035)

−0.165∗∗∗
(0.000)

−0.338
(0.376)

4.923∗∗
(0.029)

4.605
(0.281)

−0.319
(0.105)

−0.271
(0.737)

5W 0.155∗∗∗
(0.000)

0.192∗
(0.096)

−0.254∗∗∗
(0.000)

0.636
(0.222)

6.323∗∗
(0.018)

−5.758
(0.346)

0.337
(0.146)

−0.470
(0.704)

6W 0.126∗∗∗
(0.001)

0.245
(0.104)

−0.221∗∗∗
(0.000)

0.616
(0.196)

6.087∗∗
(0.031)

−1.103
(0.759)

0.252
(0.316)

−0.388
(0.729)

Model 4
1W 0.052∗∗∗

(0.000)
0.104∗∗∗

(0.004)
−0.041∗∗

(0.010)
−0.426∗∗∗

0.032)
1.676
(0.142)

0.167
(0.960)

0.057
(0.697)

–

2W 0.047∗∗∗
(0.001)

0.190∗∗∗
(0.000)

−0.059∗∗∗
(0.008)

−0.601∗∗
0.022)

1.739
(0.305)

−10.045
(0.004)

0.126
(0.384)

–

3W 0.078∗∗∗
(0.000)

0.150∗∗
(0.033)

−0.133∗∗∗
(0.000)

−0.314
0.324)

4.178
(0.078)

4.366
(0.250)

−0.108
(0.522)

–

4W 0.091∗∗∗
(0.000)

0.194∗∗
(0.016)

−0.168∗∗∗
(0.000)

−0.323
0.402)

4.914∗∗
(0.030)

4.566
(0.288)

−0.324∗
(0.093)

–

5W 0.147∗∗∗
(0.000)

0.213
(0.125)

−0.258∗∗∗
(0.000)

0.656
0.211)

6.270∗∗
(0.022)

−6.014
(0.352)

0.341
(0.134)

–

6W 0.118∗∗∗
(0.000)

0.267
(0.109)

−0.223∗∗∗
(0.000)

0.636
0.169)

5.951∗∗
(0.040)

−1.236
(0.724)

0.239
(0.334)

–

4.4. Regression results for the convenience yield
As mentionedin Section 2.3, in our opinion the storage cost theory, proposed by Botterud

et al. (2010) to explain the behavior of the convenience yield in the Nord Pool market, needs
stronger empirical evidence than provided. The significant, negative coefficient of water level in
the regression model for the convenience yield observed by Botterud et al. (2010) can be explained
by the correlation of seasonal components and may not reflect any real, causal relationship between
the convenience yield and the level of water. In addition, the model may suffer from similar
problems as the risk premium model, e.g. simultaneity. To provide less ambiguous evidence one
could regress the convenience yield on the stochastic part of the water level, avoiding the problem
with the seasonality.

To start the analysis, we estimate the regression model for the convenience yield as proposed
by Botterud et al. (2010) in eqn. (4), i.e.:

CYt,T = α0 + α1RESt + α2INFDt,T + α3CONSDt,T + α4S t + α5VARt + α6SKEWt + ǫt. (20)

The independent variables are the same as in the risk premium model (5). The results are summa-
rized in Table 5. As we can see, the coefficients of water level are negative and highly significant,
just like in the original article.
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Table 5: Regression results for the convenience yield model (20) estimatedusing the full dataset studied in this
paper (1998-2010,upper part). The dependent variable is the convenience yield for weekly contracts with different
maturities (T= 1 and 6W).p-values based on HAC standard errors are given in parentheses. Stars∗,∗∗ and∗∗∗ denote
significance at the usual levels of 10%, 5% and 1%, respectively. Note that model (20) ignores the critique of Section
3 and therefore the coefficients can be biased. The original results of Botterud et al. (2010), Table 4, are presented for
comparison in thebottom part of the table.

T Const. RESt INFDt CONSDt VARt SKEWt S t
(×105) (×105) (×104) (×104)

Years 1998-2010 (full sample)
1W 0.076∗∗∗

(0.000)
−0.079∗∗∗

(0.000)
1.470∗∗∗

(0.000)
−8.018∗∗∗

(0.000)
−17.735∗∗∗

(0.000)
0.340∗∗∗

(0.000)
−0.117

(0.717)

6W 0.198∗∗∗
(0.000)

−0.407∗∗∗
(0.000)

0.238
(0.100)

−0.111
(0.892)

25.526∗∗∗
(0.000)

−0.931∗∗∗
(0.000)

1.249
(0.248)

Years 1996-2006, results from Botterud et al. (2010), Table 4
1W 0.047∗∗∗ −0.082∗∗∗ 0.381 −10.1∗∗∗ 0.004∗∗ 0.008∗∗∗ −0.750∗∗∗

6W 0.260∗∗∗ −0.461∗∗∗ 0.095 0.033 0.006∗∗∗ 0.054∗∗ −1.5

Analogously as in our analysis of the risk premium, we have examined therelationship after
dividing the water level into the stochastic and seasonal parts. Our regressionModel 5 for the
convenience yield is as follows:

CYt,T = β1+β2RESDt+β3RESMt+β4INFDt+β5CONSDt+β6VARt+β7SKEWt+β8S t+ut. (21)

The independent variables are the same as in the risk premium model (19).Model 6 is obtained by
settingβ8 ≡ 0, i.e. by discarding the spot price from the regression. The results are summarized in
the upper part of Table 6. They give only limited support to the storage cost theory. The coefficient
of the stochastic component of water level is of mixed sign. Interestingly, it is negative and signif-
icant for the contracts with longer maturities. One possible interpretation of this phenomenon is
that the risk of reservoir overflow during a 6 week period may be more significant than during a 1
week period and thus storage cost theory may be more appropriate for longer time horizons.

Finally, after rejecting the hypothesis of no ARCH effect, we build regression models for
the convenience yield with GARCH residuals. We expand Models 5 and 6 by takingut in eqn.
(21) to be a GARCH(p, q) process; again we find that GARCH(1,1) is the best choice in terms
of minimizing standard information criteria. The resulting models are calledModel 7 and 8,
respectively. We estimate them in GRETL using robust QML standard errors. The results are
presented in lower part of Table 6.

The inclusion of GARCH residuals does not change much. The coefficient of RESDt is gener-
ally negative and very close to zero. If the spot price is excluded from the model, the coefficient
becomes significant for longer maturities. Therefore the storage cost theory may be an explanation
for the longer term behavior of the convenience yield. The mechanism described by Botterud et
al. (2010) definitely may exist, but it is not showing up in the data as unambiguously as suggested
by the authors. The very strong support that they report was caused by coincidence of the seasonal
patterns of water level and the expected change of the spot price. The cost of the potential water
spillover, which is an element of the theory, seems to be negligible for short time horizons. In
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Table 6: Regression results for the full 1998-2010 dataset andModels 5 and6, see eqn. (21), and forModels 7 and
8 with GARCH residuals, see Section 4.4. The dependent variable is the convenience yield for weekly contracts with
different maturities (T= 1,3 and 6W).p-values are based on robust standard errors (HAC errors for Models 5 and 6,
QML errors for Models 7 and 8) are reported in parentheses. Stars denote significance at usual levels of 10%, 5% and
1%.

T Const RESDt RESMt INFDT CONSDT VARt S KEWt S t
×10−5 ×10−5 ×10−4 ×10−4

Model 5
1W 0.067∗∗∗

(0.000)
0.094∗
(0.055)

−0.090∗∗∗
(0.000)

1.376∗∗∗
(0.000)

−8.804∗∗∗
(0.000)

17.374∗∗∗
(0.000)

0.285∗∗∗
(0.002)

0.781∗∗
(0.015)

3W 0.090∗∗∗
(0.000)

0.056
(0.366)

−0.162∗∗∗
(0.000)

0.564∗∗∗
(0.001)

−4.035∗∗∗
(0.000)

18.818∗∗∗
(0.000)

0.431∗∗∗
(0.000)

0.920
(0.047)

6W 0.183∗∗∗
(0.000)

−0.146
(0.159)

−0.420∗∗∗
(0.000)

0.216
(0.136)

−4.613
(0.590)

25.208∗∗∗
(0.000)

0.860∗∗∗
(0.000)

2.575∗∗
(0.015)

Model 6
1W 0.085∗∗∗

(0.000)
0.023
(0.609)

−0.092∗∗∗
(0.000)

1.346∗∗∗
(0.000)

−8.468∗∗∗
(0.000)

17.479∗∗∗
(0.000)

0.311∗∗∗
(0.001)

–

3W 0.149∗∗∗
(0.000)

−0.115
(0.200)

−0.245∗∗∗
(0.000)

0.233
(0.144)

−1.901∗∗
(0.034)

20.126∗∗∗
(0.000)

0.592∗∗∗
(0.000)

–

6W 0.246∗∗∗
(0.000)

−0.378∗∗∗
(0.008)

−0.428∗∗∗
(0.000)

0.166
(0.229)

−0.286
(0.749)

25.439∗∗∗
(0.000)

0.952∗∗∗
(0.000)

–

Model 7
1W 0.075∗∗∗

(0.000)
−0.001

(0.992)
−0.095∗∗∗

(0.000)
1.036∗∗∗

(0.000)
−6.163∗∗∗

(0.000)
18.947∗∗∗

(0.000)
0.312∗∗∗

(0.005)
0.561∗∗

(0.042)

3W 0.102∗∗∗
(0.000)

−0.007
(0.917)

−0.206∗∗∗
(0.000)

0.346∗∗∗
(0.003)

−0.9222
(0.167)

22.290∗∗∗
(0.000)

0.630∗∗∗
(0.000)

1.099
(0.040)

∗∗

6W 0.161∗∗∗
(0.000)

−0.118
(0.227)

−0.327∗∗∗
(0.000)

0.243∗∗∗
(0.009)

−0.258
(0.745)

31.630∗∗∗
(0.000)

1.008∗∗∗
(0.000)

1.319∗∗
(0.030)

Model 8
1W 0.086∗∗∗

(0.000)
−0.042

(0.369)
−0.093∗∗∗

(0.000)
1.050∗∗∗

(0.000)
−6.085∗∗∗

(0.000)
18.920∗∗∗

(0.000)
0.310∗∗∗

(0.005)
–

3W 0.131∗∗∗
(0.000)

−0.088
(0.129)

−0.213∗∗∗
(0.000)

0.319∗∗∗
(0.007)

−0.877
(0.205)

22.299∗∗∗
(0.000)

0.629∗∗∗
(0.000)

–

6W 0.203∗∗∗
(0.000)

−0.214∗∗
(0.027)

−0.345∗∗∗
(0.000)

0.213∗∗
(0.014)

−0.198
(0.823)

31.476∗∗∗
(0.000)

1.028∗∗∗
(0.000)

–

other words, one rarely faces a significant risk of reservoir overflow within the next 1-3 weeks. On
the other hand, the overflow is more likely within next 5 or 6 weeks.

5. Conclusions

The motivation and a starting point for this study was a recent article by Botterud et al. (2010)
who analyzed weekly Nord Pool futures contracts in the 11-year period 1996-2006. The strong
support for the storage cost theory, expressed by a negative and statistically significant coefficient
of the water reservoir level in the regression model for the convenience yield seemed very attractive
both from a modeling and a theoretical point of view. However, a closer inspection of the data and
models revealed some weaknesses in the econometric setup and flaws in the argumentation.

In this paper we have looked at ex-post (or realized) risk premia and convenience yields in the
Nord Pool market. At our disposal was a longer and more recent 13-year dataset (1998-2010) of
weekly spot and futures prices, consumption figures and water reservoir levels and inflows. As
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a first step we have reestimated the models of Botterud et al. (2010) andfound the results to be
consistent with their study and relatively robust with respect to the time period considered, see
Tables 2 and 5.

Next we have looked at the potential pitfalls of applying linear regression models for explaining
the relationship between spot and futures prices in electricity markets. In particular, the bias
coming from the simultaneity problem (Section 3.1), the effect of correlated measurement errors
(Section 3.2) and the impact of seasonality on the regression results (Section 3.3). To solve the
problem with the seasonality of water level we have divided it into seasonal and stochastic parts.
To address the endogeneity of the spot price issue we considered two sets of models – with and
without the spot price as an explanatory variable. The first approach may cause the simultaneity
bias while the second may lead to the omitted variables bias. Nevertheless, if estimates from these
two approaches are more or less consistent with each other, we can hope that the conclusions
from the analysis are reliable. After these adjustments the risk premium models (Models 1 and 2)
yielded reasonable, but generally not statistically significant results. As a second refinement step
we considered GARCH residuals in our regression models; the hypothesis of no ARCH effect was
rejected for all contract maturities. Using these models (Models 3 and 4) we have shown that the
impact of the water reservoir level on the risk premium is positive, which is to be expected, but
contradicts the results of Botterud et al. (2010), and statistically significant. Finally we have shown
that after taking into account the seasonality of the water level, the storage cost theory proposed
by Botterud et al. (2010) to explain the behavior of the convenience yield has only limited support
in the data.

Although we work in a slightly different setup, our results are consistent with a recent study of
Lucia and Torro (2011). While they only report that below-average level of water leads to lower
risk premium, we show that this effect is more general and there exists a positive relationship
between the risk premium and the reservoir level. This is in line with economic theory and supports
a more general view that shortage or high prices of ‘fuel’ (i.e. commodities used for generating
electricity) lead to lower risk premia, as shown for gas inventories by Douglas and Popova (2008)
or for gas and coal prices by Bunn and Chen (2013).

Our results cannot unambiguously provide an answer as to the character of the observed premia
– whether they really represent the price of risk and are not the result of market inefficiency (see
e.g. Christensen et al., 2007; Gjolberg and Brattested, 2011; Kristiansen, 2007). However, we
show that the evolution of the premia can be partially explained by fundamental factors and thus
the premia are likely to be the price of risk. This is in line with the results of Ronn and Wimschulte
(2009), who show that investors are indeed ready to pay a premium for securing the price earlier,
even if the settlement is only 2 hours apart (EXAA vs. EEX). Nonetheless, the behavior of the
premia may differ across markets, as emphasized by Huisman and Kilic (2012), and may change
over the years, as reported by Haugom and Ullrich (2012) for the PJM market.
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