
 

 

HSC/13/13 
H

S
C
 R

e
s
e
a
rc

h
 R

e
p
o
rt

 

Long term probabilistic 
load forecasting and 
normalization with 

hourly information 

 
Tao Hong1 

Jason Wilson2 

Jingrui Xie1 
 

 
1 SAS Institute, Cary, North Carolina, USA 

2 North Carolina Electrical Membership Corporation, 
Raleigh, North Carolina, USA 

 
 

Hugo Steinhaus Center 

Wrocław University of Technology 
Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland  

http://www.im.pwr.wroc.pl/~hugo/ 



 

Hong, T., Wilson, J., & Xie, J. (2014). Long term probabilistic load forecasting and normalization with hourly 

information. IEEE Transactions on Smart Grid, 5(1), 456-462. 

1 

 

Abstract-- The classical approach to long term load forecasting 

is often limited to the use of load and weather information 

occurring with monthly or annual frequency. This low resolution, 

infrequent data can sometimes lead to inaccurate forecasts. Load 

forecasters often have a hard time explaining the errors based on 

the limited information available through the low resolution data.  

The increasing usage of Smart Grid and Advanced Metering 

Infrastructure (AMI) technologies provides the utility load 

forecasters with high resolution, layered information to improve 

the load forecasting process. In this paper, we propose a modern 

approach that takes advantage of hourly information to create 

more accurate and defensible forecasts. The proposed approach 

has been deployed across many US utilities, including a recent 

implementation at North Carolina Electric Membership 

Corporation (NCEMC), which is used as the case study in this 

paper. Three key elements of long term load forecasting are being 

modernized: predictive modeling, scenario analysis and weather 

normalization. We first show the superior accuracy of the 

predictive models attained from hourly data, over the classical 

methods of forecasting using monthly or annual peak data. We 

then develop probabilistic forecasts through cross scenario 

analysis. Finally, we illustrate the concept of load normalization 

and normalize the load using the proposed hourly models. 

 
Index Terms--Load Forecasting, Load Normalization, Weather 

Normalization, Multiple Linear Regression Models. 

I.  NOMENCLATURE 

GSP:    Gross State Product 

CDD:    Cooling Degree Days 

HDD:    Heating Degree Days 

Trend:    a linear trend variable 

Tmax:    monthly peak temperature 

Tt:     current hour temperature 

Tt-k:     the temperature of the previous k
th

 hour 

Ta:     average temperature of the past 24 hours 

Month:   class variable, 12 months of the year 

Weekday:  class variable, 7 days of a week 

Hour:    class variable, 24 hours of a day 

Day:    class variable, code for days of a year 
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tao.hong@sas.com). 

J. Wilson is with North Carolina Electrical Membership Corporation, 

Raleigh, NC 27616 USA (e-mail: jason.wilson@ncemcs.com). 
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II.  INTRODUCTION 

ONG term load forecasting (LTLF) provides peak demand 

and energy forecasts for one or more years, and can be 

expanded out to a horizon of a few decades. Utilities typically 

produce long term forecasts ranging from 20 to 50 years into 

the future. Such forecasts are often being used for planning by 

multiple departments in a utility, such as system planning, 

finance, demand side management, and power supply, etc. 

North Carolina Electric Membership Corporation (NCEMC), 

is one of the largest electric generation cooperatives in the US, 

and is comprised of a family of corporations formed to support 

26 of North Carolina’s electric distribution cooperatives. 

These cooperatives provide energy and related services to 

more than 950,000 households and businesses in 93 of North 

Carolina’s 100 counties. At NCEMC, long term load forecasts 

serve as the important inputs to the power supply group to 

support decisions on electricity purchase contracts. Because 

NCEMC owns generation units, it is required to file Integrated 

Resource Planning (IRP) documents with the North Carolina 

Public Utilities Commission, thus expanding the scrutiny from 

the member cooperatives and NCEMC board, to the state 

regulatory commission. 

In the regulatory environment, utility forecasters have to 

defend the long term forecasts internally to the utility’s 

management and externally to the regulatory commission. 

Although forecasting by nature is a stochastic problem, most 

utilities today are still developing and using point forecasts 

instead of probabilistic forecasts. Due to the poor 

predictability of the climate, which is a main driver of 

electricity demand, it is unrealistic and unfair to judge a long 

term forecaster by comparing a few years of point forecasts 

with the corresponding actual values. Instead, there are two 

important questions that should be asked and answered 

properly when defending the long term forecasts: 1) is the 

current scenario covered by the forecasts? 2) how accurate is 

the forecast given the current scenario? 

Most utilities today follow the LTLF practices similar to the 

ones established a few decades ago, when there was not high 

resolution data available. Since the type of low resolution data 

used in the traditional approach provides a limited number of 

observations for predictive modeling, the forecasters may not 

be able to use enough explanatory variables to capture all the 

salient features of electric load. When given the actual values 

of the weather and economy variables to re-forecast the loads 
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under the current scenario, the model may still produce some 

significant errors, which can be hard to explain by the 

forecasters.  

There are a few ways to create weather scenarios for LTLF 

and weather normalization. A lot of utilities are using the 

average temperature profile (in hourly or daily interval for a 

year) from the previous few decades as the normal weather to 

derive the normal load, which is not a defensible approach: 1) 

an average temperature profile understates the peaks, so it can 

not accurately represent the normal weather; 2) a normal 

weather profile may not lead to a normal load profile due to 

the nonlinear relationship between the load and weather [1]. 

Another popular approach is to use normal or typical weather 

profiles created by third parties, such as National Oceanic and 

Atmospheric Administration (NOAA) and the US Department 

of Energy (DOE). An advantage of this third-party profile 

approach is its simplicity. However, these weather profiles are 

not created specifically for utilities to calculate normalized 

load. Therefore, it is questionable that their best use is for 

normalizing the load profile in the utility industry. A more 

rigorous approach is based on Monte Carlo simulation, which 

is often adopted by the risk management teams in the utility 

industry. The quantitative risk analysts first analyze the 

distribution of temperatures on each hour of the year. They 

then create thousands of temperature profiles for scenario 

analysis. This simulation approach requires a lot of 

computational resources. The results, including thousands of 

load profiles, are sometimes too voluminous and become 

difficult to understand and be used by the system operators in 

practice.  

Most literature in the load forecasting field has been 

devoted to short term load forecasting, of which the 

forecasting horizon is two weeks or less [1-7]. Not many 

papers have been devoted to LTLF, of which few papers 

present practical approaches verified through field 

implementations at utilities. An implementation of spatial load 

forecasting work at Madison Gas and Electric Company has 

been presented in [8-10]. A peak load forecasting 

methodology implemented at Australian Energy Market 

Operator (AEMO) has been reported in [11]. In this paper, we 

propose a probabilistic forecasting approach with hourly data, 

which is the continuation of Hong’s load forecasting 

methodology presented in [1]. We dissect LTLF to three 

elements: predictive modeling, scenario analysis and weather 

normalization. We then modernize each step with multiple 

linear regression (MLR) models and hourly data. The 

proposed approach has been deployed to many large and 

medium size utilities including NCEMC. The data required in 

the NCEMC case study includes hourly system load data at 

corporate level, which is available through NCEMC’s Energy 

Management System, hourly weather data purchased from 

WeatherBank and annual economy data purchased from 

Moody’s. Execution of the proposed approach on NCEMC 

data in automated mode can be finished within a day on a 

commodity server with an 8-core CPU and 32G RAM. This is 

well-acceptable for a once-per-year long term load forecasting 

task. In comparison with Fan’s approach, which originated 

from a field implementation at an ISO, the approach proposed 

in this paper is more applicable to utilities operating within a 

regulatory environment, due to its relative simplicity and 

strong defensibility. The scope of this paper does not include 

forecasting under renewable penetration and demand response 

activities. 

The rest of the paper is organized as follows: Section III 

reviews the fundamentals, including the models we start with; 

Section IV discusses the model selection approach and 

determines the length of historical data used in long term 

forecasting; Section V presents the long term probabilistic 

forecasts with cross weather and economy scenarios; Section 

VI introduces the methodology for load normalization; the 

paper is concluded in Section VI with discussions of potential 

future work. 

III.  FUNDAMENTALS 

A.  Multiple Linear Regression 

Multiple Linear Regression analysis has been widely used 

in the forecasting fields, including load forecasting. Detailed 

coverage on the theory of regression analysis and linear 

models is provided in [13]. Implementation of MLR in SAS is 

presented in [14]. A comprehensive guideline about how to 

apply MLR models to short term load forecasting is discussed 

in [1].  

In this case study, we start with several MLR models: a 

classical model for monthly energy forecasting denoted as C1, 

a classical model for monthly peak forecasting denoted as C2, 

Tao’s vanilla benchmark denoted as B, and a group of 

customized short term load forecasting models denoted as S. 

The models in S are derived using Hong’s methodology 

documented in [1], where by default, 3 years of data are used 

for parameter estimation and the year after is used for variable 

selection. When using year 2010 for variable selection, we 

denote the resulting variable combination as S2010. All of these 

starting models have the dependent variable Load and an 

intercept term. The main effects and cross effects are described 

in Table I, where each class variables consists of several 0-1 

indicator variables. S2010 is used as an example of S models.  

The Day variable is derived from the Weekday variable 

using rules described in Table II. We first group Tuesday and 

Wednesday together labeled as Tuesday. We then model some 

holidays and the surrounding days using weekdays and 

weekends [1].  For example, take New Year’s Day: it is a 

fixed-date holiday. When it falls on a Friday, we modify the 

value of the Day variable to Saturday. Otherwise, we model it 

as a Sunday. We also model the day before New Year’s Day as 

a Saturday. 

B.  Error Statistics 

Despite of many criticisms, Mean Absolute Percentage 

Error (MAPE) is still a widely used error statistic in business 

forecasting. MAPE (%) can be calculated as follows: 
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TABLE I 

Main and Cross Effects of the Starting Models 

Model Main Effects Cross Effects 

C1 
GSP, CDD, HDD, 

Month 
N/A 

C2 
GSP, maxT , 2

maxT , 

3
maxT , Month 

N/A 

B 

Trend, tT , 2
tT , 

3
tT , Month, 

Weekday, Hour 

tT *Month, 2
tT *Month, 3

tT *Month, 

tT *Hour, 2
tT *Hour, 3

tT *Hour, 

Weekday*Hour 

S2010 

Trend, tT , 2
tT , 

3
tT , 1tT , 2

1tT , 

3
1tT ,  2tT , 2

2tT , 

3
2tT , 3tT , 2

3tT , 

3
3tT , aT , 2

aT , 

3
aT , Month, Day, 

Hour 

tT *Month, 2
tT *Month, 3

tT *Month, 

tT *Hour, 2
tT *Hour, 3

tT *Hour, 

1tT *Month, 2
1tT *Month, 3

1tT *Month, 

1tT *Hour, 2
1tT *Hour, 3

1tT *Hour, 

2tT *Month, 2
2tT *Month, 3

2tT *Month, 

2tT *Hour, 2
2tT *Hour, 3

2tT *Hour, 

3tT *Month, 2
3tT *Month, 3

3tT *Month, 

3tT *Hour, 2
3tT *Hour, 3

3tT *Hour, 

aT *Month, 2
aT *Month, 3

aT *Month, 

aT *Hour, 2
aT *Hour, 3

aT *Hour, 

Day*Hour, 

 
TABLE II 

Modifications to the Days of a Year for Model S2010 

Days of a Year (Original) Day Code (Modified) 

Wednesday (regular) Tuesday 

Day Before New Year's Day Saturday 

New Year's Day Friday  Saturday; else  Sunday 

Memorial Day Saturday 

Day After Memorial Day Monday 

Day Before Independence Day Friday 

Independence Day Friday  Saturday; else  Sunday 

Day Before Labor Day Saturday 

Labor Day Saturday 

Day After Labor Day Thursday 

Day Before Thanksgiving Day Monday 

Thanksgiving Day Saturday 

Day After Thanksgiving Day Saturday 

Day Before Christmas Day Saturday 

Christmas Day Friday  Saturday; else  Sunday 

Day After Christmas Day Saturday 

 

|/)(

1

|
100

iii APA
N

iN
MAPE 



 ,                   (1) 

where N is the number of observations, Ai represents the actual 

load, and Pi represents the predicted load.  

Since the results of our case study are monthly energy 

forecasts and monthly peak forecasts, we also use the MAPE 

of monthly energy and MAPE of monthly peak to evaluate the 

forecasting accuracy. To calculate MAPE of monthly energy 

(or peak) based on hourly load forecasts, we have to first 

extract the actual and predicted monthly energy (or peak), and 

then apply (1) to the resulting series. 

To properly answer the second question posted in Section 

II, the forecasts have to be evaluated based on ex post 

forecasting accuracy. Take one year ahead forecasting for 

example as covered in section V. Assuming we are forecasting 

the monthly peaks of 2011, if we use the information available 

through the end of 2010 to forecast 2011, the resulting forecast 

is ex ante forecast, or “before the event” forecast. If we use the 

information available through the end of 2011 other than the 

loads of 2011 to forecast the loads of 2011, the resulting 

forecast is ex post forecast, or “after the event” forecast. At the 

beginning of 2012, instead of focusing on ex ante forecast of 

2011, we should emphasize the ex post forecasting accuracy of 

2011, which tells how the model behaves given the actual 

temperatures of 2011.  

IV.  PREDICTIVE MODELING 

In this section, we first augment the S models to LTLF 

models, denoted as L, using the available data on and prior to 

2006. We then determine the appropriate length of history for 

one year ahead load forecasting. At the end, we compare the 

ex post forecasting accuracy of the C1, C2, B, S and L models 

on a rolling basis using 2007 through 2010 [15]. 

A.  Model Selection 

The general health of the economy is what ultimately drives 

long term electricity consumption. We would like to extend the 

model group S for long term forecasting by adding a 

macroeconomic indicator, GSP. The same annual value of 

GSP is assigned to each hour of a year. We use GSP in this 

paper mainly due to two reasons: 1) the territory of NCEMC 

covers most of North Carolina, which makes GSP a good 

driver of the NCEMC’s long term load; 2) GSP is easy to 

access and understand. If the utility’s territory covers one or a 

few counties or cities, GDP (Gross Domestic Product) by 

county or GMP (Gross Metropolitan Product) can be used as 

the macroeconomic indicator. In practice, depending upon the 

drivers of the load, we can also use several other indicators 

and their combinations, such as housing stock, employment 

rate, number of jobs, etc. For the utilities, especially retail 

electricity providers, who provide services in deregulated 

environment, the total loads are highly impacted by customer 

churn. In those situations, we can use customer count as the 

macroeconomic indicator. 

The augmentation to a long term forecasting model can be 

achieved in three ways: 

1) Replace Trend by GSP. There is an inherent assumption 

in this approach: the loads sensitive to weather and calendar 

stay in the same profile over time, while there is part of a base 

load that growing linearly in proportion to the economic 

growth. If the forecasting horizon is within a few years, this 

approach can be a good approximation in practice. As the 

horizon becomes longer, there can be significantly more 

customers moving into the territory. Consequently, the weather 

and calendar sensitive loads should grow as well. 

2) Divide Load by GSP. The inherent assumption for this 

approach is that the load is growing at exactly the same rate as 

the economic growth. In other words, there is no base load that 

stays constant while the economy is growing. Take a 
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residential community as a counterexample. Before everyone 

moves in, the feeders, transformers and street lights are already 

placed in the community, which lead to a small base load, 

including no-load loss of transformers, street lighting load, etc. 

As people are moving in during the next a few years, the total 

load of this system is growing. However, the small base load 

stays almost the same since day one. Several ways to extend 

this approach are to take the natural log or square root of the 

load or macroeconomic indicator, or both in some combination 

before performing the division, which allows load to grow 

faster or slower than the economy.  

3) Replace Trend by GSP and then add interactions 

between GSP and the existing main and cross effects. This 

approach assumes end-users’ behavior changes as the 

economic environment changes. Since a significant amount of 

variables are being added through the additional interaction 

effects, the resulting model may be over-parameterized. 

Depending upon the forecasting horizon and the electricity 

usage pattern, this approach may not provide forecast results 

that are as accurate as the first two options. 

Table III compares the MAPE of hourly loads of the three 

approaches discussed above for one year ahead forecasting. 

The MAPE values are generated on rolling basis with a history 

window fixed at 3 years. Take the 3.7% under 2004 for 

example. We used the second approach (“divide Load by 

GSP”) mentioned above to augment the model S2004 to get the 

model for long term forecasting, denoted as L2004. The 

parameters are then estimated using the load, temperature and 

economy data from 2001 to 2003. Based on five years of 

validation results, we conclude that the “replace Trend by 

GSP” approach on average offers the lowest MAPE (4.7%) in 

this case study.   

B.  Length of Training Data 

The length of historical data for parameter estimation is 

another factor that impacts forecasting accuracy. Table IV lists 

the MAPE values generated on rolling basis with different 

length of history window. For example: observe 2005, with a 

MAPE of 7.4% in the last row. We use 4 years of history from 

2001 to 2004 to estimate the parameters of the model L2005 

(S2005 augmented by replacing Trend by GSP). Based on five 

years of validation results, we conclude that in this case study, 

using 2 years of historical data offers the lowest average 

MAPE (4.2%) for forecasting one year ahead. While this 

rolling simulation approach can be used for determining 

multiple years ahead forecasting, we may not reach the same 

conclusion that 2 years of historical data is optimal for 5 years 

ahead forecasting. 

C.  Comparison 

We would like to compare the ex post forecasting accuracy 

of models C1, C2, B, S and L. Some of these models (C1, C2 

and B) already have a pre-designated variable combination, 

while some (S and L) require model identification. Some (C1 

and C2) are based on monthly data, while some (B, S and L) 

are based on hourly interval data. Due to the above 

characteristics, we have to apply different treatments to the 

models to calculate the MAPE values of ex post forecasts: 

1) Classical models C1 and C2: the variables are specified 

in Table I, while the parameters are estimated using the eight 

years of historical data prior to the year to be forecasted. 

2) Tao’s vanilla model B: the variables are specified in 

Table I, while the parameters are estimated using the three 

years of historical data prior to the year to be forecasted. 

3) Customized short term forecasting model group S: to 

perform ex post forecasting for the loads of year y, we cannot 

use the loads of year y for model building, including the tasks 

of parameter estimation and variable selection. To avoid using 

the loads of year y, we first identify the model Sy-1, which is 

selected using the year y-1 as the validation data and the three 

years y-4 to y-2 as the training data. Parameter estimation of 

Sy-1 is based on the 3 years prior to year y, namely from year y-

3 to y-1. 

4) Customized long term forecasting model group L: similar 

to the analogy above, we cannot use the loads of year y to 

build the model when ex post forecasting the same year. 

Therefore, we first identify model Ly-1, and then estimate the 

parameters based on two years of historical data, y-1 and y-2. 

In Table V, we list the MAPE (and Absolute Percentage 

Error for annual interval summary) values of annual energy, 

annual peak, monthly energy, monthly peak, and hourly load 

from the five model groups. Table V first shows that the LTLF 

models (L) derived based on the proposed approach have 

much lower MAPE values than the classical models C1 and C2 

on one year ahead ex post forecasting. On monthly energy and 

peak forecasting, the proposed approach reduces the MAPE by 

over 45%. Table V also shows that the performance of L 

improves on both model B and model group S.  

Fig. 1 and Fig. 2 show the line plots of monthly energy and 

monthly peak profiles from 2007 to 2010, which confirms that 

the proposed approach leads to more accurate forecasts than 

does the counterpart.  

The classical approach based on monthly data leads to 

significantly higher error than the proposed approach. This is 

because the monthly data (peak temperature, HDD and CDD) 

cannot tell: 1) which hour of the day and which day of the 

week the high/low temperatures fall into; 2) the variation of 

the temperatures throughout a day; 3) the temperature profiles 

for modeling recency effect [1]. In addition, the HDD and 

CDD require the forecasters to specify the threshold or 

comfortable zone, which may not be very defensible. 
 

TABLE III 

Comparison among Three Ways to Add GSP on MAPE of Hourly Load 

Extension 2002 2003 2004 2005 2006 Average 

1 4.3 4.2 4.9 6.3 3.7 4.7 

2 3.6 3.6 3.7 7.5 8.3 5.3 

3 4.2 4.7 4.9 6.8 4.3 5.0 

 

TABLE IV 

Comparison among Different Length of Historical Data 

Length (yr) 2002 2003 2004 2005 2006 Average 

1 4.9 5.5 4.6 4.1 4.7 4.8 

2 3.6 4.2 4.8 5.1 3.5 4.2 
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3 4.3 4.2 4.9 6.3 3.7 4.7 

4 4.2 4.8 4.9 7.4 4.6 5.2 

 

TABLE V 

Comparison among Models C1, C2, B, S and L 

MAPE Model 2007 2008 2009 2010 Average 

Annual 

Energy 

C1 2.5 0.9 1.0 0.8 1.3 

L 0.2 0.1 0.1 0.1 0.1 

Annual 

Peak 

C2 1.1 7.5 13.8 8.6 7.8 

L 0.2 2.8 2.4 7.3 3.2 

Monthly 

Energy 

C1 3.4 2.0 2.7 3.4 2.9 

L 1.5 1.3 1.2 2.1 1.5 

Monthly 

Peak 

C2 3.8 4.2 9.3 6.9 6.1 

L 2.1 3.7 3.0 4.3 3.3 

Hourly 

Load 

B 4.8 5.1 5.0 4.9 5.0 

S 3.5 3.9 4.0 3.6 3.8 

L 3.5 3.3 3.4 3.7 3.5 

 

 
Fig. 1.  Comparison on ex post forecasts of monthly energy (2007 – 2009). 

 

 
Fig. 2.  Comparison on ex post forecasts of monthly peak (2007 – 2009). 

V.  SCENARIO ANALYSIS 

Forecasting is by nature, a stochastic problem. Due to the 

uncertainty in climate and economic forecasts, long term load 

forecasters are encouraged to provide multiple forecasts based 

on different scenarios. This section discusses how to create 

weather and economic scenarios. Since 2011 is a year that 

many US utilities had trouble forecasting, we use 2011 as an 

example to illustrate the proposed methodology. 

A.  Weather and Economic Scenarios 

The pros and cons of several existing means to create 

weather scenarios have been discussed in Section II. In this 

paper, we use actual temperature profiles from the history to 

create weather scenarios.  There are three components that 

should be clearly specified in the one year ahead load 

forecasting process for a given year y; or multiple years ahead 

load forecasting process for a given horizon starting from year 

y:  

1) How to model the system, such as combination of 

weather and calendar variables, incorporation of 

macroeconomic indicator(s), and length of load, weather and 

economy history for parameter estimation. Since the load of 

year y should be excluded from model building, we can use 

model Ly-1, which is identified using the most recent years of 

information. 

2) How many years of temperature history to use. Different 

organizations may adopt different practices when selecting the 

length of temperature history, which ranges from 20 years to 

50 years. NOAA, for instance, uses 30 years of history to 

create and update the Typical Meteorological Year (TMY). In 

this paper, we also use 30 years of temperature history, from y-

30 to y-1, to create 30 weather scenarios for year y. If the year 

y is a leap year, i.e., 2008, and the year of weather scenario is 

based on a non-leap year, i.e., 1991, we fill in 02/29/2008 with 

02/28/1991's temperatures. If the year y is a non-leap year, i.e., 

2011, and the year of weather scenario is based on a leap year, 

i.e., 2000, we can remove the temperatures of 02/29/2000. 

Based on each weather scenario, we can generate an hourly 

load profile for the year y using the model Ly-1.  

3) How to extract normalized peak and energy. From each 

hourly load profile, we first derive monthly peak (or energy) 

profiles. We then find the median of the monthly peaks (or 

energy) for each month. The results are the normalized 

monthly peak (or energy) forecast. Many organizations also 

require the forecasts at the 10
th

 and 90
th

 percentiles to support 

the decision making processes.    

Most utilities purchase economic forecasts from third 

parties for LTLF. The economic forecasts usually come with 

multiple scenarios. In this paper, we use three macroeconomic 

scenarios: base, aggressive and conservative scenarios for the 

year of 2011 as shown in Fig. 3. For each macroeconomic 

scenario, we can have the same 30 weather scenarios as 

mentioned above. In total, we can create 90 cross scenarios. 

B.  Probabilistic Forecasts 

Fig. 4 and Fig. 5 show one year ahead forecasting of 2011’s 

monthly peak and energy respectively. There are 30 dashed 

lines representing the forecasts obtained using the 30 weather 

scenarios combined with the base economic scenario. In 

addition, we plot the 5 scenarios extracted from the 90 cross 

scenarios, including 10
th

 (gray) 50
th

 (black) and 90
th

 (green) 

percentiles of the load with base economic scenario, and 

median load with conservative (blue) and aggressive (red) 

economic scenarios. The actual monthly peaks and energy of 

2011 are labeled as black dots.  

In practice, the 90
th

 percentile is often used to represent a 

severe scenario that may happen one out of ten times. It does 

not mean that the load will never exceed this bound. Among 

the 12 monthly peaks shown in Fig. 5, the actual peak of May 

2011 does exceed the 90
th

 percentile line, which is reasonable 

considering the definition of the 90
th

 percentile.  

Sometimes the extreme estimates are unrealistic, because 

the given temperature scenario can be out of range of the 

training data. For instance, in Fig. 5, the extreme scenario of 

Jan 2011 exceeds 6000MW, which is driven by an extremely 

cold year in 1980s. Since the 90
th

 percentile derived from the 
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30 scenarios is not sensitive to the extreme value, it is still 

reliable and practical to use such a 90
th

 percentile curve for 

planning purposes. 

 
Fig. 3.  History (2002 – 2010) and forecast (2011, 3 scenarios) of GSP. 

VI.  LOAD NORMALIZATION  

Due to the variation in climate from year to year, most 

utilities conduct some form of weather normalization 

processes to estimate the normalized load profile. There are 

two business needs for such processes: 1) understanding the 

load growth without the impact of climate change; 2) 

understanding the variation of the load with the impact of 

climate change. Due to the nonlinear relationship between load 

and weather [1], a normal weather profile usually does not lead 

to a normal load profile. Comparing with the conventional 

term weather normalization, a more accurate description to the 

process of estimating the load profile without impact of 

climate change should have been load normalization against 

weather.  

Similar to creating weather scenarios for LTLF as discussed 

in Section V-A, there are three components that should be 

clearly specified in the load normalization process for a given 

year y: 1) how to model the system; 2) how many years of 

temperature history to use; 3) how to extract normalized peak 

and energy. The second and third components can be treated 

the same way as discussed in Section V-A, while the first one 

is slightly different. 

When normalizing the historical load of a given year y, we 

should identify a model that concurrently best represents the 

system status in the year y, and has strong predictive power to 

answer the “what-if” questions. Since all the information 

including load, temperature and economy of the year y is 

available for load normalization, we can use the model Ly, 

which is identified using the data through the end of year y. 

Fig. 6 and Fig. 7 present the load normalization results for 

monthly energy and peaks from 2007 to 2010, where the 10
th

 

percentile, median and 90
th

 percentile load profiles are colored 

in blue, black and red respectively. The actual peaks are 

labeled as black dots. As shown in Fig. 6, the actual monthly 

energy of December 2010 is above the 90
th

 percentile line. 

This is due to 3 consecutive very cold weeks, which rarely 

happened in the past several decades. 

 

 
Fig. 4.  Ex ante forecasts of 2011 monthly energy. 
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Fig. 5.  Ex ante forecasts of 2011 monthly peak (30+5 scenarios). 

 
Fig. 6.  Monthly energy normalization (2007 – 2010). 

 

 
Fig. 7.  Monthly peak normalization (2007 – 2010). 

VII.  CONCLUSION 

In this paper, we presented a practical approach to LTLF. 

We modernized predictive modeling, weather normalization 

and probabilistic forecasting with MLR models and hourly 

information. Through a case study at NCEMC, we showed 

how this method can create superior accuracy and defensibility 

of the forecast results over the classical approach based on 

monthly data. In particular, we proposed the concept of load 

normalization, and demonstrated a simulation approach to 

normalizing the load against weather. 

In future work, as an expansion of the proposed 

methodology, we would like to further explore the following 

directions: 1) incorporation of high resolution spatial 

information; 2) how data cleansing could help improve long 

term load forecasts; 3) understanding how the forecast errors 

of explanatory variables contribute to the error of ex ante 

forecasts.  
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