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Short- and mid-term forecasting of baseload
electricity prices in the UK: The impact of intra-day

price relationships and market fundamentals
Katarzyna Maciejowska and Rafał Weron

Abstract—In this paper we investigate whether considering
the fine structure of half-hourly electricity prices, the market
closing prices of fundamentals (natural gas, coal and CO2) and
the system-wide demand can lead to significantly more accurate
short- and mid-term forecasts of APX UK baseload prices. We
evaluate the predictive accuracy of a number of univariate and
multivariate time series models over a three-year out-of-sample
forecasting period and compare it against that of a benchmark
autoregressive model.

We find that in the short-term, up to a few business days
ahead, a disaggregated model which independently predicts the
intra-day prices and then takes their average to yield baseload
price forecasts is the best performer. However, in the mid-term,
factor models which explore the correlation structure of intra-day
prices lead to significantly (as measured by the Diebold-Mariano
test) better baseload price forecasts. At the same time, we observe
that the inclusion of fundamental variables – especially natural
gas prices (in the short-term) and coal prices (in the mid-term)
– provides significant gains. The CO2 prices, on the other hand,
generally do not improve the price forecasts at all, at least in the
time period considered in this study (Apr. 2009 – Dec. 2013).

Index Terms—Electricity price, Forecasting, Vector autoregres-
sion, Factor model, Principal components

I. INTRODUCTION

OVER the last 15 years electricity price forecasting has

become the backbone of an energy company’s decision-

making process [1]. Short-term (from a few minutes up to a

few days ahead) and mid-term (up to a few months ahead)

price forecasts have become of particular interest to power

portfolio managers. The short-term forecasts of the intra-

day prices (typically hourly or half-hourly) are of prime

importance in day-to-day market operations, in particular when

bidding at a power exchange or for implementing effective

demand response [2]–[5]. The mid-term forecasts, on the other

hand, are generally used for planning purposes (such as the

adjustment of mid-term schedules and allocation of resources),

risk management (including balance sheet calculations) and

the valuation of exchange traded futures and bilateral contracts

[6]–[9]. In most cases, these tasks concern the baseload

electricity price, i.e. the average price for the 24 hours of the
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day, or the peakload price, i.e. the average price for the peak

hours. In particular, the most common underlying instrument

of exchange traded power derivatives is the baseload price.

Hence, like Garcia-Martos et al. [10], we focus in this study

on forecasting baseload electricity prices.

The literature on predicting baseload electricity prices has

concentrated on models that use the available price data only

at the aggregated (i.e. daily) level, see e.g. [10]–[14]. On

the other hand, the very rich literature on forecasting intra-

day prices has used hourly or half-hourly data, but generally

has not explored the complex dependence structure of the

multivariate price series. A notable exception is a working

paper of Wolak from 1997, published as [15], in which

principal component analysis (PCA) is applied to hourly or

half-hourly prices from the UK, Scandinavia, Australia and

New Zealand, to understand the price formation mechanism

and measure the relative predictability of the daily vector of

prices in each country.

Only a decade later has the multivariate context of electricity

prices been picked up again. Chen et al. [16] use manifold

learning (an extension of principal component analysis, PCA)

to remove intra-day and intra-week seasonality from hourly

electricity prices and predict them using three techniques.

Their approach compares favorably to that of ARIMA, ARX

and naive methods in one day, one week and one month

ahead forecasting of hourly NYISO prices. Härdle and Trück

[17] utilize dynamic semiparametric factor models (DSFM) to

forecast hourly electricity prices in the German EEX market.

They find that a model with three factors is able to explain

up to 80% of the variation in hourly prices, however, the

explanatory power significantly decreases for periods with a

higher number of price spikes. Alonso et al. [18] develop

the Seasonal Dynamic Factor Analysis (SeaDFA) to deal with

dimensionality reduction in such a way that both common and

specific components are extracted. This approach is applied to

compute long-term (up to a year) point forecasts and prediction

intervals of electricity spot prices. However, as Garcia-Martos

et al. [19] argue, SeaDFA is very sensitive to the choice of the

Vector ARIMA (i.e. VARIMA) model for the common factors

and underperforms if a wrong model is selected. As a robust

alternative they propose the dynamic factor model (DFM)

framework to extract common factors from hourly prices and

use them for one day-ahead forecasting. They also report some

preliminary results showing the usefulness of factor models

for mid-term predictions. Wu et al. [20] introduce a recursive

dynamic factor analysis (RDFA) algorithm and show that it
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outperforms functional PCA, AR with time varying mean and

support vector regression (SVR) in predicting hourly day-

ahead prices in the Australian and New England markets.

Finally, in an article that is the most similar to our study,

Garcia-Martos et al. [10] build a VARIMA(0,1,1) model for

baseload electricity and daily fossil fuel prices (oil, natural gas

and coal; plus CO2 prices). Then they compare its forecasting

performance to that of univariate benchmark models (ARIMA)

for each daily series. They consider a range of forecasting

horizons (from one to 15 business days) but evaluate the

predictions only over a relatively short test period (the first 4

months in 2011). Overall they find that for the electricity (and

CO2) prices the univariate approach produces better results,

whereas for oil, natural gas and coal prices the multivariate

approach is more accurate. Additional inclusion of wind power

generation improves the baseload electricity price forecasts,

but only for the one day-ahead horizon. In the later part of

the article, which goes in a different direction than our study,

Garcia-Martos et al. extract the common features in volatility

by means of a conditionally heteroskedastic DFM and claim

that the obtained common volatility factors are useful for

improving the quality of prediction intervals (PI). However,

the obtained PI are not tested for coverage, as suggested e.g.

in [1], only a visual inspection of the conditional volatility is

performed.

In this study, we pursue a similar task and attempt to

improve the accuracy of baseload electricity price forecasts

in the short- and mid-term horizons. Like Garcia-Martos et

al. [10], we work with daily time series and consider fossil

fuel prices. However, unlike them, we additionally analyze

the information embedded in the intra-day electricity price

relationships and use it to provide more accurate predictions of

baseload prices. Note also that their notion of a ‘multivariate

model’ is different than ours. They use electricity and fossil

fuel prices sampled at daily frequency and model them jointly

within vector autoregression type models, while we regard as

multivariate only those models which utilize the information

contained in the fine structure of half-hourly electricity prices

and treat the daily closing prices of fundamentals as exogenous

variables.

While new to the electricity price forecasting literature, the

idea of using disaggregated data for forecasting of aggregated

variables has been exploited in the economic literature, partic-

ularly in macroeconometrics – to predict inflation [21], [22],

the Gross Domestic Product [23] or the Production Index

[24]. See also Lütkepohl [25], who warns that the inclusion

of too many disaggregates can result in estimation error and

specification error which ultimately leads to an efficiency

loss, and Hendry and Hubrich [26], who describe conditions

under which using disaggregated data improves forecasting

performance.

In the context of electricity markets this concept has

emerged only very recently. The very few publications include

Liebl [27], who suggests to model and predict baseload prices

by first finding the functional relation between electricity

prices and demand in terms of daily price-demand func-

tions, then parametrizing the series of daily price-demand

functions using a functional factor model. He demonstrates

the power of this approach by comparing one to 20 step-

ahead baseload price forecasts of the model with those of

two simple univariate time series models for baseload prices

(AR and MRS) and two alternative functional data models

for hourly prices (DSFM and SFPL). In a limited empirical

study, Maciejowska and Weron [28] use half-hourly data from

the UK power market to forecast the baseload spot prices

directly (via AR and vector AR models) and indirectly (via

factor models). The results indicate that there are forecast

improvements from incorporating the disaggregated (i.e. half-

hourly) data, especially, when the forecast horizon exceeds one

week. Raviv et al. [29] exploit the information embedded in

the cross correlation of Nord Pool hourly price series to yield

more accurate day-ahead baseload price forecasts.

In this paper, we extend the above mentioned studies in sev-

eral directions. Firstly, we analyze a wider range of forecasting

horizons – from one to 45 business days (or working days,

i.e. excluding weekends and holidays; the far end corresponds

to a little over two calendar months). Secondly, we consider

more diverse model structures and different aggregation levels.

Initially we have also used models where the fundamental

variables were predicted jointly with the prices (or factors),

within vector autoregressive (VAR) structures. However, such

models – similar to the VARIMA(0,1,1) models considered in

[10] – have turned out to yield inferior forecasts compared to

models where the fundamental variables are treated as exoge-

nous variables and predicted independently. Consequently, we

have decided to focus in this article only on the latter. Thirdly,

the influence of including various fundamental variables on the

predictive performance of the models is studied. So far, there

have been no publications, which discuss both the optimal

choice of the variables and the level of aggregation. Since

mid-term forecasts play a crucial role in planning activities

(such as the adjustment of mid-term schedules and allocation

of resources), risk management and the valuation of exchange

traded futures and bilateral contracts, this paper contributes

to the scarce literature on this important topic and provides

guidelines as to the optimal choice of models for this task. Last

but not least, we conduct statistical tests for the significance

of the difference in forecasting accuracy of the models and

use a much longer forecast evaluation period than typically

considered. Both issues have been often downplayed in the

electricity price forecasting literature – but as Weron [1]

argues – they both play a key role in performing a fair

comparison of forecasting models. In particular, the three year

test period used here (January 2011 – December 2013) allows

to thoroughly evaluate the models under different market

conditions and significantly reduces the risk of selecting an

exceptionally favorable (or unfavorable) time period.

The remainder of the article is structured as follows. In

Section II we describe the data used in this empirical study.

In Sections III and IV we introduce the time series models

that are calibrated either to aggregated or disaggregated data.

In Section V we briefly describe the error measures and the

forecasting scheme, then in Section VI we compare the out-

of-sample forecasting performance of the models, with respect

to the data aggregation level and inclusion of fundamental

variables. Finally, in Section VII we conclude.
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II. THE DATA

The UK power market is chosen as the test ground for three

reasons. Firstly, it is one of the most mature wholesale power

markets in the world. Secondly, the APX power exchange

(formerly UKPX) provides detailed information about the

intra-day structure of the market, including prices and volumes

for every half-hour. Thirdly, the large number of load periods

per day – 48 compared to 24 for most other power markets –

is important for the estimation of factor models. The approach

used in this paper is consistent (in the statistical sense) only

if the cross-sectional dimension is large. Although 48 values

may still not guarantee consistency, in general, we will be

better off using 48 half-hourly prices than 24 hourly prices.

A panel of 96 half-hourly electricity prices was con-

structed using the data downloaded from the APX web site

(www.apxgroup.com) and spans the period from April 22nd,

2009 to December 31st, 2013. The panel consists of 48

volume-weighted prices and 48 spot prices. APX performs

volume-weighting over three types of contracts: half-hourly,

two hour block and four hour block contracts. The arithmetic

average of these volume-weighted prices (48 half-hourly prices

for a particular day) yields what APX calls the baseload elec-
tricity price, for details see https://www.apxgroup.com/market-

results/apx-power-uk/ukpx-rpd-index-methodology/. We fol-

low the same approach when considering the disaggregated

models (for model definitions see Table I) – we predict

the half-hourly volume-weighted prices and then take their

arithmetic average as the forecast of the baseload price. Note

that we do not perform the weighting ourselves, but work

directly with volume-weighted prices. Note also that the 48

spot prices are only used to enrich the panel when calibrating

factor models and allow for extraction of information that

is not included in volume-weighted prices, but that may be

relevant for predicting baseload prices. Initially we have also

included 48 system buy prices and 48 system sell prices in the

panel, but this did not lead to more accurate forecasts of the

baseload prices and in the end we have decided to limit the

panel to 96 prices.

The dataset is further expanded to include the average daily

UK system demand for electricity (the arithmetic average of

the 48 half-hourly values of Indicated Demand, as provided

by ELEXON, see www.bmreports.com; originally reported

in MW) and daily closing prices of three fundamental vari-

ables representing electricity generation costs (source: Reuters

EcoWin):

• natural gas (National Balancing Point, NBP, day-ahead

price index in GBp/Therm, i.e. pence per Therm),

• coal (API2 price in GBP/t; converted from USD using

the Bank of England USD/GBP reference rate),

• CO2 emissions (European Climate Exchange, ECX, Car-

bon Phase 3 nearest-to-delivery futures contract closing

prices in GBP/t; converted from EUR using the Bank of

England EUR/GBP reference rate).

As is quite common in the electricity price forecasting lit-

erature (for a review see [1]), a logarithmic transformation

is applied to all five daily time series to limit the influence

of price spikes and decrease the variance. The log-prices and

TABLE I
MODEL TYPES AND NOTATION

Symbol Model description

AR The benchmark – a univariate AR model of baseload
(i.e. average daily) prices Pt

ARX The ARX model of baseload prices Pt and fundamental
variables Xt

ARH The ‘disaggregated AR model’, i.e. a set of 48 univariate
AR models of half-hourly volume-weighted prices Pk,t

ARXH The ‘disaggregated ARX model’, i.e. a set of 48 univariate
ARX models of half-hourly volume-weighted prices Pk,t

and fundamental variables Xt

PCN The VAR model of N factors Fn,t

PCNX The VARX model of N factors Fn,t and fundamental
variables Xt

Note: All computations in this study are performed on logarithms of prices
and demand. Hence, the symbols Pt, Pk,t and Xt refer to log-prices and
log-demand. Likewise, the factors Fn,t are obtained from the log-prices.

log-demand are depicted in Figure 1. Note that, due to the

relatively low prices of CO2 emissions in 2012 and 2013, we

have plotted them in a separate panel.

We use the last three years (exactly 756 business days) to

evaluate the out-of-sample forecasting performance. For each

day in the evaluation period, we roll the calibration window

of 386 business days (which corresponds to circa 1.5 calendar

years plus 5 business days for AR lags) forward by one day to

ensure that all models are estimated on a sample of the same

size. We have also tested other window lengths (corresponding

to one and two calendar years), however, the best results were

obtained for the 1.5-year window. The forecast horizons range

from one to 45 business days; the latter horizon corresponds

to just over two calendar months.

III. THE MODELS

In this article we focus on autoregressive (AR) models, both

with and without fundamental variables. Since a stable AR(q)

process has a moving average representation, it will return to

its mean after any shock, even for q > 1. The dynamics of the

return to the process mean depends on the model parameters

and the lag order. For each calibration window and each model

we choose the lag order, 1 ≤ q ≤ 5, based on the Akaike

information criterion (AIC) [4]. Note that q = 5 business days

corresponds to a calendar week. All considered models are

estimated with the Ordinary Least Squares (OLS) method.

To model the seasonal pattern of the process mean, we have

initially extended the AR models to include deterministic vari-

ables: a constant and the number of daylight hours. However,

after a series of extensive empirical tests we have come to the

conclusion that more accurate electricity price forecasts can

be obtained for models without the daylight hours variable

and, hence, have not used it in the end. The rationale for this

approach stems also from the fact that annual seasonality is not

very apparent in UK electricity spot prices in the considered

period, see Figure 1. Note also that there is no need for

an additional short-term seasonal component distinguishing

between the day types: working day vs. weekend vs. holiday,

since – like in [10] – we are considering only business day

(i.e. working day) data.
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Fig. 1. Top panel: The logarithm of the APX baseload electricity prices (in GBP/MWh), average daily Indicated Demand (in GW), API2 coal closing prices
(in GBP/t; converted from USD) and the NBP natural gas day-ahead price index (in GBp/Therm, i.e. pence per Therm) for the period from April 22nd, 2009
to December 31st, 2013. Bottom panel: The logarithm of the ECX Carbon Phase 3 nearest-to-delivery futures contract prices (in GBP/t; converted from EUR)
in the same period. The last three years (exactly 756 business days; indicated by the vertical dotted lines in both panels) are used to evaluate the out-of-sample
forecasting performance.

A. The aggregated models of baseload prices

As the benchmark we choose an autoregressive model of

baseload prices. It is denoted later in the text as AR, see Table

I. AR models are commonly used in the literature and have

been shown to perform pretty well in predicting electricity spot

prices, see e.g. [4], [30]–[32]. The AR model uses only the

aggregated data, i.e. the baseload prices. Hence, it is suitable

for comparison of aggregated and disaggregated modeling

approaches.

In this model, we describe the logarithm of the baseload

price, Pt, by the following AR process:

Pt = α+

q∑
i=1

βiPt−i + εt, (1)

where α is a constant, βi are the autoregressive parameters

and εt is white noise. The lag order is estimated using AIC,

independently for each calibration window. The maximum lag

is q = 5 working days, which corresponds to one calendar

week. The assumption is in line with earlier works of [4]

and [31], who used lags of up to one week, when forecasting

California and Nord Pool spot prices. Note that in this study

all lags from 1 up to q are included in the models.

We next expand the benchmark model to include exogenous

variables: generation costs (prices of coal, gas and CO2

emission rights) and Indicated Demand. In the ARX model

we represent the logarithm of the baseload price, Pt, by the

following process:

Pt = α+ ΓXt +

q∑
i=1

βiPt−i + εt, (2)

where α is a constant, Xt is an M × 1 vector of exogenous

variables, Γ is a 1 × M vector of parameters, βi are the

autoregressive parameters and εt is white noise. The number of

fundamental variables, M , depends on the model specification

and varies between 1 and 4.

In order to calculate forecasts of electricity prices, we first

need to generate forecasts of fundamental variables. In this

study, we model each of the fundamental variables, Xm,t, by
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an AR(q), 1 ≤ q ≤ 5, process of its own:

Xm,t = α̃+

q∑
i=1

β̃iXm,t−i + ε̃m,t, m = 1, ..., 4, (3)

where α̃ is a constant, β̃i are the autoregressive parameters and

ε̃t is white noise. Like in the models for electricity prices,

the lag order is chosen based on AIC, separately for each

calibration window and each fundamental variable.

B. The disaggregated models of half-hourly prices

In order to test if the forecasts based on disaggregated data

are more accurate, we consider two ‘disaggregated models’ –

counterparts of the univariate AR and ARX models defined in

eqns. (1) and (2), respectively. The ARH model is a set of 48

separate AR(q) models, one for each half-hourly load period.

In this model, the half-hourly volume-weighted prices, Pk,t,

are described by:

Pk,t = αk +

q∑
i=1

βk,iPk,t−i + εk,t, k = 1, ..., 48, (4)

where αk and βk,i are the counterparts of α and βi in eqn.

(1). The baseload log-price forecasts, P̂t, are calculated as the

average of the disaggregated, half-hourly log-price forecasts,

P̂k,t:

P̂t = log

(
1

48

48∑
k=1

exp(P̂k,t)

)
. (5)

Similarly, we define the ARXH model of half-hourly volume-

weighted prices and fundamental variables:

Pk,t = αk + ΓkXt +

q∑
i=1

βk,iPk,t−i + εk,t, (6)

where αk, Γk and βk,i are the counterparts of α, Γ and βi in

eqn. (2). The choice of the vector of fundamental variables,

Xt, follows the same rules as in the case of the ARX model,

with the number of fundamental variables varying between

1 and 4. Like for the ARH model, the baseload log-price

forecasts are calculated using formula (5).

C. Factor models

If we want to explore the intra-day correlations of elec-

tricity prices, we need to use dimension reduction methods.

A straightforward application of a multivariate framework –

like vector autoregression – would lead to a large number of

parameters and could result in over-fitting, i.e. small in-sample

residuals and large out-of-sample errors [8], [28]. For instance,

in a VAR(q) model of half-hourly data, there will be 1 + 48q
parameters in each equation.

Instead we suggest to use factor models, with factors

estimated as principal components. Such models have been

successfully applied for forecasting aggregated data [24], [29].

If we treat the half-hourly electricity spot prices as a panel

then we can use the approach described in [24], [33], [34].

It was shown that the principal component estimation method

is consistent for large dimensional models where both of the

dimensions – time and the number of series – tend to infinity.

The main assumption of factor models is that all variables in

the panel, Pk,t, co-move and depend on a small set of common

factors, Fn,t. The individual series Pk,t can be modeled as

a linear function of N principal components Fn,t and an

idiosyncratic component νk,t:

Pk,t =

N∑
n=1

Λk,nFn,t + νk,t. (7)

The parameters Λk,n are called factor loadings, as they

describe the effect of the n-th factor, Fn,t, on the k-th variable

in a panel, Pk,t. It was shown in [24] and [34] that Fn,t can

be consistently estimated with the eigenvectors corresponding

to the N largest eigenvalues of the matrix P′P multiplied by√
T , where t = 1, ..., T .

In order to predict future values of half-hourly prices, we

need to forecast both the common factors, Fn,t, and the

idiosyncratic components, νk,t [35]. Although the factors are

contemporaneously orthogonal, due to normalization assump-

tions, they may be still inter-temporally correlated. Hence, it

seems reasonable to model them jointly. Moreover, they may

depend on some other variables, such as fuel prices, CO2

emission costs or the level of demand. At the same time, the

idiosyncratic components can be only weakly correlated across

periods and therefore should be modeled separately, for each

half-hour. Moreover, they cannot depend on any fundamentals

because all the co-movement between half-hours is captured

by the factors. Once the disaggregated model is estimated, the

baseload log-price forecast can be obtained by averaging the

half-hourly log-price forecasts using eqn. (5).

We use an autoregressive model, AR(q), to describe and

forecast the idiosyncratic component for each half-hourly load

period k = 1, ..., 48:

νk,t =

q∑
i=1

φk,iνk,t−i + ξk,t, (8)

where φk,i are the autoregressive parameters and ξk,t are the

white noise terms. The lag order, 1 ≤ q ≤ 5, is chosen based

on AIC, separately for each calibration window. In model (8),

neither deterministic nor fundamental variables are included.

The common factors are assumed to follow a vector autore-

gressive VAR(q) model, 1 ≤ q ≤ 5. We distinguish two model

specifications, depending on the set of variables used. In the

first one – denoted by PCN , where N is the number of factors

– only the factors are included:

Ft = A+

q∑
i=1

BiFt−i + ζt. (9)

Here A denotes an N × 1 vector of deterministic coefficients,

Bi are N × N matrices of autoregressive parameters, Ft =
[F1,t, ..., FN,t]

′ is an N × 1 vector of the factors and ζt is

white noise.

In the second specification – denoted by PCNX – the fun-

damental variables, Xt, are added to the model as exogenous

variables:

Ft = A+ ΓXt +

q∑
i=1

BiFt−i + ζt, (10)
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where A, Bi, Ft and ζt are defined in eqn. (9), Xt is an

M ×1 vector of exogenous variables and Γ is a 1×M vector

of parameters.

IV. COMMON FACTORS AND THEIR INTERPRETATION

Common factors are estimated using principal component

analysis (PCA). This approach is based on least squares and

is aimed at minimizing the sum of squared idiosyncratic

components:

(F̂, Λ̂) = argmin

T∑
t=1

K∑
k=1

(
Pk,t −

N∑
n=1

Λk,nFn,t

)2

. (11)

As the outcome, the estimators of common factors are the

common vectors of the matrix P′P corresponding to the N
largest eigenvalues, multiplied by

√
T .

The optimization problem (11) does not have a unique

solution and, hence, the estimators are neither locally nor

globally identifiable. Therefore, some constrains need to be

imposed in order to ensure the local uniqueness of the solution.

The most popular restriction is contemporaneous orthogonality

of common factors. Unfortunately, any non degenerated, lin-

ear transformation of principal components and appropriately

transformed loadings will satisfy (11). Therefore, estimated

factors do not have any direct economic interpretation.

In order to give meaning to the estimated common factors,

the factors loadings need to be analyzed. The values of the

factor loadings indicate which factors have strong effect on

which variables. Hence, may help to understand the processes

captured by the common factors.

In the electricity price forecasting literature [17], [19], [27],

[29], models with two or three factors are typically used. Here,

we evaluate the performance of PC models with the number

of factors ranging from two to five. As we will see later in the

text, the optimal number of factors changes with the forecast

horizon.

The time path of the first factor, F1,t, and the values of

its loadings, Λk,1, indicate that it describes the price level.

This can be seen in Figure 2, where the results of estimating

the first three factors from the full dataset (i.e. from April

22nd, 2009 to December 31st, 2013) of electricity prices

are displayed. The above interpretation is supported by a

very high correlation coefficient, ρ = 0.98, between the first

factor and the logarithm of the baseload price. Looking at the

loadings of the second factor, we can interpret it as the spread

between peak and off-peak hours. Large values of the second

factor correspond to days characterized by low off-peak prices

and high peak prices. Finally, the third factor seems to be

responsible for the spread between the morning and evening

peaks. As expected, the third component is highly seasonal,

as the difference between the peak hours is much more visible

during winter days than summer days. The remaining two

factors are difficult to interpret.

V. EVALUATING THE FORECASTING PERFORMANCE

A. Evaluation metrics

In this section, we examine, whether using the intra-day

information and fundamental variables improves the forecast

accuracy. We consider different forecasting horizons, ranging

from one to 45 business (i.e. working) days. Hourly or half-

hourly day-ahead forecasts are typically used for forecast

comparison in power market studies [1]–[5]. However, longer

forecast horizons are also very important. For instance, mid-

term forecasts from a few days up to a few months ahead are

used for planning purposes (such as the adjustment of mid-

term schedules and allocation of resources), risk management

(including balance sheet calculations) and the valuation of

exchange traded futures and bilateral contracts [6], [7], [9],

[10]. In most cases, these tasks concern the baseload (or

the peakload) electricity price price. In particular, the most

common underlying instrument of exchange traded power

derivatives is the baseload electricity price. Hence, like in [10],

we consider here short- and mid-term forecasting horizons of

baseload electricity prices.

The forecasting performance is measured using root mean

squared errors (RMSE). For a given forecast horizon, h =
1, ..., 45 business days, we compute:

RMSEp(h) =

√√√√ 1

T

T∑
t=1

(p̂t+h|t − pt+h)2, (12)

where p̂t+h|t is the baseload price forecast for day t + h
made on day t, pt+h is the actual baseload price recorded

on day t + h and T = 756 days (i.e. the whole out-of-

sample evaluation period, see Figure 1). The rationale for

choosing a quadratic error metric (like RMSE) over a linear

metric (like MAPE) stems from the fact that all models in this

study are estimated using OLS, which minimizes the squared

distance between the model and the data. However, due to the

popularity of the Mean Absolute Percentage Error (MAPE)

in the engineering literature, for illustrative purposes we also

report MAPE values:

MAPEp(h) =
1

T

T∑
t=1

|p̂t+h|t − pt+h|
pt+h

. (13)

Note that both error measures concern prices, not log-prices.

The baseload price forecasts are simply computed by taking

the exponent of the log-price forecasts:

p̂t+h|t = exp(P̂t+h|t), (14)

which in turn are obtained as a result of using one of the

models described in Section III.

The forecasts of the considered models are further evaluated

on the basis of the Diebold-Mariano (DM) test [36]; for uses

and abuses see [37]. The test allows to compare the forecasts of

a pair of models and indicates, which statistically outperform

the other. For each forecasting technique, we calculate the

loss differential series dt = L(εmodel1,t)− L(εmodel2,t), with

the quadratic loss function L(εt) = ε2t . We then conduct the

DM tests for significance of differences. Note that we perform

one-sided DM tests, with the null hypothesis H0 : E(dt) ≤ 0.

Hence, when the p-value is smaller than the chosen signifi-

cance level (e.g. α = 5% or 10%), we can conclude that the

forecasts of model1 are significantly better than the forecasts

of model2.
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Fig. 2. Results of estimating a factor model to electricity prices from the period April 22nd, 2009 – December 31st, 2013: factor loadings Λk,j (j = 1, .., 3;
top left panel) and factors F1,t, F2,t and F3,t (top right and bottom panels). The first factor may be interpreted as the price level, the second as the spread
between peak and off-peak hours and the third as the spread between the morning and evening peaks.

The main assumption of the DM test is the stationarity of the

loss differential series. In this study we use a rolling window

of a constant length for which, in contrast to an expanding

window, the parameters do not converge to their pseudo-true

values (and this is one of the potential reasons for the non-

stationarity of forecast errors). Moreover, the existence of the

unit root of the one and 45 step-ahead forecast errors of the

AR model was checked with the Augmented Dickey-Fuller

(ADF) test [38]. The test rejected the null of the unit root

and hence gave no reason to question covariance-stationarity

of the forecast errors. It should be noted, however, that the

lack of the unit root does not imply that forecast errors are

not autocorrelated. The potential autocorrelation should be

taken into account when estimating the variance of the loss

differential. Here, we follow the approach of Diebold and

Mariano [36] and use the spectrum at frequency zero of the

loss differential as a robust estimator of its variance.

B. The forecasting scheme
We estimate all model parameters using information pro-

vided by the moving calibration window of a constant length

(386 business days, which corresponds to 1.5 calendar years

plus 5 days for AR lags). Once the parameters of models

AR, ARX, ARH and ARXH are estimated using OLS, the h
step-ahead forecasts of the baseload log-prices are computed

sequentially by applying the law of iterated expectations, as in

[39]. For the disaggregated models – ARH and ARXH – the

baseload log-price forecasts are computed using eqn. (5). Note

that for the ARX-type models the forecasts of the logarithms

of the fundamental variables have to be computed first.
The procedure for the factor models – PCN and PCNX

– is slightly more complicated. First, for each calibration

window the factors, Fn,t, and the factor loadings, Λk,n, are

estimated from eqn. (7). Then, the factors are used to estimate

the parameters of models (9) or (10). Once the models are

estimated, factor forecasts F̂n,t+h|t are computed sequentially,

like for the non-factor models. Next, an analogous approach

is applied to the idiosyncratic component. For each calibration

window, the parameters of model (8) are estimated and used

in sequential forecasting of future values of the idiosyncratic

component, ν̂k,t+h|t. When the forecasts of the common

factors and the idiosyncratic components are available, they

are used to estimate future values of the half-hourly log-

prices, Pk,t, according to eqn. (7). Then the baseload log-

price forecasts are computed using eqn. (5). Finally, for all

six types of models, the h step-ahead forecasts of baseload

log-prices, P̂t+h|t, are converted into baseload price forecasts,

p̂t+h|t, using eqn. (14).

VI. RESULTS

A. Forecasting horizons and models

The baseload price forecasts are compared for forecast

horizons ranging from h = 1 to 45 business days. In Tables

II and III the results are presented for all short-term horizons

(h = 1, ..., 5; covering the nearest week) and three selected

mid-term horizons (h = 10, 25, 45; equivalent to two calendar

weeks, and one and two calendar months, respectively). In

Tables IV and VI the forecasting horizons are aggregated into

three ranges: (i) from 1 to 5 business days, (ii) from 6 to 25

business days and (iii) from 26 to 45 business days.

Due to space limitations, all four tables report on the

forecasting performance of selected subsets of the full set of

54 models:
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TABLE II
ROOT MEAN SQUARED ERRORS (RMSEp) AND p-VALUES OF THE DM TEST (VS. THE BEST MODEL IN EACH COLUMN) FOR SHORT AND MID-TERM

FORECASTING HORIZONS RANGING FROM 1 TO 45 BUSINESS DAYS.

Forecasting horizon (business days) Forecasting horizon (business days)

Xt Model 1 2 3 4 5 10 25 45 1 2 3 4 5 10 25 45

RMSEp (for the AR model) and relative RMSEp (vs. the AR model) p-values of the DM test (vs. the best model)

AR 4.270 4.687 4.842 4.969 5.084 5.728 6.528 6.998 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ARH 0.995 0.994 0.996 0.995 0.995 0.984 0.978 0.981 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00
PC4 0.970 0.951 0.953 0.955 0.957 0.941 0.939 0.890 0.00 0.04 0.03 0.02 0.02 0.01 0.03 0.00

Gas ARX 0.964 0.953 0.954 0.958 0.963 0.944 0.936 0.877 0.01 0.02 0.00 0.00 0.00 0.00 0.06 0.03
ARXH 0.946 0.935 0.937 0.937 0.940 0.927 0.939 0.884 0.38 0.45 — — — — 0.06 0.00
PC4X 0.977 0.960 0.962 0.957 0.957 0.941 0.929 0.889 0.01 0.01 0.00 0.01 0.02 0.01 0.12 0.00

Coal ARX 0.997 0.993 0.993 0.991 0.989 0.968 0.933 0.883 0.00 0.00 0.00 0.01 0.02 0.05 0.00 0.14
ARXH 0.991 0.987 0.988 0.984 0.980 0.954 0.930 0.891 0.00 0.00 0.01 0.02 0.06 0.14 0.00 0.05
PC4X 1.009 1.005 1.008 0.996 0.989 0.951 0.912 0.883 0.00 0.00 0.00 0.00 0.02 0.15 — 0.14

CO2 ARX 1.005 1.007 1.007 1.010 1.013 1.010 1.024 1.019 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ARXH 0.997 0.997 0.999 0.999 1.000 0.993 1.011 1.012 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
PC4X 1.010 1.007 1.005 0.994 0.983 0.950 0.948 0.947 0.00 0.00 0.00 0.01 0.04 0.16 0.01 0.00

Demand ARX 1.013 1.025 1.034 1.039 1.048 1.066 1.060 1.009 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ARXH 1.004 1.011 1.021 1.025 1.033 1.038 1.027 0.982 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PC4X 1.017 1.023 1.034 1.027 1.025 1.001 0.956 0.916 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Gas, ARX 0.964 0.950 0.950 0.952 0.956 0.938 0.965 0.912 0.00 0.03 0.15 0.12 0.08 0.14 0.00 0.00
Coal ARXH 0.944 0.934 0.939 0.942 0.945 0.937 0.990 0.938 — — 0.40 0.29 0.26 0.13 0.00 0.00

PC4X 0.977 0.966 0.977 0.979 0.982 0.954 0.972 0.927 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00

Gas, ARX 0.979 0.976 0.980 0.982 0.987 0.963 0.938 0.870 0.00 0.00 0.00 0.00 0.00 0.00 0.04 —
Demand ARXH 0.954 0.948 0.954 0.956 0.960 0.948 0.942 0.878 0.04 0.03 0.00 0.00 0.00 0.00 0.03 0.00

PC4X 0.991 0.984 0.993 0.989 0.993 0.973 0.929 0.876 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.07

Coal, ARX 1.004 1.007 1.013 1.012 1.012 0.981 0.936 0.875 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.37
Demand ARXH 0.991 0.990 0.998 0.995 0.995 0.969 0.947 0.891 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.07

PC4X 1.015 1.018 1.031 1.029 1.031 0.986 0.939 0.887 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.10

Gas, Coal, ARX 0.973 0.969 0.978 0.982 0.983 0.961 0.988 0.926 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Demand ARXH 0.950 0.943 0.951 0.955 0.961 0.954 1.012 0.953 0.01 0.00 0.06 0.04 0.02 0.01 0.00 0.00

PC4X 0.982 0.972 0.988 0.987 0.988 0.965 0.989 0.938 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note 1: Root Mean Squared Errors, RMSEp, for the benchmark AR model are presented; for other models, ratios of particular RMSEp to the benchmark RMSEp are displayed.
Models are defined in Table I. The fundamental variables (i.e. Xt) used for a particular model are listed in the first column. The best performing models in each column are
emphasized in bold.
Note 2: The forecasts of a model are significantly worse than those of the best performing model (in each column) at significance level α = 5% when the p-value is below 0.05.
p-values for models not significantly worse than the best model are emphasized in bold.

• six pure electricity price models (AR, ARH , PC2, PC3,

PC4 and PC5; see Section III for model definitions),

• six models (ARX, ARXH , PC2X, PC3X, PC4X and

PC5X) for each of the eight sets of fundamental variables:

(i) natural gas, (ii) coal, (iii) CO2, (iv) demand, (v) natural

gas and coal, (vi) natural gas and demand, (vii) coal and

demand, and (viii) natural gas, coal and demand.

Overall we have considered many more models, in partic-

ular models with all possible sets of fundamental variables

and models where the fundamental variables were predicted

jointly with the prices (or factors), within vector autoregressive

structures. However, due to the generally worse forecasting

performance of these models we have decided to consider only

the above 54 specifications in the final comparison.

B. Errors for individual models and forecasting horizons

The Root Mean Squared Errors (RMSE) for 27 represen-

tative models are presented in Table II; the remaining factor

models (i.e. for N = 2, 3 and 5) were always outperformed

by one of the presented models for a particular forecasting

horizon (h = 1, 2, 3, 4, 5, 10, 25 or 45 business days). The

first row shows the RMSEp of the benchmark AR model. The

next rows show each model’s RMSEp relative to the RMSEp

for the benchmark model. Values smaller than one indicate

a better forecasting performance than the benchmark, while

values greater than one indicate the opposite. This part of the

table, however, does not provide information on the statistical

significance of the differences. Hence, in the columns to the

right we provide the p-values of the DM test vs. the best model

in each column, i.e. for each of the eight forecast horizons. The

forecasts of a model are significantly worse than those of the

best performing model (in each column) at significance level

α = 5% when the p-value is below 0.05. For convenience,

the p-values of models not significantly worse than the best

model are emphasized in bold; the best models are indicated

by a hyphen (—).

The performance of the models depends on both the set

of fundamental variables used and the level of aggregation.

When no fundamental variables are included, the factor model

(PC4) forecasts better than the disaggregated model (ARH ),

which in turn is better than the benchmark AR model for all

considered forecast horizons. The inclusion of fundamentals

generally improves the forecasts, but not for all choices of the

fundamental variables. In particular, the system-wide demand

(also in combination with coal prices) and the CO2 prices

worsen the baseload price predictions, especially in the short-

term. On the other hand, sets of fundamental variables which

include natural gas prices in (almost) all cases lead to more
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TABLE III
MEAN ABSOLUTE PERCENTAGE ERRORS (MAPEp) FOR SHORT AND MID-TERM FORECASTING HORIZONS RANGING FROM 1 TO 45 BUSINESS DAYS.

Forecasting horizon (business days)

Xt Model 1 2 3 4 5 10 25 45

AR 6.35% 6.99% 7.17% 7.37% 7.52% 8.35% 9.64% 10.47%
ARH 6.22% 6.82% 7.01% 7.20% 7.33% 8.10% 9.25% 10.17%
PC4 6.25% 6.82% 7.00% 7.21% 7.36% 8.07% 8.89% 9.00%

Gas ARX 6.39% 6.98% 7.18% 7.36% 7.50% 8.22% 8.98% 8.89%

H -X 6.16% 6.70% 6.93% 7.07% 7.18% 7.96% 8.92% 8.93%
PC4X 6.25% 6.81% 7.05% 7.18% 7.32% 8.06% 8.84% 9.01%

Coal ARX 6.35% 6.87% 7.11% 7.31% 7.39% 7.95% 8.54% 8.69%
ARXH 6.20% 6.71% 6.95% 7.07% 7.15% 7.75% 8.43% 8.71%
PC4X 6.35% 6.92% 7.19% 7.30% 7.39% 7.90% 8.40% 8.64%

CO2 ARX 6.32% 6.88% 7.13% 7.30% 7.41% 8.23% 9.41% 10.18%
ARXH 6.15% 6.69% 6.94% 7.08% 7.15% 7.96% 9.17% 10.01%
PC4X 6.27% 6.78% 7.04% 7.11% 7.10% 7.57% 8.43% 9.27%

Demand ARX 6.40% 7.16% 7.37% 7.65% 7.88% 9.18% 10.74% 11.19%
ARXH 6.29% 6.98% 7.23% 7.48% 7.71% 8.88% 10.24% 10.73%
PC4X 6.37% 7.05% 7.32% 7.49% 7.54% 8.37% 9.24% 9.62%

Gas, ARX 6.24% 6.76% 6.97% 7.07% 7.22% 7.93% 8.91% 8.67%
Coal ARXH 6.07% 6.60% 6.80% 6.93% 7.05% 7.85% 9.13% 8.95%

PC4X 6.24% 6.81% 7.09% 7.20% 7.35% 8.01% 8.93% 8.80%

Gas, ARX 6.42% 7.08% 7.34% 7.48% 7.65% 8.36% 9.09% 8.93%
Demand ARXH 6.21% 6.80% 7.06% 7.20% 7.35% 8.16% 9.05% 9.00%

PC4X 6.31% 6.91% 7.21% 7.33% 7.47% 8.24% 8.91% 9.01%

Coal, ARX 6.37% 6.99% 7.24% 7.44% 7.57% 8.17% 8.71% 8.71%
Demand ARXH 6.20% 6.78% 7.04% 7.22% 7.37% 8.04% 8.78% 8.82%

PC4X 6.35% 7.02% 7.33% 7.48% 7.61% 8.14% 8.65% 8.71%

Gas, Coal, ARX 6.29% 6.90% 7.19% 7.31% 7.48% 8.14% 9.23% 8.90%
Demand ARXH 6.10% 6.67% 6.93% 7.06% 7.23% 8.08% 9.43% 9.17%

PC4X 6.24% 6.85% 7.17% 7.26% 7.42% 8.10% 9.19% 9.00%

Note: Models are defined in Table I. The fundamental variables (i.e. Xt) used for a particular model are listed in the first column. The best performing models in each column are
emphasized in bold.

accurate forecasts than the benchmark.

Looking at the best performing models in each column, we

can observe that in the short-term (up to 10 business days)

the ARXH model – which forecasts each of the half-hourly

volume-weighted prices independently and then averages them

to yield the baseload price – is a clear winner according

to RMSEp. For h = 1 and 2 the ARXH model with

Xt = {gas, coal} yields the best forecasts, but the ARXH

model with Xt = {gas} leads to equally good predictions. All

the other models perform significantly worse (their p-values

are below 5%). For h = 3, 4, 5 and 10 the situation reverts,

now the ARXH model with Xt = {gas} yields the best fore-

casts and the ARX and ARXH models with Xt = {gas, coal}
insignificantly worse predictions. For h = 5 and 10 also

the ARXH model with Xt = {coal} yields insignificantly

worse forecasts, while for h = 10 also factor models –

PC4X with Xt = {coal} and – somewhat surprisingly – with

Xt = {CO2}. For the two remaining mid-term horizons the

situation changes a lot. For h = 25, the PC4X model with

Xt = {coal} is the best performer, but all the models with

Xt = {gas} and the PC4X model with Xt = {gas, demand}
yield insignificantly worse forecasts. For the most distant hori-

zon of 45 business days (or just over two calendar months), the

univariate ARX model with Xt = {gas, demand} is the best

performer, but the ARX and PC4X models with Xt = {gas}
or Xt = {coal, demand} yield insignificantly worse forecasts.

If we consider the linear measure, i.e. MAPEp, instead

of the squared one, the results change quantitatively but not

qualitatively, see Table III. This time the ARXH model with

Xt = {gas, coal} yields the best forecasts for all short-term

horizons (h = 1, ..., 5). For h = 10 business days, the PC4X

model with Xt = {CO2} leads the pack, while for the most

distant horizons (h = 25 and 45), the PC4X model with

Xt = {coal} is the best performer. For the best performing

models, the MAPE values range from 6% to just over 7% in

the short-term and from roughly 7.6% to a little over 8.6%

in the mid-term. In the short-term these results are better

than the ones obtained in [10] for the baseload prices in the

Spanish power market, in some cases by as much as 2%. For

h = 10, our results are better than those of the multivariate

VARIMA model, but worse than of the univariate ARIMA

model (in [10] the maximum horizon was h = 15 business

days). It is worth noting that the MAPEp errors in Table III

are generally monotonically increasing with the length of the

forecast horizon (independently for each model), a property to

be expected. However, this is not so in Tables 1 and 2 in [10],

quite likely due to the relatively short out-of-sample forecast

evaluation period (4 months; compared with 36 months in our

study).

C. The choice of fundamental variables

While Tables II and III report RMSEp and MAPEp errors for

individual models, they concern only 8 out of 45 considered

forecast horizons. To see a broader picture, in Tables IV and VI

both the models and the forecasting horizons are aggregated.

The former into model classes, the latter into three ranges:
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TABLE IV
MEAN RANKS WITH RESPECT TO RMSEp FOR MODELS GROUPED

ACCORDING TO THE SET OF FUNDAMENTAL VARIABLES USED, FOR THREE

RANGES OF THE FORECASTING HORIZONS.

Forecasting horizon (business days)

Xt 1-5 6-25 26-45

— 6.044 5.158 7.730
Gas 1.320 1.970 7.230
Coal 27.334 3.275 3.410
CO2 29.901 8.967 34.142

Demand 41.723 21.871 8.272
Gas, Coal 1.516 14.466 31.637

Gas, Demand 7.360 7.475 1.347
Coal, Demand 32.963 13.461 10.435

Gas, Coal, Demand 5.184 32.077 37.681

Note: The fundamental variables (i.e. Xt) are listed in the first column. The two best
performing models in each column are emphasized in bold. A mean rank of 1.000 would
indicate that this model is the best performing model for all horizons in a given business
day range.

TABLE V
MEAN ABSOLUTE PERCENTAGE ERRORS (MAPE) OF THE FUNDAMENTAL

VARIABLES FOR FORECASTING HORIZONS h = 1, ..., 10, 15, 25 AND 45
BUSINESS DAYS.

h Gas Coal CO2 Demand

1 1.93% 0.91% 2.83% 1.77%
2 2.88% 1.37% 4.01% 2.50%
3 3.55% 1.72% 4.88% 2.87%
4 4.08% 2.01% 5.62% 3.09%
5 4.60% 2.23% 6.28% 3.22%
6 5.01% 2.44% 6.85% 3.51%
7 5.40% 2.63% 7.32% 3.81%
8 5.76% 2.78% 7.87% 4.00%
9 6.09% 2.91% 8.41% 4.15%
10 6.37% 3.10% 8.93% 4.31%
15 7.48% 3.85% 11.18% 5.19%
25 8.82% 5.12% 13.77% 6.49%
45 10.23% 6.68% 19.20% 9.40%

(i) from 1 to 5 business days, (ii) from 6 to 25 business

days and (iii) from 26 to 45 business days. The procedure

is the following. First, for each of the 45 forecast horizons

all 54 models are ranked according to their RMSEp. Then,

for the best performing models within a model class (e.g. the

best model with Xt = {gas, demand} in Table IV or the best

PC4-type model in Table VI) and all horizons within one of

the ranges, a geometric average of the ranks is computed. A

mean rank of 1.000 indicates that this model class is the best

performing for all horizons in a given business day range.

In Table IV we compare the influence of the fundamental

variables. Clearly the pure price models (AR, ARH and PCN )

are outperformed by some of the models with fundamental

variables. It is worth noticing that although the optimal sets

of fundamental variables change with the forecasting horizons,

natural gas is always a component of the best performing set of

fundamentals. For h ≤ 25, Xt = {gas} is the best choice. In

the short-term it is closely followed by Xt = {gas, coal}, but

for h = 6, ..., 25 the second best choice is Xt = {coal}. For

the most distant forecasting horizons, Xt = {gas, demand} is

the best choice and Xt = {coal} is second best again. Except

for the intermediate range of h = 6, ..., 25, Xt = {CO2} is

a very bad predictor of the baseload electricity price, as are

Xt = {coal}, Xt = {demand} and Xt = {coal, demand} in

the short-term. Models with such fundamental variables are

ranked worse than the pure price models. Somewhat surpris-

ingly also Xt = {gas, coal} and Xt = {gas, coal, demand}
underperform for the more distant horizons.

What could be the reason for such an influence of the

fundamental variables? To some extent it can be explained by

the forecast errors made using the autoregressive model (3). In

Table V we report the MAPE errors of the fundamental vari-

ables themselves for forecasting horizons h = 1, ..., 10, 15, 25
and 45 business days. Clearly the easiest to predict fundamen-

tal variable is the coal price – the MAPE errors range from

0.91% to 3.85% for h = 15 business days and 6.68% for

h = 45 business days, very much like in [10]. The relatively

stable evolution of the coal price favors it for the more distant

horizons. Since we are not using future values of these prices,

but forecast them like electricity prices, the lower the forecast

errors over time the better predictors they are in the long-run.

The MAPE errors for natural gas are higher than for coal

and range from 1.93% to 7.48% for h = 15 business days and

10.23% for h = 45 business days. Hence, models with natural

gas as the only fundamental variable tend to perform worse

for larger h. On the other hand, since natural gas is often the

marginal fuel that sets the electricity price, in the shorter-term

– when the forecast errors are not so large – it is the best

predictor.

The MAPE errors for the system-wide demand are relatively

high and only slightly lower than for the natural gas prices.

The level of these errors does not explain the poor performance

of models with demand as the only fundamental variable.

However, if we take a look at Figure 1, we can observe that

during the Winter the electricity price and the demand seem

to be highly correlated, but in the Summer the electricity

price generally does not react to the substantial decrease in

demand. Most likely this phenomenon is responsible for such

a poor performance of the models with demand as the only

fundamental variable. Unfortunately we are not able to explain

why demand combined with natural gas performs so well, see

Table IV.

Finally, the MAPE errors for CO2 are the highest of all

and range from 2.83% to 11.18% for h = 15 business days

and as much as 19.20% for h = 45 business days. They are

much higher than the MAPE errors reported in [10] for EUA

and CER certificates. Most likely this is due to the time period

analyzed. Between March 2009 and April 2011 the CO2 prices

were relatively stable, see Figure 1. However, starting from

June 2011 they declined rapidly until mid-2013 and then again

remained stable until the end of the studied period (December

2013).

D. Aggregated vs. disaggregated models

Let us now examine whether models calibrated to disag-

gregated data perform better than the models calibrated to

aggregated (i.e. baseload) prices. In Table VI we compare

the performance of six classes of models with and without

fundamental variables: AR/ARX, ARH /ARXH , PC2/PC2X,

PC3/PC3X, PC4/PC4X and PC5/PC5X. In the short-term the

disaggregated ARH /ARXH model is the unanimous winner

with a mean rank of 1.000! Recall that such a mean rank indi-
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TABLE VI
MEAN RANKS WITH RESPECT TO RMSEp FOR MODELS GROUPED

ACCORDING TO THE MODEL TYPE, FOR THREE RANGES OF THE

FORECASTING HORIZONS.

Forecasting horizon (business days)

Model 1-5 6-25 26-45

AR / ARX 4.547 11.602 2.062
ARH / ARXH 1.000 3.820 7.842

PC5 / PC5X 7.955 2.910 3.399
PC4 / PC4X 7.721 2.039 2.290
PC3 / PC3X 7.360 2.827 2.024
PC2 / PC2X 5.553 9.102 10.454

Note: The best performing model in each column is emphasized in bold. A mean rank
of 1.000 indicates that this model class is the best performing for all horizons in a given
business day range.

cates that this is the best performing model class for all short-

term horizons. Apparently it is advantageous to independently

predict all 48 half-hourly price series and then aggregate them

to yield the baseload price forecast for h = 1, ..., 5. However,

as we increase the forecasting horizon the ARH /ARXH model

performs worse (with respect to the other models). In the

intermediate range (h = 6, ..., 25) the factor models with 3

or more factors dominate the ranking. The PC4-type model

yields the most accurate forecasts, but is closely followed

by PC3-type and PC5-type; the factor model with only two

factors underperforms for all h. For the most distant horizons

(h = 26, ..., 45), the factor models with 3 or more factors still

perform very well. Now PC3-type is the best, but the univariate

AR/ARX model performs nearly as well, which confirms that

reducing model complexity improves the mid-term forecasting

performance.

VII. CONCLUSIONS

This article examines whether using intra-day data and fun-

damental variables can improve forecasts of baseload electric-

ity prices. In order to overcome the dimension problem, we use

either a set of univariate AR models (one for each load period)

or factor models that summarize the information contained

in the panel of intra-day prices. We conduct an empirical

study, which allows to assess the forecasting performance

of six types of models: (i) AR – the benchmark AR model

of baseload prices, (ii) ARX – the ARX model of baseload

prices and fundamental variables, (iii) ARH – a set of 48

univariate AR models of half-hourly volume-weighted prices,

(iv) ARXH – a set of 48 univariate ARX models of half-hourly

volume-weighted prices and fundamental variables, (v) PCN

– the VAR model of N = 2, ..., 5 factors, and (vi) PCNX
– the VARX model of N = 2, ..., 5 factors and fundamental

variables. The models are compared in terms of RMSE and

MAPE errors.

We should note here that the choice of the time series

models used here is not exhaustive, in particular nonlinear

models are not considered. However, there is mixed evidence

on the forecasting performance of nonlinear models in general

[40] and in electric load [41] and price forecasting in particular

[1]. In fact, as Hong et al. [41] emphasize, all of the four

winning teams in the load forecasting track of the Global

Energy Forecasting Competition 2012 (GEFCom2012) used

regression analysis to produce the winning entries. That said,

there is no reason to believe that nonlinear models would yield

more competitive benchmarks than the ones already used.

For the pure price models, we find that the factor model

(PC4) forecasts better than the disaggregated model (ARH ),

which in turn is better than the benchmark AR model for all

considered forecast horizons. The inclusion of fundamentals

generally improves the forecasts, but not for all choices of the

fundamental variables. In particular, the system-wide demand

(also in combination with coal prices) and the CO2 prices

worsen the baseload price predictions, especially in the short-

term. On the other hand, sets of fundamental variables which

include natural gas prices in (almost) all cases lead to more

accurate forecasts than the benchmark.

The poor performance of models with CO2 as the funda-

mental variable can be explained by the errors made when

forecasting the carbon prices themselves. The MAPE errors

for CO2 are the highest of all the considered fundamental

variables, much higher than the MAPE errors reported in [10]

for EUA and CER certificates. Most likely this is due to the

evolution of CO2 prices in the analyzed time period. Between

March 2009 and April 2011 the CO2 prices were relatively

stable, but starting from June 2011 they declined rapidly until

mid-2013 and then again remained stable until the end of

the studied period (December 2013). Obviously this structural

change cannot be adequately predicted by a simple AR(q)

model.

The somewhat surprising, poor predictive performance of

the system-wide demand cannot be explained by the level of

the forecast errors. They are relatively high but still lower than

for the natural gas prices (which is a very good predictor for all

forecasting horizons). However, analyzing the time evolution

of the electricity price and demand time series, we can observe

that during the Winter the electricity price and the demand

seem to be highly correlated, but in the Summer the electricity

price generally does not react to the substantial decrease in

demand. Most likely this phenomenon is responsible for such

a poor performance of the models with demand as the only

fundamental variable. Unfortunately we are not able to explain

why demand combined with natural gas performs so well for

the most distant forecasting horizons.

Now let us comment on the model structure. In the class

of models with fundamental variables, we find that in the

short-term (up to a few business days ahead) the disaggregated

model which independently predicts the half-hourly volume-

weighted prices and then takes their average to yield baseload

price forecasts (i.e. ARH /ARXH ) is the best performer. How-

ever, in the mid-term, factor models which extract information

from the panel of intra-day prices – especially PC3-type and

PC4-type – lead to significantly (as measured by the Diebold-

Mariano test) better baseload price forecasts. Interestingly, for

h = 6, ..., 25 business days, the PC4-type model is the best

performer, but for h = 26, ..., 45 business days, the PC3-type

model takes the lead, with the simple univariate AR/ARX

model following closely by.

Summing up, there is clear evidence that using intra-day

prices improves the short- and mid-term forecasts of baseload

electricity prices in the UK market. However, the optimal
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model structure is not the same across the forecasting horizons

– the more distant the forecasting horizon, the simpler should

the model structure be. The results for including fundamental

variables are less straightforward. On one hand, some funda-

mental variables – especially natural gas prices (in the short-

term) and coal prices (in the mid-term) – provide significant

gains. On the other, the remaining variables – especially the

CO2 prices – do not improve the price forecasts at all, at

least in the time period considered in this study (April 2009

– December 2013).

Overall, this paper contributes to the scarce literature on

the important topic of mid-term electricity price forecasting

and provides guidelines as to the optimal choice of models

for this task. Given that mid-term forecasts play a crucial

role in planning activities (such as the adjustment of mid-

term schedules and allocation of resources), risk management

and the valuation of exchange traded futures and bilateral

contracts, the discussed results and insights may be useful

not only for academics, but also for practitioners managing

portfolios of electricity contracts.
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