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Abstract

In day-ahead electricity price forecasting (EPF) the daily and weekly seasonalities are always
taken into account, but the long-term seasonal component (LTSC) is believed to add unneces-
sary complexity to the already parameter-rich models and is generally ignored. Conducting an
extensive empirical study involving state-of-the-art time series models we show that (i) decom-
posing a series of electricity prices into a LTSC and a stochastic component, (ii) modeling them
independently and (iii) combining their forecasts can bring – contrary to a common belief – an
accuracy gain compared to an approach in which a given time series model is calibrated to the
prices themselves.

Keywords: Electricity spot price, Forecasting, Day-ahead market, Long-term seasonal
component

1. Introduction

Without doubt electricity price forecasting (EPF) is of prime importance to the functioning of
today’s energy business. Alongside load forecasting, short-term (also called spot or day-ahead)
EPF has become the core process of an energy company’s planning activities at the operational
level (Weron, 2014). Although it is very hard to quantify the benefits of improving load and/or
price forecasts, Hong (2015) provides interesting back-of-the-envelope calculations. Based on
U.S. data from the last decade, he concludes that for a typical medium-size utility with a 5 GW
peak load, savings from a 1% reduction in the Mean Absolute Percentage Error (MAPE) are as
much as $1.5 million per year from short-term load forecasting and $3 million per year from
short-term load and price forecasting!

It should be noted, that although we use here the terms short-term, spot and day-ahead in-
terchangeably, the former two do not necessarily refer to the day-ahead market. Short-term EPF
generally involves predicting prices in the day-ahead market – cleared typically at noon on the day
before delivery, i.e. 12 to 36 hours before delivery, the adjustment markets – cleared a few hours
before delivery, and the balancing or real-time markets – cleared minutes before delivery (Garcia-
Martos and Conejo, 2013). The spot market, especially in the literature on European electricity
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markets, is often used as a synonym of the day-ahead market. However, in the US the spot market
is another name for the real-time market, while the day-ahead market is called the forward market
(Burger et al., 2007; Weron, 2006). Also some markets in Europe nowadays admit continuous
trading for individual load periods up to a few hours before delivery. With the shifting of volume
from the day-ahead to intra-day markets, also in Europe the term spot is more and more often
being used to refer to the real-time markets (Weron, 2014).

As has been noted in a number of studies, a key point in electricity spot price modeling and
forecasting is the appropriate treatment of seasonality (Janczura et al., 2013; Lisi and Nan, 2014;
Nowotarski et al., 2013). For mid-term horizons – ranging from a few days to a few months
ahead and typically considered in derivatives pricing and risk management applications – the daily
profile is usually regarded as irrelevant. In fact, most mid-term EPF models work with average
daily prices and focus on the annual or long-term seasonal component (LTSC; also called the
trend-seasonal component). However, in short-term EPF the daily and weekly seasonalities are
always taken into account, but the LTSC is believed to add unnecessary complexity to the already
parameter-rich models and is generally ignored (for recent reviews see Garcia-Martos and Conejo,
2013; Weron, 2014). But is this the right approach? Should the LTSC be included in day-ahead
EPF models, contrary to a common belief that it is redundant in the short-term?

It is exactly the aim of this paper to address these two important questions, that have not been
investigated in the EPF literature to date. We perform an extensive empirical study which involves:

• two 2-year long, hourly resolution test periods from two distinct power markets (Southeast-
ern United States and Scandinavia),

• two autoregressive model structures – one originally proposed by Misiorek et al. (2006) and
later used in a number of EPF studies (Gaillard et al., 2016; Kristiansen, 2012; Maciejowska
et al., 2016; Nowotarski et al., 2014; Weron, 2006; Weron and Misiorek, 2008; Ziel, 2016)
and one which evolved from it during the successful participation of TEAM POLAND in
the Global Energy Forecasting Competition 2014 (GEFCom2014; see Hong et al., 2016;
Maciejowska and Nowotarski, 2016),

• two novel Seasonal Component AutoRegressive (SCAR) models that combine a 24 hour-
ahead extrapolation of an estimated LTSC with the forecasts of autoregressive models,

• two well-performing LTSC model classes – wavelet smoothing and the Hodrick and Prescott
(1997) filter, as advocated by Janczura et al. (2013), Lisi and Nan (2014), Nowotarski et al.
(2013) and Weron and Zator (2014),

• model validation in terms of the robust weekly-weighted mean absolute error (WMAE; see
Weron, 2014) and the Diebold and Mariano (1995) test,

and draw statistically significant conclusions with far reaching consequences for day-ahead EPF.
The remainder of the paper is structured as follows. In Section 2 we present the datasets. Then

in Section 3 we describe the techniques considered for price forecasting: two baseline autoregres-
sive model structures, two LTSC model classes and two novel SCAR models. In Section 4 we
summarize the empirical findings and in Section 5 wrap up the results and conclude.
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Figure 1: GEFCom2014 hourly locational marginal prices (LMP; top) and hourly day-ahead predictions of zonal load
(bottom) for the period January 1, 2011 – December 17, 2013. The vertical dashed lines mark the end of the initial
calibration window. Each day the 360-day long window is rolled forward by 24 hours and price forecasts for the 24
hours of the next day are computed.

2. Datasets

The datasets used in this empirical study include two day-ahead time series. The first one
comes from the Global Energy Forecasting Competition 2014 (GEFCom2014) – the largest energy
forecasting competition to date, both in terms of the diversity of competition topics and wide
geographic coverage of the participants (for details see Hong et al., 2016). The dataset includes
three time series at hourly resolution: locational marginal prices, day-ahead predictions of zonal
loads and day-ahead predictions of system loads and covers the period from January 1, 2011
to December 17, 2013. During the competition the information set was being extended on a
weekly basis to prevent ‘peeking’ into the future. However, now it is available in whole from:
www.drhongtao.com/articles. In this paper we only use two subseries – locational marginal prices
and day-ahead predictions of zonal loads, see Fig. 1. The origin of the data has never been revealed
by the organizers, but given its features it quite likely comes from a region in the Southeastern
United States.

The second dataset comes from one of the major European power markets – Nord Pool (NP).
It comprises hourly system prices and hourly consumption prognosis for four Nordic countries
(Denmark, Finland, Norway and Sweden) for the period January 1, 2013 – December 26, 2015,
see Fig. 2. The time series were constructed using data published by the Nordic power exchange
Nord Pool (www.nordpoolspot.com) and preprocessed to account for missing values and changes
to/from the daylight saving time (like in Weron, 2006, Section 4.3.7). The missing data values
were substituted by the arithmetic average of the neighboring values. The ‘doubled’ values (corre-
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Figure 2: Nord Pool hourly system prices (top) and hourly consumption prognosis (bottom) for the period January 1,
2013 – December 26, 2015. The vertical dashed lines mark the end of the initial calibration window. Each day the
360-day long window is rolled forward by 24 hours and price forecasts for the 24 hours of the next day are computed.

sponding to the changes from the daylight saving/summer time) were substituted by the arithmetic
average of the two values for the ‘doubled’ hour.

For both markets, the day-ahead forecasts of the hourly electricity price are determined within
a rolling window scheme, using a 360-day calibration window. First, all considered models (their
short-term and long-term components) are calibrated to data from the initial calibration period, i.e.
January 1 to December 26 (year 2011 for GEFCom2014 and 2013 for Nord Pool) and forecasts for
all 24 hours of the next day (December 27) are determined. Then the window is rolled forward by
one day and forecasts for all 24 hours of December 28 are computed. This procedure is repeated
until the predictions for the last day in the sample – December 17, 2013 (for GEFCom2014) or
December 26, 2015 (for Nord Pool) – are made.

3. Methodology

3.1. The benchmarks
Our choice of the benchmark models is guided by previous literature on electricity price fore-

casting and experience gained during the successful participation of TEAM POLAND in the GEF-
Com2014 competition. The modeling is implemented separately across the hours, leading to 24
sets of parameters for each day the forecasting exercise is performed. This approach is inspired
by the fact that each hour displays a rather distinct price profile, reflecting the daily variation of
demand, costs and operational constraints, and by the extensive research on demand forecasting,

4



which has generally favored the multi-model specification for short-term predictions (see Weron,
2014, for a review).

The first benchmark belongs to the class of similar-day techniques. Most likely it was intro-
duced to the EPF literature by Nogales et al. (2002) and dubbed the naı̈ve method. It proceeds
as follows: hour h on Monday is similar to the same hour on Monday of the previous week, and
the same rule applies for Saturdays and Sundays; hour h on Tuesday is similar to the same hour
on Monday, and the same rule applies for Wednesdays, Thursdays and Fridays. As was argued
by Conejo et al. (2005) and Nogales et al. (2002), forecasting procedures that are not calibrated
carefully fail to pass this ‘naı̈ve test’ surprisingly often. We will denote this benchmark by Naı̈ve.

The second model is a parsimonious autoregressive structure originally proposed by Misiorek
et al. (2006) and later used in a number of EPF studies (Gaillard et al., 2016; Kristiansen, 2012;
Maciejowska et al., 2016; Nowotarski et al., 2014; Weron, 2006; Weron and Misiorek, 2008; Ziel,
2016). Within this model the natural logarithm of the electricity spot price, pt = log(Pt), is given
by the following formula:

pt = φ1 pt−24 + φ2 pt−48 + φ7 pt−168 + φ8mpt + ψ1zt +

3∑
i=1

diDi + εt, (1)

where the lagged log-prices pt−24, pt−48 and pt−168 account for the autoregressive effects of the
previous days (the same hour yesterday, two days ago and one week ago), while mpt creates the
link between bidding and price signals from the entire previous day (it is the minimum of the
previous day’s 24 hourly log-prices). The variable zt refers to the hourly zonal load of a US utility
or Nordic consumption (actually to forecasts made a day before, see Section 2). The three dummy
variables – D1, D2 and D3 (for Monday, Saturday and Sunday, respectively) – account for the
weekly seasonality. Finally, the εt’s are assumed to be independent and identically distributed
(i.i.d.) normal variables. We will denote this autoregressive benchmark by ARX to reflect the fact
that the load (or consumption) forecast is used as the eXogenous variable in Eqn. (1).

The third benchmark is an extension of the ARX model, which takes into account the expe-
rience gained during the GEFCom2014 competition (for a deailed discussion see Maciejowska
and Nowotarski, 2016). It turns out that it may be beneficial to use different model structures for
different days of the week, not only different parameter sets. Hence, the multi-day ARX model
(denoted later in the text by mARX) for the natural logarithm of the electricity price is given by
the following formula:

pt =

 3∑
i=0

φ1,iDi

 pt−24 + φ2 pt−48 + φ3D1 pt−72 + φ7 pt−168 + φ8mpt + ψ1zt +

3∑
i=1

diDi + εt, (2)

where D0 ≡ 1 and the term D1 pt−72 accounts for the autoregressive effect of Friday’s prices on the
prices for the same hour on Monday. Finally, note that both autoregressive models – ARX and
mARX – are estimated in this study in Matlab using Least Squares.

3.2. Seasonal Component AutoRegressive (SCAR) models
Let us now return to the question whether the long-term seasonal component should be in-

cluded in day-ahead EPF models or not. To provide an answer, we will investigate whether (i)
5



decomposing a series of electricity log-prices into a LTSC and a stochastic component (or resid-
ual), (ii) modeling them independently and (iii) combining their forecasts brings an accuracy gain
compared to an approach in which a given autoregressive model structure is calibrated to raw log-
prices. Hence, we will compare ARX and mARX models (calibrated to raw log-prices) with the
corresponding Seasonal Component AutoRegressive (SCAR) models – SCARX and mSCARX
(the same autoregressive structures, but calibrated to seasonally decomposed log-prices, then com-
bined with LTSC forecasts).

The standard approach to seasonal decomposition splits the series under investigation into
the trend-cycle or long-term seasonal component (LTSC; Tt), the periodic short-term seasonal
component (STSC; st) and remaining variability (i.e. the stochastic component; Xt), either in an
additive or a multiplicative fashion (Hyndman and Athanasopoulos, 2013; Janczura et al., 2013).
In the short-term EPF literature it is quite common to consider st and Xt jointly. We also do it here.
Namely, we decompose the electricity spot log-price series pt into a sum of two independent parts:

• qt = Xt + st, i.e. the stochastic component with short-term periodicities,

• and Tt, i.e. the long-term seasonal component.

Motivated by a series of recent articles on modeling and forecasting the LTSC of electricity spot
prices (see Janczura et al., 2013; Lisi and Nan, 2014; Nowotarski et al., 2013; Weron and Zator,
2014, among others), we consider two well-performing model classes – wavelet smoothing and
the Hodrick-Prescott (HP) filter.

Recall, that any function or signal (here: the electricity log-price series, pt) can be built up
as a sequence of projections onto one father wavelet (the smooth component or approximation)
and a sequence of mother wavelets (or details): pt = S J + DJ + DJ−1 + ... + D1, where 2J is the
maximum scale sustainable by the number of observations (Percival and Walden, 2000; Weron,
2006). At the coarsest scale the signal can be estimated by S J. At a higher level of refinement
the signal can be approximated by S J−1 = S J + DJ. At each step, by adding a mother wavelet
D j of a lower scale j = J − 1, J − 2, ..., we obtain a better estimate of the original signal. This
procedure, known as wavelet smoothing or lowpass filtering, yields a traditional linear smoother.
Basing on the results of Janczura et al. (2013) and Nowotarski et al. (2013), we use the Daubechies
family of order 24 as they make a reasonable trade-off between how compactly they are localized
in time and their smoothness. To provide a comprehensive analysis, we consider ten smoothing
levels: J = 5, . . . , 14, i.e. approximations S 5, ..., S 14, respectively. This corresponds to a range of
smoothers, roughly from daily (25 = 32 hours) to nearly biannual (214 hours or ca. 683 days).

The Hodrick and Prescott (1997) filter was originally proposed in macroeconomics for de-
composing the series of GDP values into a long-term growth component and the business cycle.
The mechanics of the HP filter are, however, universal. When applied to electricity spot prices it
splits the series into a smooth part – the LTSC, and a volatile part – the stochastic component with
short-term periodicities. Weron and Zator (2014) advocated the use of the HP filter as a simpler,
yet equally flexible alternative to wavelet smoothing. Also Lisi and Nan (2014) found it to be a
very well performing smoother. For a noisy (or volatile) input series of electricity spot log-prices
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pt, the HP filter returns a smoothed series Tt which minimizes:

min
Tt

 τ∑
t=1

(pt − Tt)2 + λ

τ−1∑
t=2

[
(Tt+1 − Tt) − (Tt − Tt−1)

]2
 , (3)

where τ is the number of observations (in this study: 360 × 24 = 8640 hours of the calibration
window) and λ is a smoothing parameter. To find the optimal value of λ we use a similar grid as in
Weron and Zator (2014), the only difference is that in this study the price series are in hourly (not
daily) resolution and the values of λ have to be larger. We use eight different λs: 1 × 108, 5 × 108,
1 × 109, 5 × 109, 1 × 1010, 5 × 1010, 1 × 1011 and 5 × 1011.

A potential problem with the SCAR approach is that the LTSC has to be predicted (which is
not a trivial task, see Nowotarski et al., 2013) before combining it with the day-ahead forecasts
of the autoregressive model for qt. What makes the problem even more challenging is that the
predictions of the trend-seasonal component cannot be properly evaluated, since the LTSC itself
is an outcome of model assumptions and is not observed in reality. However, in the short-term we
may assume that a simple persistent (or random walk) forecast is good enough for our purposes.
Note that Lisi and Nan (2014) used a similar approach but for daily, not hourly data.

Summarizing, the SCAR modeling framework consists of the following:

1. Decomposing the series of electricity log-prices pt from the calibration window into a
trend-seasonal component Tt and a stochastic component with short-term periodicities qt,
using one of the ten wavelet smoothers (S 5, ..., S 14) or one of the seven HP filters (λ =

1 × 108, ..., 5 × 1011). Then computing persistent forecasts of the LTSC for the 24 hours of
the next day, i.e. T̂t∗+24 = . . . = T̂t∗+1 ≡ Tt∗ , where t∗ is the time index of the last observation
in the calibration window.

2. Calibrating autoregressive models defined by Eqns. (1) and (2) to qt and computing forecasts
for the 24 hours of the next day, i.e. q̂t∗+1, ..., q̂t∗+24. Note, that unlike the seasonal decompo-
sition in Step 1, which is made for the whole 360× 24 = 8640 hour long calibration sample,
here we split the data into 24 hourly series (like for the ARX and mARX benchmarks).

3. Adding forecasts of the autoregressive models computed in Step 2 to the persistent forecasts
of the LTSC to yield log-price forecasts: p̂t∗+1, ..., p̂t∗+24.

4. Taking the exponent of the log-price forecasts computed in Step 3 to convert them into price
forecasts of the SCARX and mSCARX models: P̂t = exp (p̂t).

4. Empirical results

We now present day-ahead forecasting results for the two considered datasets: GEFCom2014
hourly locational marginal prices and Nord Pool hourly system prices. We use long, 2-year out-
of-sample test periods to make sure the obtained results are reliable. Recall from Section 2, that
models are re-estimated on a daily basis. Price forecasts P̂t∗+1, ..., P̂t∗+24 for all 24 hours of the next
day are determined at the same point in time and the 360-day calibration window is rolled forward
by one day: t∗ → t∗ + 24 hours.

7



4.1. Performance evaluation in terms of WMAE
Following Conejo et al. (2005), Weron and Misiorek (2008) and Nowotarski et al. (2014),

we compare the models in terms of the Weekly-weighted Mean Absolute Error (WMAE) loss
function. WMAE is a robust measure similar to MAPE but with the absolute error normalized
by the mean weekly price to avoid the adverse effect of negative and close to zero electricity spot
prices. We evaluate the forecast performance using weekly time intervals, each with 24 × 7 = 168
hourly observations. Note that we also analyzed the forecasts using squared error losses, however,
results were qualitatively similar and are omitted here due to space limitations. For each week we
calculate the WMAE for model i as:

WMAEi =
1

P̄168
MAEi =

1
168 · P̄168

∑168

h=1

∣∣∣Ph − P̂i
h

∣∣∣, (4)

where Ph is the actual price for hour h (not the log-price ph), P̂i
h is the predicted price for that

hour obtained from model i and P̄168 = 1
168

∑168
h=1 Ph is the mean price for a given week. Note, that

WMAE requires the test period to be a multiple of a week (or 168 hours). Hence, when computing
WMAE we consider the first 103 full weeks (December 27, 2011 – December 16, 2013) for the
GEFCom2014 dataset and the first 104 full weeks (December 27, 2013 – December 24, 2015) for
the Nord Pool dataset.

In Table 1 we report the average WMAE in the forecasting period for five different model
classes: three benchmarks – Naı̈ve, ARX and mARX, and two SCAR-type models that combine
a 24 hour-ahead extrapolation of an estimated LTSC with the forecasts of autoregressive models –
SCARX and mSCARX. Each of the SCAR-type models is computed for ten wavelet-based and
eight HP filter-based LTSC. We use suffixes -SJ and -HPλ to denote SCAR-type models with an
S J wavelet-based LTSC and a HP filter-based LTSC with smoothing parameter λ, respectively.

Several important conclusions can be drawn. Firstly, all autoregressive models beat the Naı̈ve
benchmark by a large margin. This indicates that they all are highly efficient forecasting tools.
Secondly, a SCAR-type model with a properly selected wavelet-based seasonal component can
improve the accuracy of day-ahead forecasts compared to the corresponding autoregressive bench-
mark. Thirdly, somewhat surprisingly, this not the case for the HP filter-based LTSC. In fact, no
matter what is the value of the smoothing parameter λ, SCAR-type models with HP filter-based
LTSC never outperform the benchmark autoregressive models. Finally, the multi-day autoregres-
sive models – mARX and mSCARX – are almost always better than the corresponding ARX and
SCARX models.

For the GEFCom2014 dataset, the best performing wavelet approximation is S 12, which roughly
corresponds to half-year (212 = 4096 hours or 170 days) smoothing, the second best is S 13,
equivalent to annual smoothing. Generally, all approximations between S 9 and S 14 work pretty
well, however, not all can beat the corresponding benchmark autoregressive models, especially
when non-multi-day specifications are considered. For the Nord Pool dataset, the best performing
wavelet approximations are S 9 and S 10, which roughly correspond to 3- and 6-week smoothing.
Like for the GEFCom2014 dataset, more approximations work pretty well (this time from S 8 to
S 14) but not all can beat the corresponding benchmark autoregressive models, especially when
multi-day specifications are considered. Generally, lower wavelet decomposition levels do not
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Table 1: Average WMAE for all 103 weeks of the GEFCom2014 out-of-sample test period (upper half ) or all 104
weeks of the Nord Pool out-of-sample test period (lower half ). WMAE errors for the SCARX and mSCARX models
smaller (better) than those of the ARX and mARX benchmarks, respectively, are indicated in bold. Underlined are
the results for the best performing model in each of the four parts of the table. Note, that the Naı̈ve benchmark is
much worse than any of the other models. Note also, that the mARX and mSCARX models are almost always better
than the corresponding ARX and SCARX models.

GEFCom2014
Naı̈ve ARX SCARX

Wavelet approximation
S 5 S 6 S 7 S 8 S 9 S 10 S 11 S 12 S 13 S 14

13.530 13.686 12.466 11.558 11.378 11.264 11.263 11.112 11.221 11.245
20.475 11.232 HP filter λ

1 × 108 5 × 108 1 × 109 5 × 109 1 × 1010 5 × 1010 1 × 1011 5 × 1011

11.775 11.586 11.527 11.425 11.396 11.376 11.362 11.287
mARX mSCARX

Wavelet approximation
S 5 S 6 S 7 S 8 S 9 S 10 S 11 S 12 S 13 S 14

13.482 13.647 12.233 11.379 11.216 11.213 11.312 10.901 10.976 11.130
11.252 HP filter λ

1 × 108 5 × 108 1 × 109 5 × 109 1 × 1010 5 × 1010 1 × 1011 5 × 1011

11.580 11.414 11.369 11.347 11.381 11.548 11.612 11.598

Nord Pool
Naı̈ve ARX SCARX

Wavelet approximation
S 5 S 6 S 7 S 8 S 9 S 10 S 11 S 12 S 13 S 14

9.949 9.988 8.598 8.389 8.309 8.332 8.417 8.453 8.463 8.475
12.663 8.500 HP filter λ

1 × 108 5 × 108 1 × 109 5 × 109 1 × 1010 5 × 1010 1 × 1011 5 × 1011

8.665 8.697 8.718 8.760 8.766 8.766 8.757 8.729
mARX mSCARX

Wavelet approximation
S 5 S 6 S 7 S 8 S 9 S 10 S 11 S 12 S 13 S 14

9.954 10.049 8.558 8.286 8.157 8.154 8.331 8.471 8.428 8.361
8.341 HP filter λ

1 × 108 5 × 108 1 × 109 5 × 109 1 × 1010 5 × 1010 1 × 1011 5 × 1011

8.516 8.504 8.513 8.526 8.530 8.561 8.578 8.644

perform well, probably because the S 5, S 6 and S 7 smoothers are too sensitive to fluctuations in
spot prices at the far end of the calibration window. Quite likely this variability at the edges of the
sample is also the reason for the disappointing performance of the HP filter-based LTSC.

4.2. Diebold-Mariano (DM) tests
In order to formally investigate the advantages from using SCAR-type models over the autore-

gressive benchmark models, we apply the Diebold and Mariano (1995) test. Since predictions for
all 24 hours of the next day are made at the same time using the same information set, forecast
errors for a particular day will typically exhibit high serial correlation. Therefore, like Bordignon
et al. (2013) and Nowotarski et al. (2014), we conduct the DM tests for each of the 24 load periods
separately, using absolute error losses of the model forecast: L(εt) = |εt| = |Pt − P̂t|. For each best
performing SCAR-type model in its class:

• SCARX-S12, -HP5×1011 , mSCARX-S12, -HP5×109 for GEFCom2014,
9



Table 2: The percentage and the number (in parentheses) of hours for which the best wavelet-based and the best HP
filter-based SCAR-type model is able to outperform the corresponding autoregressive benchmark model (#better) and
for which the benchmark model is able to outperform SCAR-type model (#worse), at the 5% significance level for the
conducted Diebold-Mariano test. Compare with Figure 3.

GEFCom2014 Nord Pool Both datasets
SCARX-S12 SCARX-HP5×1011 SCARX-S9 SCARX-HP1×108 Wavelets HP filter

#better 46% (11) 0% (0) 29% (7) 0% (0) 38% (18) 0% (0)
#worse 0% (0) 0% (0) 17% (4) 13% (3) 8% (4) 6% (3)

mSCARX-S12 mSCARX-HP5×109 mSCARX-S10 mSCARX-HP5×108 Wavelets HP filter
#better 92% (22) 0% (0) 42% (10) 4% (1) 67% (32) 2% (1)
#worse 0% (0) 4% (1) 0% (0) 40% (10) 0% (0) 23% (11)

• SCARX-S9, -HP1×108 , mSCARX-S10, -HP5×108 for Nord Pool,

and for each hour independently, we calculate the loss differential series:

dt = L(εmodel
t ) − L(εbenchmark

t ). (5)

We then conduct the DM tests for significant differences with respect to the performance of the
corresponding benchmark model (ARX or mARX). We perform two one-sided DM tests at the
5% significance level: (i) a standard test with the null hypothesis H0 : E(dt) ≤ 0, i.e. the outper-
formance of the benchmark by a given SCAR-type model, and (ii) the complementary test with
the reverse null H0 : E(dt) ≥ 0, i.e. the outperformance of a given SCAR-type model by the
benchmark. Figure 3 provides a graphical representation of the DM test statistic for each hour and
model for both considered markets. The results are also summarized in Table 2.

The obtained DM-test results support our observations from Section 3.1 on WMAE errors.
Again, we can conclude that SCAR-type models with properly selected wavelet-based LTSC im-
prove forecasting accuracy, especially when the generally more accurate multi-day models are con-
sidered. For 67% of the hours the best mSCARX-S models significantly outperform the mARX
benchmark; at the same time they are never significantly outperformed by the benchmark. For the
GEFCom2014 dataset all test statistics are positive and for 22 hours they are significant at the 5%
level. For the Nord Pool dataset the results are not that optimistic, yet still only for five hours the
test statistics are negative and all are insignificant at the 5% level.

For the on average less accurate specifications based on Eqn. (1), the improvement in pre-
dictive performance is not that clear-cut. For 38% of the hours the best SCARX-S models sig-
nificantly outperform the ARX benchmark. However, for the Nord Pool dataset, SCARX-S9 is
significantly outperformed by the benchmark for four hours. Overall, the SCAR-type models are
still generally better than the ARX benchmark.

Finally, SCAR-type models with the HP filter-based LTSC again do not perform well. Regard-
less of the selection of λ, this approach not able to significantly outperform the benchmark models
(except for one hour for the Nord Pool dataset and the multi-day specifications). On the other
hand, these models are significantly worse than the ARX benchmark for 6% of the hours and the
mARX benchmark for as many as 23% of the hours.
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Figure 3: Results for conducted one-sided Diebold-Mariano tests for both datasets: GEFCom2014 (left panels)
and Nord Pool (right panels). The SCARX models are tested against the ARX benchmark (upper panels) and the
mSCARX models against the mARX benchmark (lower panels). The tests were conducted separately for each of the
24 hours. Only points lying above (i.e. better than the benchmark) or below (i.e. worse than the benchmark) the
dashed lines are significant at the 5% level. See also Table 2.

5. Conclusions

In day-ahead electricity price forecasting (EPF) the daily and weekly seasonalities are always
taken into account, but the long-term seasonal component (LTSC) is believed to add unnecessary
complexity to the already parameter-rich models and is generally ignored (Weron, 2014). But is
this the right approach? Should the LTSC be included in day-ahead EPF models, contrary to a
common belief that it is redundant in the short-term?

Conducting an extensive empirical study involving state-of-the-art time series models and two
2-year long, hourly resolution test periods from two distinct power markets (Southeastern United
States and Scandinavia), we have addressed these important questions. To this end, we have in-
troduced a new class of models – Seasonal Component AutoRegressive (SCAR) models – that
combine a 24 hour-ahead extrapolation of an estimated LTSC with the forecasts of autoregressive
models. We have compared the predictive performance of these models to that of three bench-
marks in terms of the robust weekly-weighted mean absolute error (WMAE) and the Diebold and
Mariano (1995) test.
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We have shown that, all considered autoregressive models – both SCAR-type and the ARX-
type benchmarks – beat the naı̈ve benchmark of Nogales et al. (2002) by a large margin, which
indicates that they all are highly efficient forecasting tools. Furthermore, we have provided evi-
dence that a SCAR-type model with a properly selected wavelet-based seasonal component can
significantly (in terms of the DM test) improve the accuracy of day-ahead forecasts compared to
the ARX-type benchmarks. We expect that this result will have far reaching consequences for day-
ahead EPF in the near future. Somewhat surprisingly, we have also found that it does make a huge
difference what model is used for the LTSC. Despite evidence provided by Weron and Zator (2014)
that the Hodrick and Prescott (1997) filter is a very flexible alternative to wavelet smoothing, the
predictive performance of SCAR-type models with HP filter-based LTSC was disappointing and
generally inferior to the ARX-type benchmarks.

Finally, an added value of our SCAR methodology is that it creates a natural opportunity for
considering forecast combinations, an approach which has been shown to provide additional accu-
racy gains in day-ahead forecasting of electricity spot prices (Bordignon et al., 2013; Nowotarski
et al., 2014). Although the optimal forecast combination design assumes aggregation of indepen-
dent predictions, it may not be feasible in practice. Individual forecasts need to be produced by
different experts and hence the costs of implementing such practices are often unaffordable to util-
ities. By considering SCAR models with different LTSC a forecaster should be able to generate a
pool of accurate, yet to a large extent independent forecasts that may be combined to yield even
better predictions. The validation of this conjecture is left, however, for future research.
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