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Variance Stabilizing Transformations for Electricity
Spot Price Forecasting

Bartosz Uniejewski, Rafał Weron and Florian Ziel

Abstract—Most electricity spot price series exhibit price spikes.
These extreme observations may significantly impact the obtained
model estimates and hence reduce efficiency of the employed
predictive algorithms. For markets with only positive prices
the logarithmic transform is the single most commonly used
technique to reduce spike severity and consequently stabilize the
variance. However, for datasets with very close to zero (like the
Spanish) or negative (like the German) prices the log-transform
is not feasible. What reasonable choices do we have then?

To address this issue, we conduct a comprehensive forecasting
study involving 12 datasets from diverse power markets and
evaluate 16 variance stabilizing transformations. We find that the
probability integral transform (PIT) combined with the standard
Gaussian distribution yields the best approach, significantly
better than many of the considered alternatives.

Index Terms—Electricity spot price, Forecasting, Variance
stabilizing transformation, Probability integral transform, Price
spike, Diebold-Mariano test

I. INTRODUCTION

A critical issue in the calibration of electricity price fore-
casting models is their sensitivity to price spikes [1]. The latter
are one of the most pronounced features of deregulated power
markets and nearly all spot price time series exhibit them.
Spikes come in all sorts and sizes, mostly positive but in
some markets also negative [2], [3]. A statistically appropriate
modeling framework would require a dedicated treatment of
these ‘outliers’, either via robust estimation algorithms [4]
or models with explicit spike components [5]–[7]. However,
robust techniques are not popular in the electricity price fore-
casting (EPF) literature and most studies utilize Ordinary Least
Squares (OLS) methods, while non-linear models generally do
not outperform linear ones in short-term EPF [1], [8].

As a working remedy some authors suggest filtering elec-
tricity prices with a ‘reasonable’ procedure for outlier detec-
tion, then calibrating the model to spike-filtered data, with
the spikes replaced by more ‘normal’ values [3], [9]–[11].
Others advocate transforming the original data, running a
model on transformed prices, then applying the inverse trans-
formation to obtain forecasts [12], [13]. For markets with only
positive prices, the logarithm is the single most commonly
used transform to reduce spike severity and consequently
stabilize the variance [1]. However, with the increased market
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penetration of renewable energy, the price series recorded
nowadays quite often include very close to zero or negative
values. Obviously, the log-transform is not a feasible option
then. Somewhat surprisingly, not too many viable alternatives
have been considered in the EPF literature so far. With this
study we want to fill the gap and conduct a comprehensive
forecasting study involving datasets from 12 power markets
and evaluate 16 variance stabilizing transformations (VSTs),
ranging from simple threshold-type cutoffs, via generalized
Box-Cox type transforms to the probability integral transform
(PIT) based approaches.

The paper is structured as follows. In Section II we briefly
describe the datasets, then in Section III define the notation, the
basic forecasting model and discuss the 16 VSTs considered
in this study. In Section IV we evaluate their performance
across the 12 datasets. We also test for statistically significant
differences in their forecasting performance using two variants
of the Diebold-Mariano [14] test, thus provide robust guide-
lines to preprocessing electricity spot prices prior to fitting
time series or computational intelligence models. Finally, in
Section V we wrap up the results and conclude.

II. DATASETS

We consider a total of twelve electricity spot price datasets,
see Table I. Eleven originate from six major European
power markets, including the European Power Exchange
(EPEX SPOT) for power trading in Germany, France, Austria,
Switzerland and Luxembourg, the Nordic power exchange
Nord Pool and the Iberian OMIE (Spain and Portugal). All
eleven include day-ahead prices (quoted in EUR/MWh) at
hourly resolution and cover a six year period from 30 Jul
2010 to 28 Jul 2016. The 12th dataset comes from the
price track of the Global Energy Forecasting Competition
2014 (GEFCom2014) and includes locational marginal prices
(LMPs, i.e., zonal prices; quoted in USD/MWh) at an hourly
resolution from 1 Jan 2011 to 17 Dec 2013 [8]. The exact
origin of the data has never been revealed by the organizers
but – given its features – it quite likely comes from one of the
U.S. markets. Note, that like Uniejewski et al. [15], we use
the terms spot and day-ahead interchangeably, which is line
with the majority of literature on European electricity markets.
However, in the U.S., the ‘spot’ is rather used to refer to the
real-time market, while the day-ahead market is usually called
the forward market [16], [17].

Furthermore, because of the clock changes to and from the
daylight saving time, we have to do minor adjustments to the
data to obtain well defined price processes. For the European
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TABLE I
THE TWELVE CONSIDERED ELECTRICITY SPOT PRICE SERIES.

Electricity market & region Acronym Source

6-year period (30 Jul 2010 to 28 Jul 2016)
BELPEX, Belgium BELPEX.BE belpex.be
EPEX, Switzerland EPEX.CH epexspot.com
EPEX, Germany & Austria EPEX.DE+AT epexspot.com
EPEX, France EPEX.FR epexspot.com
EXAA, Germany & Austria EXAA.DE+AT exaa.at
Nord Pool, West Denmark NP.DK1 nordpoolspot.com
Nord Pool, East Denmark NP.DK2 nordpoolspot.com
Nord Pool, System price NP.SYS nordpoolspot.com
OMIE, Spain OMIE.ES omie.es
OMIE, Portugal OMIE.PT omie.es
OTE, Czechia OTE.CZ ote-cr.cz

3-year period (1 Jan 2011 to 17 Dec 2013)
GEFCom2014 competition GEFCom2014 Ref. [8]

data we interpolate the missing hour in March and average the
doubled hour in October. The GEFCom2014 data was released
clock-change adjusted [8].

III. MODELS

First, let us fix the notation. We denote by Pd,h the electric-
ity price in the day-ahead market for day d and hour h and by
Yd,h the transformed data, i.e., Yd,h = f(Pd,h), where f(·) is
a given variance stabilizing transformation. After computing
the forecasts, we apply the inverse transformation to obtain
the electricity spot price forecasts, i.e., P̂d,h = f−1(Ŷd,h).
Naturally, we evaluate the accuracy of the considered methods
using P̂d,h, not the forecasts of the transformed series.

Moreover, most transformations we consider work on ‘nor-
malized’ prices: pd,h = 1

b (Pd,h − a), where a is the shift and
b is the scale. Later in the text we report results for two sets
of ‘normalizing’ parameters:

1) set1: (a, b) = (median,MAD), i.e., a is the median
of Pd,h in the 730-day calibration sample and b is the
sample median absolute deviation (MAD) around the
sample median adjusted by a factor for asymptotically
normal consistency to the standard deviation. This factor
is 1

z0.75
≈ 1.4826 where z0.75 is the 75% quantile of

the normal distribution; in R this is the default option
if one runs mad(x), in Matlab this corresponds to
1.4826*mad(x,1).

2) set2: (a, b) = (mean, std), i.e., a is the mean and b is
the standard deviation of Pd,h in the 730-day calibration
sample.

Obviously, the inverse transformations listed below require
inverting the ‘normalization’, i.e., Pd,h = b · pd,h + a, but
for notational simplicity we leave them in terms of pd,h.

A. The basic forecasting model

Our choice of the basic forecasting model used in this study
is guided by three factors. Firstly, the existing literature on
short-term EPF which has generally favored the multivariate
framework, with prices for each hour of the day modeled
independently by 24 parsimonious models rather than jointly
by one large model [1], [18]. Secondly, the desire to perform

a comprehensive study of the influence of VSTs on the
forecasting performance using a state-of-the-art structure, that
builds on the results of the most recent EPF studies on variable
selection [13], [15]. Thirdly, computational efficiency required
to produce forecasts for many VSTs and many datasets within
a rolling calibration window scheme, which favors regression
over neural network setups. Taking all three factors into
account, we have decided to use the expertDoW,nl model of
Ziel and Weron [13], which is a parsimonious autoregressive
structure estimated using OLS, that outperformed not only
15 other expert1 models, but also much larger multi- and
univariate autoregressive specifications. In this model, the
transformed (or original if no transformation is used) day-
ahead electricity price for day d and hour h is given by:

Yd,h = βh,1 + βh,2Yd−1,h + βh,3Yd−2,h + βh,4Yd−7,h︸ ︷︷ ︸
autoregressive terms

+βh,5Y
min
d−1 + βh,6Y

max
d−1︸ ︷︷ ︸

non-linear effects

+ βh,7Yd−1,24︸ ︷︷ ︸
end-of-day effect

+
∑7

j=1
βh,j+7Dj︸ ︷︷ ︸

weekday dummies

+εd,h,

(1)

where Yd−1,h, Yd−2,h and Yd−7,h are prices for the same hour
yesterday, two days ago and a week ago, Y min

d−1 and Y max
d−1

are yesterday’s minimum and maximum prices (they provide
a non-linear link between yesterday’s and today’s prices),
Yd−1,24 is the price for midnight (the last known price),
D1, ..., D7 are weekday dummies (D1 = 1 for Monday and 0
otherwise, D2 = 1 for Tuesday and 0 otherwise, etc.) and εd,h
is the noise term (uncorrelated and with finite variance). Note,
that we have also considered several other expert models from
[13], [15], but they all yielded qualitatively the same results
while being outperformed by the expertDoW,nl model.

B. Variance stabilizing transformations (VSTs)

The logarithmic transform is by far the most popular ap-
proach to reducing spike severity and stabilizing the variance
[20]. However, for datasets with very close to zero (like
OMIE.ES and OMIE.PT) or negative electricity prices (like
EPEX.DE+AT) the standard log-transform is not feasible. In
this Section we discuss eight types of transformations that can
be used in such a context. Some have been already utilized in
EPF, others are new. The first seven are illustrated in Fig. 1 and
come in two variants denoted by a subscript, with 1 standing
for set1 and 2 for set2 ‘normalization’ (see above). The last
class builds on the probability integral transform (PIT) and
does not require ‘normalization’.

Some of the earliest suggested solutions to reducing the
‘outlier effect’ of electricity price spikes include limiting their
severity by setting an upper limit on prices (known as clipping
in signal processing [21] and winsorizing in statistics [20])
or damping all observations above a certain threshold using
the logarithmic function [9]. In this study we consider both
variants with the threshold set to the commonly used level of

1Since such models are built on some prior knowledge of experts, following
Uniejewski et al. [15] and Ziel [19], we refer to them as expert models.
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Fig. 1. Visualization of seven out of eight classes of transformations
considered in this study. All are shifted and scaled so that f(0) = 0 and
the slope at x = 0 is 45◦ to emphasize the differences between them. The
effect of applying the 8th class is depicted in Fig. 2.

k = 3 standard deviations of the (transformed) price series in
the calibration window [17]; we have also tested variants with
k = 2 and 4, but they performed worse. The first, ‘clipping’
variant is denoted by 3σ and given by:

Yd,h =

{
3 sgn(pd,h) for |pd,h| > 3,

pd,h for |pd,h| ≤ 3,
(2)

with inverse pd,h = min(max(Yd,h,−3), 3), where sgn(x) is
the sign of x. The second, ‘log-damping’ variant is denoted
by 3σlog and given by:

Yd,h =

{
sgn(pd,h) {log(|pd,h|−2)+3} for |pd,h|>3,

pd,h for |pd,h|≤3,
(3)

with inverse:

pd,h =

{
sgn(Yd,h)

(
e|Yd,h|−3 + 2

)
for |Yd,h| > 3,

Yd,h for |Yd,h| ≤ 3.
(4)

In Figure 1 we can clearly see that 3σ is not differentiable
and bounded at x = ±3, whereas 3σlog is a smooth function
with 3σlog(x)→ ±∞ as x→ ±∞ and a log-damping effect.

The next transformation class we consider is given by
the logistic function that is a sigmoid curve and has many
applications in data analytics. For instance, it is used as a link
function in generalized linear models (GLM) and is a very
popular choice for the activation function in neural nets [22].
However, to our best knowledge, it has never been applied
as a VST in electricity price forecasting. We denote this
transformation by logistic and define as:

Yd,h = (1 + e−pd,h)−1. (5)

Its inverse is the so-called logit function:

pd,h = log

(
Yd,h

1− Yd,h

)
. (6)

As visualized in Fig. 1, the logistic transformation is bounded,
like 3σ, but is a smooth function. Note, that to avoid nu-
merical issues we clip the forecasts of Yd,h to the interval

[0.001, 0.999], i.e., replace all values outside the interval by
the lower or upper bound, before applying Eqn. (6).

The third class of transformations is built around the area
hyperbolic sine, i.e., the inverse of the hyperbolic sine. In-
terestingly, this transformation has been already used in the
context of electricity prices by Schneider [12], but the article
went unnoticed. Recently, Ziel and Weron [13] utilized it in
an extensive empirical study on multi- and univariate EPF
models, motivated by the transformation’s ability to preserve
unimodality of the sample density. In this paper we denote it
by asinh and define as:

Yd,h = asinh(pd,h) ≡ log
(
pd,h +

√
p2d,h + 1

)
, (7)

with inverse pd,h = sinh(Yd,h). In Figure 1 we can clearly see
the damping behavior of the logarithm in Eqn. (7), while in
Fig. 2 the transformation’s performance for a sample dataset.

Recall, that the log-transform is a special case of the
so-called Box-Cox transform, a very popular VST in time
series analysis [23]. Like the logarithm, the standard Box-Cox
transform is not defined for non-positive values. However, in
this study we consider a robust (to zeros and negative values)
variant [24], denoted by boxcox(λ) and defined as:

Yd,h = sgn(pd,h)

{
(|pd,h|+1)λ−1

λ for λ > 0,

log(|pd,h|+ 1) for λ = 0,
(8)

with inverse:

pd,h = sgn(Yd,h)

{
(λ|Yd,h|+ 1)

1
λ − 1 for λ > 0,

e|Yd,h| − 1 for λ = 0.
(9)

Obviously, the robust (to zeros and negative values) variant of
the log-transform is obtained for λ = 0. However, here we use
λ = 0.5, which was selected based on a limited optimization
study. With this choice of λ, the boxcox(λ) transformation
exhibits a polynomial damping effect, see Fig. 1.

Motivated by the robust Box-Cox transform, we introduce
two new transforms – the polynomial and the mirror-log. We
denote the former by poly(λ, c) and define as:

Yd,h = sgn(pd,h)

[∣∣∣∣|pd,h|+ ( cλ) 1
λ−1

∣∣∣∣λ − ( cλ) λ
λ−1

]
, (10)

with inverse:

pd,h = sgn(Yd,h)

[(
|Yd,h|+

( c
λ

) λ
λ−1

) 1
λ

−
( c
λ

) 1
λ−1

]
. (11)

The poly(λ, c) transform is a two parameter family. Here we
use λ = 0.125 and c = 0.05, which was selected based on a
limited optimization study.

The mirror-log is a straightforward generalization of the log-
transform with a mirror image of the logarithm for negative
values. More precisely, with the logarithm flipped with respect
to the origin from the first to the third quadrant, see Fig. 1.
We denote it by mlog(c) and define as:

Yd,h = sgn(pd,h)

[
log

(
|pd,h|+

1

c

)
+ log(c)

]
, (12)
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Fig. 2. Time series plot of the original (in EUR/MWh; top), asinh2-transformed (middle) and N-PIT-transformed EPEX.DE+AT spot prices. The marginal
densities are depicted in the right panels.

with inverse:

pd,h = sgn(Yd,h)

(
e|Yd,h|−log c − 1

c

)
. (13)

The mlog(c) transform is a one parameter family. We use c =
1
3 , which again was selected based on a limited optimization
study. Similarly as the standard log-transform and asinh, the
mirror-log exhibits a log-damping effect, see Fig. 1. Both the
mlog and poly are constructed so that they have a slope of c
at the origin. Hence, mlog(1) is the same as boxcox(0).

The last class of transformations we consider here is based
on the so-called probability integral transform: PIT(X) =
FX(X), where FX is the cumulative distribution function (cdf)
of random variable X . The origin of the PIT is not known, but
as Gneiting et al. [25] argue, it can be traced back at least to the
works of Karl Pearson in the 1930s. In the empirical context
we usually do not know the true distribution of X , hence the
PIT is rather defined as: PIT(X) = F̂X(X), where F̂X is
an estimate (e.g., empirical cdf) or a distributional forecast of
FX . If the latter is perfect, i.e., F̂X = FX , then PIT(X) is an
independent and uniformly distributed variable. This property
can be used to evaluate distributional forecasts [25].

In our context, however, the following transformation will
be more useful than the PIT itself:

Yd,h = G−1 (PIT(Pd,h)) = G−1
(
F̂Pd,h(Pd,h)

)
, (14)

where G−1 is the inverse of some continuous distribution.
Note, that we apply the PIT to original prices, Pd,h, as this
transformation does not require ‘normalization’ of the inputs.
We consider two variants: (i) normal or N-PIT, with G−1

being the inverse of the standard normal cdf, and (ii) Student-t
or t-PIT, with G−1 being the inverse of the standard Student-
t distribution with ν = 8 degrees of freedom (we have also
tried other ν’s, but lower values yielded too heavy tails, while
larger a behavior too similar to that of N-PIT).

The N-PIT transformation, misleadingly called the Nataf
transformation2, has been used in [27] to ‘normalize’ Spanish
electricity prices. However, the authors have not computed
forecasts, only concluded that a ‘modified Nataf’ transforma-
tion (that corrected for the observed zero prices) allowed them
to obtain a normal cdf of the transformed prices. The t-PIT
transformation, on the other hand, has not been used in EPF
before. Finally note, that the inverse of Eqn. (14) is given by:

Pd,h = F̂−1Pd,h
(G(Yd,h)) , (15)

with G being either the standard normal or Student-t cdf.
Since the normal distribution has exponential tails and

the Student-t has polynomial, the N-PIT has an exponential
spike damping behavior and t-PIT a polynomial one. Hence,
extreme price spikes remain larger for t-PIT-transformed data
than for N-PIT-transformed. In Figure 2 we visualize the
effect of applying the N-PIT compared to that of original (i.e.,
untransformed) and asinh2-transformed data. We clearly see,
that the N-PIT-transformed data histogram looks pretty much
like a standard normal density. In contrast, asinh2 preserves
the original shape of the histogram of the untransformed data,
but damps the price spikes towards the center.

IV. EMPIRICAL STUDY

Like Ziel and Weron [13], we use a 730-day (ca. two-
year) rolling calibration window testing scheme. First, all
considered models are estimated using data from the initial
calibration period (i.e., from 31 Jul 2010 to 30 Jul 2012 for
the European datasets and from 1 Jan 2011 to 30 Dec 2012 for
GEFCom2014) and forecasts for all 24 hours of 31 Jul 2012

2The Nataf transformation is a two stage procedure, popularized in re-
liability engineering by [26]. First, correlated multivariate data is N-PIT-
transformed independently in each dimension, then the correlation is elimi-
nated by applying the Cholesky factorization.
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TABLE II
MEAN ABSOLUTE ERRORS (MAE) ACROSS THE WHOLE TEST PERIOD FOR THE 12 MARKETS (IN COLUMNS) AND THE 16 VARIANCE STABILIZING

TRANSFORMATIONS (VSTS; IN ROWS). A HEAT MAP IS USED TO INDICATE BETTER (→ GREEN) AND WORSE (→ RED) PERFORMING VSTS. IN THE LAST
TWO COLUMNS WE REPORT THE AGGREGATE M.P.D.F.B. ERROR MEASURE, SEE EQN. (18), FOR THE MAE AND THE RMSE.

MAE RMSE

original 6.379 4.019 5.370 5.296 4.282 6.200 5.186 1.890 5.825 5.999 4.670 7.472 5.22% 9.46%

3s 1 6.069 3.991 5.180 4.866 4.249 5.269 4.948 1.834 6.157 6.326 4.592 8.920 3.98% 6.80%

3s 2 6.088 3.989 5.199 4.880 4.257 5.379 5.005 1.830 5.858 6.013 4.599 7.720 2.04% 3.04%

3slog 1 6.114 3.993 5.197 4.882 4.270 5.331 5.004 1.829 6.043 6.325 4.605 7.591 2.59% 3.78%

3slog 2 6.137 3.993 5.221 4.905 4.273 5.434 5.055 1.838 5.865 6.055 4.611 7.517 2.29% 1.94%

logistic 1 6.138 4.133 5.369 5.149 4.486 5.296 4.971 1.980 6.817 6.918 4.740 8.042 7.38% 14.29%

logistic 2 6.047 4.126 5.250 4.946 4.422 5.303 4.928 1.908 6.578 6.721 4.639 7.921 5.24% 10.81%

asinh 1 6.064 4.074 5.226 4.999 4.289 5.197 4.884 1.808 6.134 6.290 4.601 7.022 1.85% 2.73%

asinh 2 6.057 4.080 5.207 4.949 4.288 5.317 4.920 1.803 6.018 6.168 4.590 7.125 1.73% 1.89%

boxcox 1 6.140 4.032 5.231 4.958 4.244 5.372 4.946 1.802 5.845 5.987 4.589 7.074 1.28% 1.08%

boxcox 2 6.153 4.035 5.242 4.967 4.255 5.523 4.988 1.808 5.842 5.989 4.596 7.152 1.80% 1.62%

poly 1 6.113 4.016 5.211 4.923 4.234 5.284 4.939 1.798 5.854 6.001 4.579 7.066 0.93% 0.60%

poly 2 6.134 4.018 5.226 4.933 4.245 5.457 4.987 1.807 5.841 5.993 4.587 7.173 1.54% 0.99%

mlog 1 6.098 4.020 5.206 4.924 4.235 5.257 4.928 1.796 5.870 6.016 4.577 7.049 0.86% 0.60%

mlog 2 6.118 4.023 5.220 4.928 4.246 5.419 4.976 1.803 5.850 6.001 4.584 7.158 1.42% 0.86%

N-PIT 6.054 4.004 5.162 4.890 4.188 5.205 4.847 1.826 5.854 5.993 4.553 7.129 0.45% 1.47%

t-PIT 6.154 4.089 5.197 4.961 4.264 5.264 4.901 1.868 5.824 5.984 4.611 6.991 1.37% 1.13%
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(respectively, 31 Dec 2012) are determined. Then the window
is rolled forward by one day, the models are reestimated and
forecasts for all 24 hours of the next day are computed. This
procedure is repeated until the predictions for the 24 hours of
28 Jul 2016 (respectively, 17 Dec 2013) are computed. Note,
that for the European datasets the out-of-sample test period
covers roughly four years (1459 days) of data and for the
GEFCom2014 dataset with only 352 days.

A. MAE, RMSE and m.p.d.f.b error measures

As the main evaluation criterion we consider the Mean
Absolute Error (MAE) for the full out-of-sample test period
of D = 1459 days (for GEFCom2014 only 352 days). It is
computed for each VST and dataset as:

MAE =
1

24D

D∑
d=1

24∑
h=1

|ε̂d,h|, (16)

where ε̂d,h denotes the estimated forecasting error for day d
and hour h. The MAE errors are reported for the 16 considered
VSTs and all 12 datasets in Table II. We have also analyzed
Root Mean Square Errors (RMSE):

RMSE =

√√√√ 1

24D

D∑
d=1

24∑
h=1

ε̂2d,h, (17)

but the results were similar and hence are not reported nor
analyzed here due to space limitations (but are available from
the authors upon request). Only in Table II we provide for
comparison an aggregate measure of fit based on the RMSE
– the m.p.d.f.b. – as defined in (18) below. Although there
are some changes in the ranking, the overall picture is very
similar.

Given the large number of results it is hard to rank the
VSTs. To tackle this issue, following [13], we introduce the
mean percentage deviation from the best (m.p.d.f.b.) VST,
which is inspired by the m.d.f.b. measure used in [11], [28] for
comparing models. The m.p.d.f.b. measure for VST i indicates
how similar is this VST’s performance to the ‘optimal VST’
composed of the best performing VST for each of the 12
datasets:

m.p.d.f.b.i =
1

12

12∑
j=1

|ERRi,j − ERRbest VST,j |
ERRbest VST,j

× 100%, (18)

where ERRbest VST,j = min1≤i≤17 ERRi,j and ERR can be
the MAE, the RMSE or any other error measure for point
forecasts. The m.p.d.f.b. measure is reported for the original
data and 16 considered VSTs in the last two columns of Table
II.

From Table II we can see the dominance of the N-PIT over
the competitors in terms of MAE. It has the lowest m.p.d.f.b.,
nearly twice smaller than the next best transform, i.e., the
mlog1. Also for four datasets (EPEX.DE+AT, EXAA.DE+AT,
NP.DK2 and OTE.CZ) it is the best performer and second
best for another two (BELPEX.BE and NP.DK1). However,
for some markets (NP.SYS, OMIE.ES and GEFCom2014) it
does not excel. The t-PIT transformation is the best for three
markets (OMIE.ES, OMIE.PT and GEFCom2014), but the
overall performance does not seem to be robust and the t-
PIT forecasting accuracy is poor for some markets (especially
EPEX.CH and NP.SYS). The 3σ, 3σlog and asinh trans-
formations show moderate MAE forecasting performance.
Still, their m.p.d.f.b. is better than that of the original (i.e,
untransformed) data and sometimes even that of the best
transformation for a given market (3σ1 for EPEX.CH, 3σ2

for EPEX.FR and asinh1 for NP.DK1).
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In terms of RMSE, both N-PIT and t-PIT are on average
outperformed by the generalizations of the Box-Cox trans-
form, i.e., poly and mlog, which show in general a very
similar behavior across all 12 datasets. The boxcox and PIT
transformations follow closely, while the remaining ones lag
behind. Interestingly, the t-PIT has a better RMSE forecasting
accuracy than the N-PIT. Furthermore, we see that the logistic
transformations are the only ones which are worse in terms of
m.p.d.f.b. (both MAE and RMSE-based) than the original (i.e.,
untransformed) data. Still, somewhat surprisingly logistic2 is
the best choice in terms of MAE for the Belgian market,
which nicely illustrates that the overall behavior can depend
on the considered market and data structure. Finally, we
want to remark that there is no clear tendency if a scaling
by set1 (median, MAD) or set2 (mean, std) is preferable,
although for the Box-Cox type transformations (boxcox, poly
and mlog) set1 leads to marginally better predictions in terms
of m.p.d.f.b., see Table II.

B. Diebold-Mariano tests

The MAE values analyzed in Section IV-A can be used
to provide a ranking of transformations, but not statistically
significant conclusions on the outperformance of the forecasts
of one transformation by those of another. Therefore, we also
computed the Diebold-Mariano (DM) test [14], which takes
the correlation structure into account. It tests forecasts of each
pair of transformations against each other.

In the EPF literature, the DM test is usually performed
separately for each of the 24 hours of the day [1]. However,
Ziel and Weron [13] recently introduced a different approach,
where only one statistic for each pair of models (here: VSTs)
is computed based on the 24-dimensional vector of errors for
each day, and called it the multivariate or vectorized DM
test. Following [13], denote by ε̂X,d = (ε̂X,d,1, . . . , ε̂X,d,24)′

and ε̂Y,d = (ε̂Y,d,1, . . . , ε̂Y,d,24)′ the vectors of out-of-sample
errors for day d of VSTs X and Y , respectively. Then the
multivariate loss differential series:

∆X,Y,d = ‖ε̂X,d‖p − ‖ε̂Y,d‖p, (19)

defines the differences of errors in the ‖ · ‖p-norm, i.e.,
‖ε̂X,d‖p = (

∑24
h=1 |ε̂X,d,h|p)1/p for p = 1, 2. For each

model pair and each dataset we compute the p-value of
two one-sided DM tests: (i) a test with the null hypothesis
H0 : E(∆X,Y,d) ≤ 0, i.e., the outperformance of the forecasts
of Y by those of X , and (ii) the complementary test with the
reverse null HR

0 : E(∆X,Y,d) ≥ 0, i.e., the outperformance
of the forecasts of X by those of Y . As in the standard DM
test, we assume that the loss differential series is covariance
stationary.

To jointly evaluate the performance of the VSTs across all
11 European markets we introduce yet another variant of the
DM test, in which the norm is computed not only for all hours
but all datasets as well. Note, that we exclude GEFCom2014
from this analysis due to a much shorter test period. The
computations are analogous, only this time the multivariate

loss differential series across all 11 European markets, i.e.,
M1 = BELPEX.BE, ..., M11 = OTE.CZ, is given by:

∆X,Y,d,M = ‖ε̂X,d‖p − ‖ε̂Y,d‖p, (20)

where now ‖ε̂X,d‖p = (
∑11
j=1

∑24
h=1 |ε̂X,d,h,Mj

|p)1/p and
ε̂X,d = (ε̂X,d,1,M1

, . . . , ε̂X,d,24,M11
)′ is the vector of out-of-

sample errors all hours and all markets on day d.
In Figure 3 we plot the results for the multivariate DM-

test for each market using the ‖ · ‖1-norm, i.e., for p = 1
in Eqn. (19), while in Figure 4 the aggregated DM-test as
defined in Eqn. (20). In both figures we see the corresponding
p-values of the conducted pairwise comparisons. Green and
yellow squares indicate statistical significance at the 5% level.
For instance, we see in Fig. 3 for BELPEX.BE that the first
row is completely green. So every transformation significantly
improved the forecasting accuracy compared to the original
untransformed prices. Similarly for EXAA.DE+AT, the col-
umn which corresponds to the N-PIT is dark green, meaning
that N-PIT leads to significantly better forecasts than all other
transformations under consideration.

Regarding the aggregated DM-tests in Fig. 4, we see that all
transformations lead to significantly better predictions than the
original data, except for logistic. This result holds for the ‖·‖1-
and the ‖·‖2-norm, even though the latter tends to return higher
p-values. For the ‖ · ‖1-norm the N-PIT transformation leads
to significantly better forecasts than all other options, which
emphasizes the findings from Table II. But for the ‖ · ‖2-norm
the results are not that clear-cut. Still poly1 and mlog1 lead to
forecasts that outperform most of the competitors, except each
other, 3σ2 and N-PIT. Heaving this in mind, the N-PIT seems
to be the overall best performer. It leads to significantly better
predictions than all other transformations within the robust
evaluation framework with respect to the ‖ · ‖1-norm and not
significantly worse than the best transformations in the ‖ · ‖2-
norm framework. However, if the evaluation focus is on spike
detection then we suggest to use the mlog1 as it has a very
similar performance to the poly1, but requires only one shape
parameter (i.e., c).

V. CONCLUSIONS

We have conducted an extensive EPF study across 12 major
markets to evaluate different variance stabilizing transforma-
tions. In line with the guidelines set forth in [1], we have used
two variants of the Diebold-Mariano (DM) test to formally as-
sess the statistical significance of the forecasting performance.
The obtained results suggest that the choice of the optimal
transformation depends on the forecasting framework and the
considered dataset.

However, while for individual markets specifically tailored
transformations can yield better results, due to the increasing
demand for joint modeling of multiple markets, robust cross-
market transformations may turn out to be very useful. In par-
ticular, the probability integral transform-based N-PIT yields
very robust results and promising forecasting accuracy in terms
of MAE. It leads to forecasts that significantly outperform all
other competitors across all markets, according to the ‖ · ‖1-
norm based DM test. However, if the forecasting focus is
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Fig. 3. Results of the ‘multivariate’ DM test defined by the multivariate loss differential series in Eqn. (19) with p = 1, i.e., in the ‖ · ‖1-norm, for all 12
datasets. Like in Figure 4, we use a heat map to indicate the range of the p-values – the closer they are to zero (→ dark green) the more significant is the
difference between the forecasts of a model on the X-axis (better) and the forecasts of a model on the Y-axis (worse).
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Fig. 4. Results of the ‘multivariate’ DM test defined by the multivariate loss
differential series in Eqn. (20) with p = 1 (top) and p = 2 (bottom) across
all 11 European datasets. We use a heat map to indicate the range of the
p-values – the closer they are to zero (→ dark green) the more significant is
the difference between the forecasts of a model on the X-axis (better) and the
forecasts of a model on the Y-axis (worse).

on spike sensitive measures (like the RMSE), then the newly
introduced poly and mlog transforms tend to perform better.
Given that the mlog requires only one shape parameter (c),
while poly needs two (λ, c), we suggest to use the former in
such a context.

Our study can be further expanded in several directions. In
particular, we report results for only one expert, regression-
based model. Although we have also considered several other
expert and autoregressive models from [13], [15] and the
results were qualitatively the same, we can only conjecture
that our conclusions will hold for more complex models,
like parameter rich structures estimated via the LASSO [13],
[15], [19] or well performing neural network feature selection
algorithms [29]. Moreover, in this study we have restricted
ourselves to symmetric transformations. Future research could
elaborate on asymmetric functions, which may yield an even
better forecasting performance.
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