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Abstract

Using an agent-based modeling approach we examine the impact of educational programs and
trainings on the diffusion of smart metering platforms (SMPs). We also investigate how social
responses, like conformity or independence, mass-media advertising as well as opinion stability
impact the transition from predecisional and preactional behavioral stages (opinion formation)
to actional and postactional stages (decision-making) of individual electricity consumers. We
find that mass-media advertising (i.e., a global external field) and educational trainings (i.e., a
local external field) lead to similar, though not identical adoption rates. Secondly, that spatially
concentrated ‘group’ trainings are never worse than randomly scattered ones, and for a certain
range of parameters are significantly better. Finally, that by manipulating the time required by an
agent to make a decision, e.g., through promotions, we can speed up or slow down the diffusion of
SMPs.

Keywords: Smart meter, Smart metering platform (SMP), Behavioral strategy, Demand
response, Diffusion of innovations, Agent-based model
PACS: 87.10.Rt, 88.05.Gh, 88.05.Lg, 89.65.Gh

1. Introduction

Nowadays, the energy system faces a lot of challenges. On one hand, energy demand is in-
creasing rapidly and – according to experts – further growth will be observed due to increased
‘electrification’ of our lives and population growth. On the other hand, due to the constantly
decreasing natural resources, the generation may face problems of scarcity of fossil fuels. The
increasing presence of renewable energy sources (RES), like wind and solar, may help to provide
the demanded power, but its non-dispatchable (non-controllable) character negatively influences
power system stability. These challenges, as well as the ambitious goals set by the European
Commission and other international organizations, e.g. CO2 reduction and a significant increase
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of energy efficiency, will have a great impact not only on electricity generation but also on con-
sumption. The consumers will need to decrease their consumption and shift loads to off-peak
hours, which may involve changes in everyday behavior and routines [1, 2].

As a remedy, the smart grid (SG) concept has been proposed recently. SGs use modern com-
munication technologies to exchange information between market agents (generators, market ope-
rators and end-users) in order to improve power system efficiency [3–5]. However, the basic re-
quirement for the success of this approach is the roll-out of smart meters (SMs) among electricity
end-users [6, 7].

The diffusion of smart meters is usually combined with offering an access to so-called smart
metering information systems or platforms (SMPs) [2, 8, 9]. For instance, the local distribution
system operator (DSO) in Wrocław (Poland) is planning to install SMs at all households by the
end of 2017. The households will get access to the information about their energy consumption
via a web-based SMP called e-licznik, that runs on smartphones and tablets, and will receive alerts
when the targeted energy consumption level is exceeded. However, as the literature suggests,
the potential success of the smart meters’ roll-out is combined with consumer awareness of the
potential technologies and their engagement [4, 5, 7]. Particularly, the regular use of SMPs is
found to be related with consumer willingness to optimize their energy consumption [8].

Recently a number of field experiments, research surveys and pilot programs have been con-
ducted in order to analyze the determinants of successful diffusion of SMs [1, 6, 8, 10, 11]. As
it turns out, there is a great discrepancy between consumer opinions and their behaviors towards
various innovations in the energy market [3, 12]. For example, even if consumers declare their
willingness to save energy, they do not even try to reduce their electricity consumption [13]. Such
an intention-behavior gap is often responsible for slow or unsuccessful adoption of innovative
technologies or behaviors [14]. Among the reasons for this gap the literature usually mentions
unstable consumer opinions, lack of knowledge and skills, lack of professional advice, general
confusion of choice, distrust in new technologies and energy providers [13].

In a parallel stream of literature, agent-based models (ABMs) have been used to investigate the
diffusion of smart technologies, for a review see [15]. For instance, the diffusion of smart meters
has been examined in [16], but from a different perspective – the authors used ABMs to analyze
what regulatory interventions induce the diffusion of SMs. In [9], the agent-based model proposed
in [17] and built around the concept of the reservation price (representing product appraisal), has
been used to analyze the diffusion of SMPs. It has been shown that social influence can either
increase or decrease adoption rates and the market share of SMPs, dependent on their market
value [9].

Somewhat surprisingly, most innovation diffusion models make no distinction between opini-
ons and decisions – opinions are identified as final decisions whether to adopt an innovation or not.
Yet, the literature suggests that opinions do not have to and in case of eco-innovations often are
not followed by the decisions [12, 18]. To address this feature, Kowalska-Pyzalska et al. [14] have
proposed an ABM to study the temporal dynamics of consumer opinions regarding switching to
dynamic electricity tariffs and the actual decisions to switch. The model is built on the assumption
that the decision to switch is based on the unanimity of τ past opinions and offers a hypothetical,
yet plausible explanation of why there is such a big discrepancy between consumer opinions and
adoption rates.
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In this paper, we build on and modify the ABM proposed in [14, 19, 20] with an objective
of examining the impact of educational trainings and programs offered by energy utilities on the
diffusion and adoption of the SMPs. In particular, we analyze how opinions and decisions depend
on (i) social responses, like conformity or independence, (ii) skills (or know-how) required for
everyday use of the SMPs, and (iii) stability of consumer opinions.

The paper’s contribution is threefold. Firstly, we observe that the positive effect of educational
programs and trainings depends on the level of independence in the society and agent decision
and memory times. Secondly, we show that spatially concentrated ‘group’ trainings, e.g., for all
households in a given area or district, are never worse than randomly scattered ones. Finally,
we find that for intensive mass-media advertising, the type of educational trainings – spatially
concentrated or randomly scattered – does not matter.

The remainder of the paper is structured as follows. In Section 2 we discuss the role of inter-
ventions on consumer behavior. In particular, we focus on the evidence from pilot programs and
field experiments showing that a successful diffusion of smart technologies is not possible without
a certain level of consumer knowledge and awareness. In Section 3 we introduce our agent-based
model and present the Monte Carlo simulation scheme, then in Section 4 discuss the results of our
simulation study. Finally, in Section 5 we conclude and discuss policy implications.

2. The role of interventions in adoption of SMPs and other eco-innovations

2.1. Slow diffusion of SMPs
The prospect of an effective roll-out of smart meters seems optimistic. It may bring a lot of

advantages both for energy suppliers and consumers. From the consumer point of view the main
advantage is direct access to real-time consumption data via a SMP. Using such information a
consumer may optimize the energy consumption and achieve financial savings or personal satis-
faction, e.g., from being pro-environmental. As Good et al. [7] emphasize, there is a great number
of incentives and barriers of successful adoption of SM technologies.

Financial savings and social and personal norms are the most important incentives [10, 11].
On the other hand, the major obstacles include confusion of choice and consumer resistance to
behavioral change, e.g., rescheduling the daily routine in response to electricity prices dictated by a
variable electricity tariff [1, 4, 11, 12]. To reduce the latter disadvantage a typical energy consumer
would like to have enabling technologies, that adjust the work of home appliances according to
the prevailing electricity price. Moreover, to increase the participation and engagement rates, the
non-economic or one-off incentives, like an offer of a free programmable thermostat, would be
helpful.

Finally, we cannot forget that most consumers are not interested in the energy market at all.
They are unaware what opportunities SMs offer, largely due to the scarcity of educational cam-
paigns and programs [21]. To reach a high level of enrollment, the design of the pricing rate,
education and marketing of new solutions and offerings must be appropriate. Without that, there
will be no significant demand response as a result of the lack of knowledge, high level of indiffe-
rence and ignorance of the consumers.
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Table 1: Examples of behavioral interventions.

Behavioral strategies (interventions)
Antecedent Consequence Structural
Tailored marketing Direct, indirect and Price policies
Educational campaigns inadvertent feedback Subsidies

and programs Rewards Loans
Interpersonal word of mouth Legislation
Demonstration
Goal-setting

2.2. Behavioral interventions
Based on the findings from the pilot programs and field experiments, as well as social and

economic theories explaining the process of opinion formation and decision making, behavioral
strategies – so-called interventions – have been proposed to overcome or limit consumer reluctance
to behavioral change [8, 22]. These strategies can be divided into three categories: antecedent,
consequence and structural interventions, see Table 1.

Antecedent interventions propose various information intensive tools, like educational cam-
paigns and trainings, aim at increasing consumer awareness and knowledge [22]. They are preli-
minary and crucial for the diffusion, since they impact opinion formation towards an innovation
[23]. Consequence interventions offer numerous ways to motivate behavioral change via feedback
and rewards. Dependent on how information is spread, on its type, quality and quantity of data
presented, direct, indirect and inadvertent feedback can be defined [6, 22]. In the context of energy
conservation, it has been found that installation of SMs should be followed by access to SMPs and
in-home displays. These tools should be used as a source of information for customers about their
energy consumption. This information could be also provided to the clients in an indirect way,
via billing. It has been shown that energy conservation and reduction of peak demand increases
because of receiving better information about electricity consumption (in a direct or/and an indi-
rect way) [11]. Finally, structural interventions include price policies, subsidies, loans, a choice
of different program structures and legislation [22].

2.3. Self-regulated behavioral change
A behavioral change, especially in case of innovative products, services or ideas, is a process

which takes some time and effort. There is a variety of theories and models that aim to investi-
gate and explain the complex process of human decision making and its influence on innovation
diffusion [23, 24].

This study is motivated by the model of self-regulated behavioral change [25], which descri-
bes a person’s transition through a temporally ordered sequence of different stages: a predecisional
stage, a preactional stage, an actional stage and a postactional stage. Transitions between the sta-
ges is provoked by the formation of a goal intention (predecisional → preactional), a behavioral
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intention (preactional→ actional) and an implementation intention (actional→ postactional). Ac-
cording to Bamberg’s [25] model, these transitions can be encouraged by certain interventions
tailored to the current behavioral stage, e.g., sharing information and advice, forming a social or a
personal norm, offering feedback, etc.; we elaborate more on this topic in Section 3.

We should emphasize, however, that we do not investigate the effectiveness of various in-
terventions on stage transition. We rather focus on one particular intervention, i.e., educational
campaigns and trainings, and study how such an intervention can impact the diffusion and adop-
tion rate of SMPs. We have decided to limit our analysis to educational campaigns and trainings,
because we believe that raising awareness of smart technologies and learning certain skills (e.g.,
knowledge of how to download a SM application to a smartphone, skills needed to navigate the
SMP, etc.) are basic requirements for a successful adoption of SMPs.

3. The model

We build on the agent-based model of opinion formation proposed in [19], later extended
in [20] to different network structures and in [14] to incorporate a decision-making mechanism
and applied to studying the adoption of dynamic electricity tariffs. Compared to the latter paper,
the decision-making process considered here is based on a coincidence of two factors – a stable
positive opinion over a certain time interval and operational knowledge (gained through education)
– not just a stable opinion. As a consequence of introducing this ‘innovation’, the new model
allows to obtain more realistic results. Most importantly, the level of adoptions (decisions to
adopt) does not exceed the level of positive opinions.

Like in [14, 19], we consider a system of N × N agents on a square lattice with periodic
boundary conditions and use Monte Carlo simulations to study innovation diffusion. Most of the
simulations have been performed on a 100 × 100 lattice (i.e., N2 = 10, 000 agents). However,
also larger and smaller systems have been tested; qualitatively the results are the same. Each site
i = 1, ...,N2 of the lattice is occupied by an agent (representing a household) that is characterized
by three variables:

• Opinion or attitude S i ∈ {−1, 1} towards the SMP. If S i = −1 the agent is not interested in a
regular use of the SMP and if S i = +1 the agent has a positive opinion towards using it.

• Knowledge Ki ∈ {0, 1} required to use the SMP on a regular basis. If Ki = 0 the agent is
uneducated and if Ki = +1 the agent possesses the skills needed to operate the SMP.

• Adoption state SMi ∈ {0, 1}. If SMi = 0 the agent is not using the SMP and if SMi = +1 the
agent is an adopter.

Following Nyczka and Sznajd-Weron [26] and Przybyła et al. [19], we also call these agents
spinsons (= ‘spin’ + ‘person’) to reflect their dichotomous nature originating in spin models of
statistical physics and humanly features and interpretation.

A single simulation run or experiment consists of T = 2000 Monte Carlo steps (MCS), which
can be interpreted in terms of time intervals. Assuming that one MCS represents a day, the si-
mulation corresponds to a period of ca. 5.5–8 years depending on whether we consider all days
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of the year or only business days. It should be emphasized that we are interested here in system
evolution over a finite time period and not the stationary state, since the latter is irrelevant from
the perspective of a utility investing in a SMP and expecting a return on investment in a reasonable
time frame.

Within each MCS, N2 elementary sub-steps are repeated to ensure that on average each agent
is chosen once. As the outcome of the mth experiment we compute the ratio of agents with a
positive opinion towards using the SMP after time T , i.e., cS ,m(T ), and the ratio of SMP adopters,
i.e., cSM,m(T ):

cS ,m(T ) =
#{i : S i(T ) = 1}

N2 , cSM,m(T ) =
#{i : SMi(T ) = 1}

N2 , (1)

where m = 1, . . . ,M. Next, we average them across M = 100 Monte Carlo experiments:

cS (T ) =
1
M

M∑
m=1

cS ,m(T ), cSM(T ) =
1
M

M∑
m=1

cSM,m(T ). (2)

We assume that initially all agents i = 1, ...,N2 are unaware of the SMP, hence have a negative
opinion towards using it (S i = −1), are uneducated (Ki = 0) and consequently are unadopted
(SMi = 0). In Sections 3.1-3.3 we discuss in detail the three phases of a single MCS: opinion
formation, training and decision-making.

3.1. Opinion formation
The evolution of a spinson’s opinion is governed by two different processes: (i) independence

and (ii) social and mass-media influence. We introduce independence in a similar way as was
done in [27, 28], i.e., each spinson behaves independently with probability p and forms an opinion
solely on the basis of individual judgment, see the left part of the flowchart in Fig. 1. Similarly as
in [19, 27], we assume that this behavior is characterized by the flexibility parameter, f ∈ (0, 1],
describing how frequently the spinson changes its opinion. For simplicity we set f = 0.5 in our
simulations, but for any value of f > 0 the results can be rescaled using the remaining model
parameters, see [19, 27] for details. One could argue that assigning the same value of p to each
agent is not realistic. However, the distribution of independence in the society is not known [29].
In the absence of this knowledge, Sznajd-Weron et al. [30, 31] have considered two extreme
approaches – situation (homogeneous agents; as used, e.g., in [14, 19, 32, 33]) and person (a
binomial distribution of independence; as used, e.g., in [34, 35]) – and shown that the former
better reflects reality. Therefore, for simplicity, we also use it here. Nevertheless, we are aware
that probably something in between would be more appropriate.

Then, with probability (1 − p) the agent is exposed to social influence (i.e., word-of-mouth,
WOM) and advertising, see the left part of the flowchart in Fig. 1. Social influence is a result of
interactions between the agent and a group of neighbors in a given time step. Following [14, 19],
we assume that the spinson interacts with a randomly chosen neighboring panel of 2 × 2 spinsons
(i.e., a q-lobby with q = 4); note, that there are eight equally probable choices. When the agent is
confronted by a unanimous panel of agents sharing the opposite opinion, it will conform to peer
pressure [36].
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Figure 1: A flowchart of a single Monte Carlo step (MCS) in our model. The model dynamics can be divided into
three phases discussed in Sections 3.1-3.3: opinion formation, training (at the end of a MCS or a certain number of
MCS steps) and decision-making (at the end of a MCS).
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On the other hand, if the panel is not unanimous, WOM will have no effect and the agent is
exposed to advertising. This rule is motivated by a number of social experiments, which show that
for social influence to prevail it is not only essential for the majority to be of sufficient size but
also unanimous [37]. The impact of advertising is expressed by parameter h, i.e., the probability
that the spinson changes its evaluation of the innovation and becomes interested in a regular use
of the SMP (S i → S i = +1), for instance, due to new information obtained from mass-media. We
assume that the external (advertising) field is uniform and can affect all agents in the same way. As
a result of this part of the model, each spinson can have a positive or a negative opinion towards
the SMP.

3.2. Training
At the end of a MCS (or a certain number of MCS) selected agents undergo training, see

the central part of the flowchart in Fig. 1. In this study we consider two variants of education,
however, in a single simulation run we only use one type of training. In the spatially concentrated
(‘group’) training we randomly choose a panel of L × L spinsons and set their knowledge variable
to one, i.e., K(1:L,1:L) → +1. In the randomly scattered (‘random’) training we randomly choose
(with possible repetition) L2 spinsons and set their knowledge variables to one, i.e., Ki → +1,
i = 1, ..., L2. Agents educated via such trainings become viable to adoption in the decision-making
phase.

3.3. Decision-making
At the end of a MCS all spinsons enter the decision-making phase, see the right part of the

flowchart in Fig. 1. During this phase not only can they change their adoption state, but also
become discouraged or loose the skills needed to operate the SMP. The reason is that we allow for
a temporal decay of both the positive attitude towards the SMP (governed by variable R called the
decision time) and the education effect (governed by variable τ called the memory time). Namely,
the ith spinson can:

• become an adopter, i.e., SMi → +1, if it has a positive opinion (S i = +1) that has not
changed over the last R MCS steps, is educated (Ki = +1) and is not an adopter (S Mi = 0),

• become discouraged, i.e., S i → −1, if it has a positive opinion (S i = +1) that has not
changed over the last R steps and has not already become an adopter (SMi = 0), but does not
possess the required knowledge (Ki = 0),

• resign from using the SMP (or unadopt), i.e., SMi → 0, if the spinson is an adopter (SMi =

+1), but its opinion is negative (S i = −1),

• forget the knowledge, i.e., Ki → 0, if it has had a negative opinion (S i = −1) over the last τ
MCS steps.

If none of the above conditions is satisfied the spinson takes no action. Snapshots of a sample
evolution of the system for nine different time steps are presented in Fig. 2.
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T=100 T=300 T=500

T=700 T=900 T=1100

T=1300 T=1500 T=1700

Figure 2: Snapshots of a sample evolution of the system at time T = 100, 300, ..., 1700 for size N2 = 10, 000,
independence p = 0.1, advertising h = 0.09, decision and memory times R = τ = 5, and spatially concentrated
trainings of size L2 = 81. Color scheme: white – adopted agents (educated and with a positive opinion), light red –
unadopted agents (educated and with a positive opinion), dark red – uneducated agents with a positive opinion, light
blue – educated agents with a negative opinion, and dark blue – uneducated agents with a negative opinion. Note the
light blue trained ‘squares’ of educated agents in a sea of dark blue agents with a negative attitude towards the SMP
(visible for low values of T ).
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3.4. Self-regulated behavioral change and our model
Our ABM is motivated to some extent by the model of self-regulated behavioral change of

Bamberg [25]. Initially all agents have a negative opinion (S i = −1), do not possess skills to
use the SMP (Ki = 0), hence are unadopted (SMi = 0). We assume that to encourage an agent
to move from the predecisional stage to the preactional one, the opinion has to become positive
(S i → +1), for instance, due to agent’s independence, social influence or advertisement. Having a
positive opinion about the SMP is a preliminary condition to formulate the so-called goal intention.
Then, in the preactional stage the agent is considering a regular use of the SMP (i.e., formulates
the so-called behavioral intention), but is not sure how to achieve this goal. For a transition from
the preactional to the actional stage to be possible, the agent needs to undergo training. If the
following conditions are jointly met: S i = +1, Ki = 0, SMi = 0, the agent formulates the so-called
implementation intention and is ready to start using the SMP. The formation of this intention is
equivalent to a transition to the last, postacional stage (SMi = 1).

4. Results

In this Section we report the most interesting results obtained within our model. We start
with the influence of advertising and trainings, then comment on the differences between spatially
concentrated and randomly scattered trainings, and finally discuss the dependence on the decision
(parameter R) and memory (parameter τ) times.

4.1. Advertising and training
Advertising (governed by parameter h) and trainings (parameter L) have a similar impact on

the state of the system. Both are needed for the diffusion of smart meters, but a lower value of one
variable may be compensated by a higher value of the other, as shown in Fig. 3. Because a lack
of knowledge leads to discouragement and changes the opinion to negative, education supports
positive opinions and so does advertising. We can also observe the so-called intension-behavior
gap, i.e., the difference between public opinion (PO) measured by cS (T ) and adoption ratio (SM)
measured by cSM(T ), as a function of independence p and after T = 2000 MCS. The higher the
independence, the larger the intension-behavior gap. This can be explained by the fact that it is
harder for an agent to maintain its stable positive opinion when independence is high.

4.2. Spatially concentrated vs. randomly scattered trainings
We have observed that spatially concentrated (‘group’) trainings are never worse in terms of

public opinion (PO) or adoption ratio (SM) than randomly scattered (‘random’) trainings of the
same size (L2 spinsons). What is more, for a wide set of parameters the former are far more
efficient, see Fig. 3. For a relatively small intensity of advertising (h = 0.09) and training only
L2 = 49 agents (ca. 0.5% of the population) both variants function almost the same, as such values
of parameters are too low to support innovation diffusion. Similarly, for parameters exceeding
h = 0.12 and L2 = 100 there is little difference between the training variant, because these values
are high enough to allow for the diffusion. However, for parameters between those mentioned
above, group trainings foster the diffusion, while random trainings do not.
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Figure 3: Public opinion (PO), measured by cS (T ), and adoption ratio (SM), measured by cSM(T ), as a function
of independence p for both variants of trainings, three values of training size L2 = 25, 49, 100 and four values of
advertising h = 0.09, 0.10, 0.11, 0.12. The plots depict the state of the system after T = 2000 MCS, averaged after
M = 100 independent runs, with system size N2 = 10, 000 and equal decision and memory times R = τ = 5.
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Figure 4: Public opinion (PO), measured by cS (T ), and adoption ratio (SM), measured by cSM(T ), as a function of
independence p for four values of decision and memory times R = τ = 1, 3, 5, 10 and three values of training size
L2 = 25, 49, 100. The plots depict the state of the system after T = 2000 MCS, averaged after M = 100 independent
runs, with system size N2 = 10, 000, advertising h = 0.1 and randomly scattered (‘random’) trainings.

A viable explanation for this outcome is that due to the opinion dynamics in our model, the lack
of knowledge has the ability to prevent the diffusion, discouraging agents and changing positive
opinions into negative. It can literally shatter clusters of agents with positive opinions. Group
trainings are less vulnerable to this effect, since clusters of educated agents cannot be discouraged
that easily. On the other hand, random trainings lead to a lattice with educated agents scattered all
around, hence much more susceptible to a social pressure from neighboring agents with a negative
opinion.

4.3. Length of the decision and memory times
The length of the decision time R and the memory time τ have a significant impact on system

evolution, as shown in Fig. 4. While longer decision and memory times are always preferable
for the diffusion of public opinion (PO), their influence on the adoption of the SMPs (SM) is less
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obvious. Explanation of first phenomenon is rather trivial. The longer the decision and memory
times, the higher the chance that an agent has been trained before it is ready to adopt the SMP, so
discouragement occurs less often. The second relation is less straightforward. Most likely, it is due
to the fact that the concentration of adopters has the same characteristics as public opinion, but the
diffusion is hampered by the so-called intention-behavior gap (which grows with independence p).
Moreover, a longer decision time makes the influence of p on the intension-behavior gap greater,
because for a longer period of time an agent needs to have a stable opinion.

5. Conclusions and policy implications

Using an agent-based modeling approach we have examined the impact of educational pro-
grams and trainings on the diffusion of smart metering information systems (or platforms, SMPs).
Our ABM is based on the model of Kowalska-Pyzalska et al. [14], but the decision-making process
considered here relies on a coincidence of two factors – a stable positive opinion over a certain
time interval and operational knowledge (gained through education) – not just a stable opinion.
As a consequence of introducing this change, our model allows to obtain more realistic results. In
particular, the level of adoptions does not exceed the level of positive opinions, i.e., the so-called
intention-behavior gap is always positive.

The paper’s contribution is threefold. Firstly, we observe that the positive effect of educational
programs and trainings depends on the level of independence in the society and agent decision
and memory times. Secondly, we find that mass-media advertising (i.e., a global external field)
and educational trainings (i.e., a local external field) lead to similar, though not identical adoption
rates. Thirdly, we find that for intensive mass-media advertising, the type of educational trainings –
spatially concentrated or randomly scattered – does not matter, but for a certain range of parameters
‘group’ trainings, e.g., for all households in a given area or district, are significantly better than
‘random’ trainings. Interestingly, an opposite relationship – but with respect to the initial state,
not the local external field as here – was found in [38]. Martins et al. studied adoption of new
products within a CODA-type model [39], i.e., with agents characterized by continuous opinions
and discrete actions (decisions). They compared the case where initial adopters were clustered to
the case where they were randomly scattered around the social network and found that the process
of innovation diffusion from an initial cluster was much slower than in the case of randomly spread
adopters.

Our findings provide important guidelines for utilities, SMP suppliers and regulatory authori-
ties interested in the diffusion of SMPs. In particular, we find that it is more efficient (in terms of
the adoption ratio per number of agents trained) to offer and conduct spatially concentrated (i.e.,
group) trainings rather than to invest in general mass-media advertising or system-wide educatio-
nal trainings. Moreover, by manipulating the time required by an agent to make a decision, e.g.,
through promotions, we can speed up or slow down the diffusion of SMPs, depending on the inde-
pendence level in the society. Finally, it may be worthwhile to encourage consumers not to forget
the knowledge and skills gained through training, e.g., by reminding about the SMP by texting,
mailing or sending informational brochures.
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