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Abstract: Electricity price forecasting (EPF) is an actively developing research �eld, which aims at predicting the

spot and forward prices in wholesale electricity markets. Since day-ahead forecasting has gained the most attention, in

this article we review the modeling approaches for short-term predictions, with a particular focus on variable selection.

Copyright © 2019 John Wiley & Sons, Ltd.

1. Introduction

Electricity is a very special commodity. Despite the recent progress in battery performance, it still is largely a non-

storable good. System security requires a constant balance between production and consumption, both of which are

dependent on weather conditions and the intensity of business activities. On one hand, the resulting spot prices exhibit

seasonality at the daily, weekly and � depending on the geographical location � also annual levels. On the other, they

are volatile compared to other commodities and tend to spike � upward due to scarcity of supply (e.g., excessive use

of air conditioning during a hot spell) and downward due to abundance of generation from renewable sources in low

demand periods (e.g., high winds during a holiday or at night). In some markets, the latter may lead to negative prices.

In the electricity price forecasting (EPF) literature, it is customary to talk about short-, medium- and long-term

predictions. However, there are no commonly accepted de�nitions. Short-term horizons range from minutes to days

and are mainly relevant for market operations and system stability. Since scheduling and trading decisions are made

through revenue contribution models and generally are benchmarked against the spot prices, short-term EPF has

gained the most attention (Chen & Bunn, 2014; Weron, 2014). It is also the focus of this article.

Medium-term refers to horizons for which reliable meteorological predictions are not available. With lead times

measured in weeks, months, quarters or years, medium-term EPF is used for maintenance scheduling, resource

reallocation, derivatives valuation, risk management and budgeting. Finally, long-term predictions refer to everything

beyond a couple of years and are used for investment planning and policy making (Ziel & Steinert, 2018).
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2. Modeling frameworks for short-term predictions

In most electricity markets, particularly European, the `spot price' is actually a very short-term forward price determined

around noon during 24 uniform price auctions � one for each hour of the next day; hence the term day-ahead price.

Since they are established using the same information set, it is customary to use double indexing, i.e., Pd;h, when

referring to the day-ahead price for day d and hour h, and use a set of 24 (possibly interrelated) models, one for each

hour of the day (see Ziel & Weron, 2018, for a discussion of the uni- and multivariate structures used in EPF).

2.1. Multiple regression

One of the most popular techniques and a basic building block for more sophisticated electricity price (and demand)

forecasting models is multiple regression. It represents a dependent (criterion, output) variable by a linear combination

of several independent (predictor, explanatory) variables, also called regressors, inputs or features:

Pd;h = �hXd;h + "d;h; (1)

where �h = [�h;0; �h;1; :::; �h;k ] is a 1� (k + 1) vector of coe�cients speci�c to hour h, Xd;h = [1; X1
d;h
; :::; Xk

d;h
]0 is

a (k + 1)� 1 vector of inputs and "d;h is an error term, also speci�c to hour h. The �rst `regressor' is the intercept

and �h;0 can be set to zero if the data is demeaned beforehand. The remaining k variables can be � and usually are

� transformed before estimating �h, see Uniejewski et al. (2018) for suggestions. For instance, a commonly used

benchmark, originally proposed by Misiorek et al. (2006) and later used in a number of EPF studies, takes the form

an ARX (autoregressive with exogenous variables) model:

Pd;h = �h;0 + �h;1Pd�1;h + �h;2Pd�2;h + �h;3Pd�7;h + �h;4Pd�1;min︸ ︷︷ ︸
past prices (autoregressive e�ects)

+ �h;5Ld;h︸ ︷︷ ︸
load forecast

+�h;6DSat + �h;7DSun + �h;8DMon︸ ︷︷ ︸
weekday dummies

+"d;h; (2)

where Pd�1;min is the minimum of the previous day's 24 hourly prices, Ld;h refers to the load forecast for day d and

hour h (known on day d � 1), and the three dummies (DSat , DSun, DMon) model the weekly pattern, with higher

prices during the weekdays and lower on the weekends (and Monday morning).

The regression model is typically estimated via ordinary least squares (OLS) and using electricity prices from the

past D days, i.e., P1;h; :::; PD;h, to predict the next day's price PD+1;h; the calibration sample may be limited to hour h

or include some or all of the remaining hours. Like with the classi�cation of forecasting horizons, there is no consensus

in the literature as to the value of D. Many studies consider a `year' (D = 360; 364; 365) or `two years' (D = 728; 730)

of data, but some use as short calibration windows as 10 days, while other as long as six years. Hubicka et al. (2019)

actually argue that combining predictions obtained from a model calibrated to windows of di�erent lengths (e.g., 2-3

short- and 2-3 long-term) outperforms selecting ex-ante only one `optimal' window length.

2.2. Neural networks

In the engineering stream of the EPF literature, neural networks are the most popular modeling framework (Weron,

2014). A single-layer perceptron with only input and an output node is equivalent to a linear regression. By adding

an intermediate layer with hidden nodes we obtain the multi-layer perceptron (MLP), with a feed-forward architecture

but already able to represent non-linear phenomena, see Fig. 1. When the network has more than one hidden layer it

is called a deep neural network (DNN) and when connections between nodes form directed loops to the same or other
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Figure 1. A multilayer perceptron with the same inputs (green nodes) and output (red node) as the regression in Eqn. (2),

and one hidden layer composed of �ve neurons with sigmoid activation functions (white nodes). The hidden layer makes this a

non-linear model; adding another hidden layer would yield a deep neural network (DNN).

layers (not a feed-forward architecture) it is referred to as a recurrent neural network (RNN); the latter is particularly

useful for modeling temporal dynamic behavior. Both extensions form the backbone of deep learning and have become

extremely popular in the last few years (Goodfellow et al., 2016). Training of such structures is more complex and time

consuming than of regression models. The standard approach is based on gradient descent and called back-propagation

through time (BPTT); architectures composed of long short-term memory (LSTM) units or their simpler version �

gated recurrent units (GRU) � are used to avoid the vanishing gradient problem (Schmidhuber, 2015).

2.3. Multivariate modeling

Note, that both the regression and neural network approaches admit multivariate modeling, where one model returns

a vector of 24 hourly prices. In a regression context, the model structure is composed of 24 Eqns. (1) and is jointly

estimated for all h = 1; 2; :::; 24, e.g., via multivariate least squares, multivariate Yule-Walker equations or maximum

likelihood (Lütkepohl, 2005); the resulting model is called VAR (vector autoregressive). In a neural network setting,

the output layer may simply consist of 24 nodes and likely require more hidden neurons to adequately represent the

dependencies for all hours. Note, however, that while multivariate models usually provide a better in-sample �t, their

predictive performance does not have to be better (Chat�eld, 2000). This, indeed, is observed for VAR models in the

extensive EPF study of Ziel & Weron (2018) .

3. Variable selection

No matter which framework the modeler is using, a key point in EPF is an appropriate choice of explanatory variables

(Abedinia et al., 2017; Karakatsani & Bunn, 2008; Keles et al., 2016). Most studies select predictors using expert

knowledge (hence the resulting structures are dubbed expert models; see Ziel, 2016), rarely a formal automated

procedure for variable selection is implemented. The most common classes of inputs are reviewed in Sections 3.1 and

3.2, then automated variable selection is brie�y discussed in Section 3.3.
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3.1. Seasonal components

Two types of components are distinguished in the EPF literature: short- and long-term. The short-term seasonal

component (STSC) represents the weekly pattern; the intra-day behavior is typically accounted for by the multivariate

structure of the model. In the majority of EPF studies, the STSC is introduced in the form of dummy variables, either

one for each day of the week or only for the less typical days, as in Eqn. (2) and Fig. 1. Holidays � if considered at all

� are treated as the 8th day of the week or grouped with Sundays. Uniejewski et al. (2016) and Ziel & Weron (2018)

emphasize, that the importance of daily dummies depends on the hour of the day and suggest to incorporate periodic

e�ects (e.g., daily dummies multiplied by Pd�1;h) in general model design.

On the other hand, the long-term seasonal component (LTSC) aims at capturing the annual or � the less regular

and periodic � trend-seasonal behavior associated with macroeconomic and latent factors. There are three popular

approaches in the EPF literature (Weron, 2014):

� piecewise constant functions or monthly dummies,

� sinusoidal functions or their sums across di�erent frequencies (based on Fourier decomposition),

� nonparametric smoothing techniques, like wavelets, Friedman's supersmoother, the Hodrick-Prescott �lter, spline

functions, empirical mode decomposition or singular spectrum analysis.

While extrapolating into the future the �rst two classes of LTSCs is straightforward, the latter requires additional

assumptions. Nevertheless, as Nowotarski et al. (2013) show, this extra work is worthwhile. When only day-ahead

predictions of the LTSC are required, a naive (persistent) forecast works reasonably well, leading to the seasonal

component (SCAR, SCANN) modeling approach (Marcjasz et al., 2018).

3.2. Stochastic variables

Electricity prices. In the ARX model de�ned in Eqn. (2), the autoregressive e�ects are limited to the same hour

yesterday, two days ago and a week ago, and a minimum of yesterday's prices. The former variable is typically regarded

in the EPF literature as the most important regressor. However, as Ziel & Weron (2018) show, an even more in�uential

explanatory variable may be Pd�1;24, i.e., the last known price, or � more generally � yesterday's late evening prices.

Other `less intuitive' regressors include yesterday's prices for the neighboring hours (e.g., Pd�1;18 when predicting Pd;17)

and very recent prices of daily futures contracts with delivery on day d , and � what may seem even more surprising

� with delivery on day d + 1, but only when predicting the evening hours 20-24 (Steinert & Ziel, 2019). A likely

explanation for the latter is that the evening hours of day d are close to the early morning hours of day d + 1, when

the delivery of these futures contracts begin.

Demand. Most studies agree that the demand for electricity is one of the most important fundamental variables

(Karakatsani & Bunn, 2008; Weron, 2014). Quite often it is referred to as load, although load is an ambiguous term

and may mean other things. In load (and price) forecasting, the load usually means demand (in kW) or consumed

energy (kWh). On hourly data, the magnitude of power and energy is the same, so the authors rarely emphasize

whether it is demand or energy (Hong, 2014). The information on predicted for the next day and past demand levels

is available for many markets and is typically published by the TSO (Transmission System Operator). However, as

Uniejewski & Weron (2018) show, past loads do not provide any additional information and, therefore, the in�uence

of this fundamental variable can be limited to the day-ahead load forecast for a particular hour, as Ld;h in Eqn. (2)

and Fig. 1.

Copyright © 2019 John Wiley & Sons, Ltd. 4 Wiley StatsRef 2019, 99 1�9

Prepared using WileySTAT.cls



Electricity price forecasting Wiley StatsRef

Figure 2.Main generation sources (conventional, wind, solar) and wholesale electricity prices (day-ahead, intraday) for the 4th

week of 2019 in Germany. Source: https://www.energy-charts.de, Fraunhofer ISE.

Generation structure. Many TSOs publish information about the actual and predicted generation structure,

indicating the amount of electricity generated from di�erent sources, e.g., nuclear, coal, gas and RES (renewable

energy sources; primarily hydro, wind and solar). The intermittent RES generation has a decisive role in the price

setting process (Gianfreda et al., 2016; Kiesel & Paraschiv, 2017; Uniejewski & Weron, 2018). Since in many countries

RES has a priority during the dispatch, changes in RES lead to a shift of the supply curve � a phenomenon called

the merit-order e�ect � and hence a�ect the electricity prices. This is nicely illustrated in Fig. 2 for the German

market. A drop in wind power generation on Thursday leads to an increase of prices, particularly in the intra-day

market, while an increase of wind generation drags the prices almost to zero on Saturday-to-Sunday night. However,

the literature is inconclusive about how the shifts in the supply curves impact price volatility. For instance, Rintamäki

et al. (2017) report that in Denmark wind power decreases the volatility by �attening the price pro�le, but in Germany

the e�ect is the opposite because wind power has a stronger impact on o�-peak prices, while the in-feed of solar

power decreases the volatility. It is also not clear, which is more relevant for EPF: the aggregated measure of RES or

individual information on solar and wind generation.

Generation costs. Fuel and CO2 emission allowance prices have a direct impact on the generation costs. Due to

the merit-order e�ect, the marginal generation technology changes across the day, a�ecting the fuel�electricity price

relationship. For instance, gas prices impact mainly the peak hours, whereas coal prices in�uence the o�-peak hours.

However, these dependencies can be observed and utilized only for the medium- and long-term forecasting horizons

(Maciejowska & Weron, 2016; Ziel & Steinert, 2018). The in�uence of CO2 emission allowance prices is even less

pronounced. Due to excess supply, their prices remained at very low levels until 2017. Last year's changes in EU

regulations have resulted in a price hike, which � if sustained � may increase their impact on electricity prices in the

years to come. Still, this will rather be a medium- or long-term phenomenon.

Wiley StatsRef 2019, 99 1�9 5 Copyright © 2019 John Wiley & Sons, Ltd.

Prepared using WileySTAT.cls

https://www.energy-charts.de


Wiley StatsRef K. Maciejowska and R. Weron

3.3. Automated variable selection

The OLS estimator used to �t a regression model to data is unbiased, but can have a non-negligible variance. Especially

when the regressors are correlated with each other and/or when there are many of them. The �rst attempts to limit

the number of inputs in EPF models in a systematic way used stepwise regression (Karakatsani & Bunn, 2008) and

feature selection based on mutual information (for neural networks; Amjady & Keynia, 2009).

The concept of regularization (or shrinkage) entered the EPF literature a few years later and quickly brought a

qualitative change. Recall, that it aims at lowering the variance (at the cost of some bias) by penalizing the �t if

the estimated �h;i 's in Eqn. (1) are too large; e�ectively it shrinks them towards or even exactly to zero. In the EPF

literature, Uniejewski et al. (2016) and Ziel (2016) used LASSO (least absolute shrinkage and selection operator)

and elastic nets to sparsify very large (100+) sets of regression coe�cients. Even larger models of ca. 200 and ca.

400 regressors were considered by Ziel & Weron (2018) and Uniejewski & Weron (2018), respectively. In all cases,

the elastic net or LASSO-implied structures signi�cantly outperformed the autoregressive benchmarks. Interestingly,

as a by-product of the selection property of these techniques, parsimonious regression structures able to outperform

commonly used expert models can be identi�ed.

Combining the ideas of machine learning and sparsity we arrive at a relatively new concept of regularizing neural

network architectures (He & Liu, 2018). It has not been utilized in EPF to date. However, given the potential of deep

architectures to model nonlinear time series data on one hand and the increase of computational power and advances

in training algorithms on the other, this approach may see a widespread use in the near future.

4. Beyond point forecasts

Although over 90% of all EPF studies published to date focus on point forecasting, in the last few years both the

academics and practitioners realized that there is much to be gained from computing probabilistic and ensemble

forecasts. Probabilistic EPF gained popularity with the Global Energy Forecasting Competition 2014 (GEFCom2014;

Hong et al., 2016), which required participants to predict 99 percentiles of next day's load, electricity price, wind or

solar power (for each of the 24 hours). Since then the number of probabilistic EPF papers has increased rapidly, see

Nowotarski & Weron (2018) and Ziel & Steinert (2018) for reviews.

There are two main approaches to computing probabilistic forecasts: the �rst one utilizes the point prediction P̂d;h

and the distribution F" of errors associated with it, the second directly approximates the price distribution FP . Among

the error distribution-based methods, the noise, e.g., "d;h in Eqn. (2), is typically assumed to have a normal or Student-

t distribution, possibly embedded in a GARCH (generalized autoregressive conditional heteroscedasticity) component

to better model time varying moments. If the noise term does not take any particular distributional form, as in the

case of neutral networks, the bootstrap is commonly used to empirically approximate FP (see Nowotarski & Weron,

2018, for details). Another popular semi-parametric method is quantile regression (QR; Koenker, 2005), which directly

models the �-th quantile of the price as a function of exogenous variables:

Q� (Pd;h) = ��hXd;h; (3)

where ��h is a 1� (k + 1) vector of parameters, which depends on hour h and quantile � ; unlike in Eqn. (1), here

the intercept needs to be included among the regressors. Model parameters are estimated by minimizing the so-called

pinball score. QR can be used to forecast two chosen quantiles such that Prob(Pd;h 2 [��1
h
Xd;h;�

�2
h
Xd;h]) = �2 � �1,

as in the QRA (Quantile Regression Averaging) method of Nowotarski & Weron (2015), or to approximate the whole

price distribution by computing a range of quantiles, e.g., � = 0:01; :::; 0:99 as in Maciejowska & Nowotarski (2016).
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Ensemble forecasts, on the other hand, have not seen application in EPF as yet. This is surprising given the popularity

in the meteorological and wind power forecasting literature (Pinson, 2013), as well as a plethora of optimization

problems where path-dependency is crucial (e.g., power plant scheduling, energy storage, day-ahead trading). An

ensemble is a collection of paths (trajectories, scenarios) from a forecasting model, typically simulated using Monte

Carlo. For a large number of paths the ensemble can approximate the 24-dimensional distribution of the 24-dimensional

price vector Pd = (Pd;1; :::; Pd;24)
0 reasonably well. For many EPF models this is the only feasible solution, since they

cannot directly provide such a multidimensional distributional forecast.
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