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Spectral Representation and Structure of
Stable Self-Similar Processes

K. Burnecki, J. Rosinski and A. Weron

Abstract

In this paper we establish a spectral representation of any symmetric
stable self-similar process in terms of multiplicative flows and cocycles.
A structure of this class of self-similar processes is studied. Applying the
Lamperti transformation we obtain a unique decomposition of a symmetric
stable self-similar process into three independent parts: mixed fractional
motion, harmonizable and evanescent. This decomposition is illustrated
by graphical presentation of corresponding kernels of their spectral repre-
sentations.

1. Introduction

Following the idea from Rosinski ([Ros 1]) for stationary processes we
obtain a unique in distribution decomposition of a symmetric a-stable
self-similar process {X;}cr, into three independent parts,

XLXxW 4 x4 X6,

Here {Xt(l)}teR+ corresponds to a superposition of moving averages in the
theory of stationary processes (see [SRMC]). We will call it mixed frac-
tional motion (MFM). This class contains the mixed linear fractional a-
stable motion in terminology of Burnecki, Maejima and Weron ([BMW]).
The second class {Xt(Z)}teR+ is harmonizable and {X,5(3)}t6R+ is called
evanescent.

Definition 1.1 A stochastic process {X;}ier is called symmetric a-stable
or Lévy SasS or, shortly, SaS process for a € (0,2] if for every n € N
and any ay,...,0p, t1,...,t, € T, the random variable Y = 37 | a; X,
has a symmetric stable distribution with index o.

Definition 1.2 A family of functions {fi}ier C L%(S,B,un), where
(S, B, 1) is a standard Lebesgue space, is said to be the kernel of a spectral
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representation of a SaS process { Xi}ier if

Xheer 2{ [ no)Ma9)} )

teT

where M s an independently scattered random measure on B such that
Eexp{iuM(A)} = exp{—|u|*u(4)}, u€R,

for every A € B with u(A) < co. A kernel {f;}ier is said to be minimal
if o{fi/fu:t,u €T} =B modulo p.

Every separable in probability SaS process has a minimal represen-
tation (see [Har] and [JW]). Note that the definition of minimality given
here is equivalent to the original definition but is easier to formulate (see
[Ros 2]); the latter work provides several workable tests for the verifica-
tion of minimality in concrete cases. We will also consider complex stable
processes. In the complex case, f; are complex valued and M is invariant
under rotations.

2. General spectral representation

From now on we will consider processes indexed by T'= R, = (0, 00).

A stochastic process {X;}i~o 1is said to be H-self-similar (H — ss) if
{ Xt }iso = X, } =0, for every ¢ > 0. In this section we will characterize
the kernel of a spectral representation of a self-similar SaS stochastic
process. Without loss of generality we may and do assume that underlying
measure space (S, B, u) for the kernel is Borel. A collection {¢;}so of
measurable maps from S onto S such that

Pat (5) = P1, (D1, (5)) (2)

and ¢(s) = s for all s € S and t1,t, > 0 is called a multiplicative flow.
Such flow is said to be measurable if the map Ry x S 3 (¢, s) — ¢u(s) € S
is measurable. Given a o—finite measure y on (S, B), {¢; }1~0 is said to be
nonsingular if p(é; 1(A)) = 0 if and only if u(A) = 0 for every ¢ > 0 and
AeB.

Let A be a locally compact second countable group. A measurable map
R, x S35 (t,s) = a;(s) € Ais said to be a cocycle for a measurable flow
{b:}i>0 if for every tq,t5 > 0

Utyt,(S) = g, (S)ar, (Pr,(5)) forall s € S. (3)
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Theorem 2.1 Let {f;}1~0 C L*(S, ) be the kernel of a measurable min-
imal spectral representation of a measurable H — ss SaS process { Xy }i>o-
Then there exist a unique modulo p nonsingular flow {¢; }1~o on (S, p) and
a cocycle {a;}=o taking values in {—1,1} ({|z| = 1} in the complex case)
such that for each t > 0

dpo ¢y
dp

fe= tHat{ }l/a(fl o) p— ae. (4)
Proof. Since t — f; is minimal, then, for each ¢ > 0 {1/c" f.;}4~0 and
{fi}+>0 are kernels of minimal representations of the the same H — ss
SaS process. Applying Theorem 2.2 in [Ros 1] there exist a one-to-one
and onto function ®, : S — S and a function h. : S — R — {0} such that,
for each ¢t > 0,

for = () (h)(fro®.) p—ae., (5)
and
d(# ° (I)C) _ «
T |hel®, o —a.e. (6)

Since, for every t,cq,co > 0, it is true that, p — a.e

f6102t = (Cgl)(hw)(fqt 0 @62) = (C?C{I)(hq)(hcl 0 @02)(ft °© q)cl °© q)02) (7)

and
fclczt = (C{{Cg)(hclcz)(ft © @0102)v

we infer from Theorem 2.2 in [Ros 1] that, for every ¢, ¢y > 0,

heye, = (h02)(h01 ° q)CQ)a u—a.e., (8)

and
Doy = Pey 0P, p—ae. 9)

In order to conclude the proof it is enough to rewrite the arguments of the
proof of Theorem 3.1 in [Ros 1] replacing the additive group R with the
multiplicative R ;. Therefore, ¢, = ®; is the map and putting a; = h;/|h|
ends the proof. O

Remark It is possible to present another proof of the theorem using the
Lamperti transformation defined in the following:

Lemma 2.1 ([Lam]) If {Y,}icr is a stationary process and if for some
H>0
Xt = tHYiOgta fO’I" > 07 XU = 07 (10)

then X, is H-ss. Conversely, every non-trivial ss-process with Xq = 0 is
obtained in this way from some stationary process Y .
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Namely, first we need to see that the Lamperti transformation leading
from self-similar to stationary processes preserves the minimality of the
spectral representation. To this end it is enough to verify condition (iii)
of Theorem 3.8 in [Ros 2] with F' = {e " f..};cr. It is trivially satisfied
as the condition is fulfilled for F' = {f;},cr,. Now, taking ¥; = e7" X
we obtain a stationary process which minimal representation is defined
by Theorem 3.1 in [Ros 1] in terms of a unique flow and a corresponding
cocycle on the additive group R. In order to conclude the proof we ap-
ply the reciprocal transformation X, = t# Yiog¢ which leads to the minimal
spectral representation of the process X as stated in Theorem 2.1. O

Corollary 2.1 Since there is a correspondence between self-similar and
stationary processes through Lamperti transformation every minimal rep-
resentation t — f; (4) given in terms of a flow ¢ and a cocycle a; defines
the kernel of a minimal spectral representation { f}}icr of the correspond-
ing stationary process as follows

du o b 1/a
It= { : d/f’f} (food}). n—ae. (11)
such that
01 (s) = et (5), a;(s) = aei(s), fo(s) = fu(s) forall s € Sandt€R.

Conversely if (11) is the kernel of a minimal spectral representation of a
stationary process then (4) defines the kernel of a minimal representation
of an H — ss process in terms of a pair {a;, ¢;}1>0 such that

bu(s) = qﬁllogt(s), ai(s) = allogt(s), fi(s) = fy(s) foralls€ Sandt>0.

Remark Combining results of Theorem 3.1 in [Ros 1] and Theorem 2.1
we may try to describe classes of transformations leading from self-similar
to stationary processes and conversely in the similar way as in Theorems

3.1 and 3.2 in [BMW], which are the following.
Theorem 2.2 ([BMW]) Let 0 < H < oc.

(1) If for some continuous functions 0, ¢ : (0,00) — R and a non-
trivial stationary process {Yi}ier,

- 9(t)Y¢(t), fOT t>0
Xi = { 0, fort=20 (12)

is H — ss, then 0(t) =t and ¢(t) = alogt for some a € R.
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(i1) If for some continuous functions ¢, n : R — (0,00) such that n is
invertible and for a non-trivial H — ss process { X, }ier,

Yi =C(t) Xy, tER,
s stationary, then

C(t) = e "' and n(t) =" for someb € R.

Sketch of the proof. Let us concentrate on (i). We will support the
thesis that # =t and 1) = alogt using Theorem 3.1 in [Ros 1] and Theo-
rem 2.1 which concern minimal spectral representations of stationary and
self-similar processes, respectively. First we notice that any transforma-
tion of the form X; = 6(t)Yy ) for a non-trivial stationary process Y and
functions €, ¢ : (0,00) — R such that ¢ is onto preserves minimality of
the spectral representation. It is obvious since F' = {0(t) f; ;) } >0 satisfies
condition (iii) of Theorem 3.8 in [Ros 2] as {f!}«cr (the spectral repre-
sentation of process V) is rigid in L*(S, ). Thus X is H — ss with the

spectral representation as follows
duo by 1o,
m } (foo dyw) n—ae.

Now we use the fact that the process X has a spectral representation
defined by (4) and compare them. We immediately obtain that 6(t) =
t". Furthermore, it is easy to see that the spectral representations are
equivalent if

uftatn) = Py ruiey and $(1) =0.
This yields either
@Z}(tltg) = ¢(t1) + lb(tg) fO’I“ all ti,ta >0 (13)

or
Y(tite) = ¥(t1) + Y(ta) + ¢ for some ty,t9 > 0 and ¢ # 0.

Since 1 is continuous the latter implies that Y is trivial. The equivalence
(13) leads to the statement t)(t) = alogt for some real constant a. O

3. Mixed fractional motion

The simplest H — ss SaS process is obtained from a kernel of the form

fils) = 7% (;) s> 0. (14)
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considered with Lebesgue control measure on (0,00), f € L*((0,00), Leb).
A SaS process with such representation will be called a fractional motion
(FM). A superposition of independent FM processes of type (14) is called
a mized fractional motion (MFM).

Definition 3.1 An H — ss SaS process { X }iso is said to be a MFM if
it admits a spectral representation with a kernel {g;}i~o defined on (W x
(0,00), Bw ® B,0), v ® Leb), for some Borel measure space (W, By, v),
such that

1 u
gt(w;u) - tHigg <w7 ;) ) (15)
(w,u) € W x (0,00), t>0.

We will give a few examples of FM and MFM processes. We begin with
the simplest one.

Example 3.1 Let 0 < a < 2, H = i and {X }i~o be a Lévy motion.
Then . .
Xo= [ Ms) = [ f(s/)M(ds),
0 0
where

f(s)=1[0 <s < 1]

and M is SaS on (0,00) with Lebesgue control measure.
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Figure 1: (a) The kernel of the spectral representation of Lévy motion, (b)
the kernel of the corresponding stationary process through the Lamperti
transformation for H = 1/1.8 (i.e. Ornstein-Uhlenbeck process).
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Example 3.2 Let f € L*(R%, Leb). Let

fils) =t"=5f (2), seRL >0,

and let M be a SaS random measure on R? with Lebesque control mea-
sure. It is easy to check that a SaS process {X;}i=o with such spectral
representation is H-ss. We will show that { X}~ is a MFM. Indeed, let
W = S, be the unit sphere in R equipped with the uniform probability
measure v and let

g(w,u) = (cqut™ )I/O‘f(uw) (w,u) € Sy x (0,00),

where cq = 2142 /T(d/2) is the surface area of Sq. Using polar coordinates,
we get for every ay,...,a, € R, t1,...,t, >0,

/ |Za]ft )|*ds

_Cd/sd/ 1S gt e ( j>|a 1 (dw)
_/Sd/ S atl <w _]> 1 duv(dw),

which proves the claim.

Comparing the kernel from the above example with the general form
(4) we get that S =R2\ {0}, ¢s(s) =t ts, fi(s) = f(s), and d‘;—cxbf =t
The following well-known H — ss processes are special cases of Example
3.2.

Example 3.3 Let 1 < a <2 and H = é Then a log-fractional motion
(cf. [KMV]) {Xi}is0 is defined by

Xt:/ log

—‘ M(ds) /_o:of(s/t)M(ds),

where
f(s) =log|l/s — 1|

and M is SaS on R with Lebesque control measure.
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Figure 2: (a) The kernel of the spectral representation of log-fractional

motion, (b) the kernel of the corresponding stationary process for H =
1/1.8.

Example 3.4 Let 0 < H<1,0<a <2, H# 2. Putff=H-—=<. Then
a linear fractional stable motion (cf. [CMS]) {X;}iso is defined by

Xo= [ pll-9)°~(~)7] M(ds) +
0°° (1[0 < 5 < A)lp(t — 5)° — ¢%] + I[t < slal(s — £)° — 5%]) M (ds)
= [ s Mds),
where

f(s) = 1I[s < 0p[(1 = 5)7 — (—=5)"]+
I0 < s < 1][p(1 — 5)% — ¢s°] + I[s > 1]q[(s — 1)? — 7],

and M 1s SaS on R with Lebesque control measure.

Next Theorem shows that the kernel of a spectral representation of
any MEFM can be defined on R? in a canonical way.

Theorem 3.1 (Canonical representation of a MFM). Let o be a o-finite
measure on the unit circle Sy of R* and let p be a measure on R*\ {0}
whose representation in polar coordinates is

p(dr,df) = r*"=tdr o(dh), r>0,0¢€5,. (16)
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Figure 3: (a) The kernel of the spectral representation of linear fractional
stable motion for H — 1/a = 0.1, (b) the kernel of the corresponding
stationary process for H = 0.1 +1/1.8.

Let f:R*\ {0} = R (or C) be such that
Jr gy [N (d2) < o

Then the family of functions {fi}~0 C L*(R*\ {0}, 1) given by
fiz) = f(t7"2) (17)

is the kernel of a spectral representation of a SaS process, which is H —ss
and MFM. Conversely, every MFM admits a (canonical) representation

(16)-(17).

Proof. We are to show only the converse part. Consider a MFM with a
representation (15). Since S is a Borel space, S is measurably isomorphic
to a Borel subset S;. Let & : S — S5 denote this isomorphism and let
o =vo® . Define a function f on R?\ {0} as follows

g (@71 (), 121) l2[Ve=, it & € B(S)

z]
0, otherwise.

£(2) =
Let 1 be a measure on R2\ {0} given by (16). Then
foo | s @tz = [ a2 n(ez)
- /S /OOO S 0y £ (£ 00) 2 171 dro(dB)
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- /s/ooo 1> a;f(t; ' r®(s) [ r* " dru(ds)
= /S/Ooo | Zajtf_l/ag(s,tflrﬂa dru(ds),

for every t1,...,t, > 0 and ay,...,a, € R(C). This ends the proof.
O

Remark. The Lamperti transformation maps FMs onto moving average
processes and MFMs onto mixed moving averages (see [SRMC]). Con-
sidering above examples it seems that MFMs appear more naturally than
F'Ms. This is quite opposite to the relation between mixed and the usual
moving averages.

It is clear that a stable process may have many spectral representa-
tions with different kernels defined on various measure spaces. However,
we can identify one property, common to all such representations, which
characterizes MFMs.

Theorem 3.2 Let {X;}i~0 be a SaS H — ss process with an arbitrary
representation (1). Then X is MEM if and only if

/ = L £ (s)|%dt < o0 p— ae. (18)
0
Proof. The condition (18) is equivalent to

/ e fou(s)|*dt < 00 p— a.e.

By Theorem 2.1 in [Ros 2] and (10) this concludes the proof. O

4. Decomposition of stable self-similar processes

Similarly as in the case of stationary Sa.S processes, Theorem 2.1 allows
one to use ergodic theory ideas in the study of Sa.S self-similar processes.
In particular, the Hopf decomposition of the underlying space S of the
spectral representation (4) into invariant parts C' and D, such that the
flow ¢, is conservative on C' and dissipative on D, generates a decomposi-
tion of {X;}4~o into two independent Sa.S H — ss processes { X}~ and
{XP}i0. We will characterize the latter process.

Theorem 4.1 {X},~q is a MFM and one can choose a minimal repre-
sentation of {XP}iso of the form (15). Furthermore, { X[ }iso is a FM if
and only if {d,}i0 restricted to D is ergodic.
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Proof. Using Corollary 2.1 we infer that the process {X/};so corre-
sponds, by Lamperti transformation, to a stationary Sa.S process {Y; }icr
generated by a dissipative flow. From Theorem 4.4 in [Ros 1] we get that
{Y;}ier is a mixed moving average, implying that { X}, is a MFM.

We will now prove the second part of the theorem. Since a moving av-
erage representation kernel is minimal (see, e.g, [Ros 2]), (14) is minimal
as well. Since f; in (4) is minimal, then also f; restricted to D is minimal.
By Theorem 3.6 in [Ros 1] we infer that the (multiplicative) flow ¢, is
equivalent to the flow ¢;(s) =t s, t,s > 0. Since {¢;} is ergodic, so is
{#:}. Now suppose that {¢;} is ergodic. By the first part of this theorem,
{X}} admits a minimal representation of the form (15) whose flow is given
by ¢y (w,u) = (w,t " u). Since the latter flow is equivalent to {¢;} by the
foregoing theorem, it must be ergodic which is only possible when v is a
point-mass measure. Thus (15) reduces to (14). O

The class generated by conservative flows consists of harmonizable
processes and processes of a third kind (evanescent).

Definition 4.1 An H — ss process {X;}i>o is said to be harmonizable if
it admits the representation

{Xi}is0 =a {/R tH+isN(d3)}t>Oa (19)

where N is a complex-valued rotationally invariant SaS measure with the
finite control measure v on S.

Notice that the representation (19) is minimal and it is generated by an
identity flow acting on S with ay(s) = t* as the corresponding multiplica-
tive cocycle. It is easy to prove the converse:

Proposition 4.1 Let {X;};~o be a measurable complex-valued H—ss SaS
process generated by an identity flow. Then {X;}i~o is harmonizable.

Proof. Let
So = {s: a1, (s) = ay (s)ay,(s) for Leb® Leb a.a. (ti,t2)}.

Now it is enough to show that for each s € Sy there exist a unique k(s) € R
such that _
a(s) = t*),

To this end we follow the proof of Proposition 5.1 in [Ros 1] and next
define a finite measure py(ds) = |f(s)|*u(ds) on S. Therefore, (19) holds
with v = pg o k=% O
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Theorem 4.2 Let {fi}i~o be the kernel of a minimal spectral represen-

tation of the form (4) for a complez-valued SaS harmonizable process
{Xi}is0. Then {¢i}i0 is the identity flow and (4) reduces to

fils) =" f (s) (20)

Proof. Since (20) follows from the proof of the previous proposition,
we only need to show that {¢;};~o is the identity flow. However, the
representation (19) is minimal and is induced by the identity flow 1;(s) =
s, for all ¢, s, so that by Theorem 3.6 in [Ros 1], ¢; being equivalent to the
identity flow must be identity. O

Example 4.1 Let

is_l

{X:}is0 =d {/ A —

s

t>0

where M is a complez-valued rotationally invariant SaS measure. The
process X corresponds via the Lamperti transformation to the increment
process of fractional Gaussian noise (cf. [ST]).

Remark. There can not be any non-zero real-valued stationary harmo-
nizable process. Using Lamperti transformation, the same statement is
valid about real-valued harmonizable self-similar processes. However, the
class of real-valued self-similar processes whose spectral represenation is
generated by the identity flow is slightly larger. Any process of this class
must be of the form X; = t” X; (cf. Proposition 5.2 in [Ros 1]).

Definition 4.2 A stochastic process whose minimal representation (/)
contains a conservative flow without fixed points will be called evanescent.

This class is not well understood at present. The next theorem is useful
to verify whether or not a process is evanescent.

Theorem 4.3 Let {X;}i~0 be a SaS H — ss process with an arbitrary
representation (1). Then {X;}i~o is evanescent if and only if

ulses: /0 o1 £(8)|7dt < 00} = 0

and

p{s €S+ fui,(s)fi(s) = fu(s)fi,(s) for aa. 11,2, > 0} =0
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Figure 4: (a) The kernel of the spectral representation of the evanescent
process, (b) the kernel of the corresponding stationary process for H =

1/1.8.

Proof. It is a direct consequence of results of Section 6 in [Ros 1] com-
bined with Lamperti transformation, Lemma 2.1. O

We will give two examples of evanescent processes.

Example 4.2 Let

{Xi}is0 =4 {/01 t" cos m[logt + S]M(ds)} ,

t>0

where [x] denotes the largest integer not exceeding x. Then X does not
have a corresponding harmonizable nor mized moving average component,
so provides an example of an evanescent component.

Example 4.3 Let {X;}i~o be the real part of a harmonizable process, i.e.,

{Xi}is0 é{/[0 xR t" cos (s + wlogt) Z(ds,dw) }s>o,
,2m) X

where Z is a real-valued SaS random measure with control measure LebQv
and v is a finite measure on R (see [Ros 2], Example 4.9). Here ¢u(s,w) =
(s +or wlogt, w), where” +9, " denotes addition modulo 2.

Theorem 4.4 FEvery SasS self-similar process {X;}i~o admits a unique
decomposition into three independent parts

d
(X} Z{X Ym0 + {X P o0 + {XP Ym0,
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where the first process on the right-hand side is a MFM, the second is
harmonizable, and the thrid one is an H — ss evanescent process.

Proof. Since the set D of Hopf decomposition and the set of fixed points
for a flow are invariant, we obtain a decomposition of self-similar processes
analogous to the decomposition of stationary processes (see Theorem 6.1
in [Ros 1]). O
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