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Introduction
We investigate the new class of stochastic processes that are used in
the financial mathematics, i.e. CARMA processes (continuous
ARMA models) with symmetric stable innovations, that are a
natural extension of second-order Lévy-driven CARMA processes.
They are also the extension of ARMA models with symmetric
α-stable innovations. For the considered stable models the covariance
function is not defined and therefore other measures of dependence
have to be used. We present the form of solution of considered
continuous models and study the codifference and the covariation -
the most popular measures of dependence defined for symmetric
α-stable processes. We show the codifference and the covariation are
asymptotically proportional with the coefficient of proportionality
equal to α.
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CARMA processes with symmetric α-stable
Lévy motion
The CARMA(p,q) process with symmetric α-stable Lévy motion
indexed by R, it is the processes satisfying following equation

a(D)Y (t) = b(D)DL∗(t), t ∈ R, (1)

in which D denotes differentiation with respect to t,

a(z) = zp + a1z
p−1 + · · · + ap,

b(z) = b0 + b1z + . . . bp−1z
p−1,

and the coefficients bj satisfy bq 6= 0 and bj = 0 for q < j < p. For
simplicity we study the special case of such models, i.e. the
symmetric α-stable CARMA(1,1) processes:

DY (t) + aY (t) = bDL∗(t), (2)
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for non-zero a and b parameters. In equations (1) and (2)
{L∗(t), t ∈ R} is an α−stable Lévy process defined as follows:

L∗(t) = V (t)I[0,∞)(t) − Z(−t)I[−∞,0)(t), −∞ < t < ∞. (3)

where {V (t), t ≥ 0} and {Z(t), t ≥ 0} are two independent
symmetric α−stable Lévy motions with the same α parameter. We
will make the assumption that 1 < α ≤ 2.
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Form of the solution
The process {Y (t), t ∈ R} defined as

Y (t) = b

∫ t

−∞
e−a(t−u)dL∗(u), (4)

satisfies equation (2).

• The process {Y (t), t ∈ R} given in (4) for a > 0 and b = 1 is
called an α−stable Ornstein-Uhlenbeck process.

• For a > 0 the stochastic process {Y (t), t ∈ R} given in (4) is
stationary.
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Measures of dependence for stable random
variable
Let X and Y be jointly symmetric α−stable random variables (SαS
for short) and let Γ be the spectral measure of the random vector
(X, Y ). The most popular measures of dependence for stable random
variables are the covariation CV (X, Y ) and the codifference
CD(X, Y ) (see [6]).

Definition 1 Let X and Y be jointly SαS. The covariation
CV(X, Y ) of X on Y defined for 1 < α ≤ 2 is the real number

CV (X, Y ) =
∫

S2

s1s
<α−1>
2 Γ(ds), (5)

where Γ is the spectral measure of the random vector (X, Y ),
s = (s1, s2) and the signed power z<p> is given by z<p> = |z|p−1z̄.
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Definition 2 Let X and Y be jointly SαS. The codifference
CD(X, Y ) of X on Y defined for 0 < α ≤ 2 equals

CD(X, Y ) = ln E exp{i(X − Y )} − ln E exp{iX} − ln E exp{−iY }. (6)

In contrast to the codifference, the covariation is not symmetric in its
arguments. Moreover, when α = 2 both measures reduce to the
covariance, namely

Cov(X, Y ) = 2CV (X, Y ) = CD(X, Y ). (7)

If α > 1, then the covariation induces a norm ||.||α on the linear
space Sα of jointly SαS random variables.
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Definition 3 The covariation norm of X ∈ Sα, α > 1, is

||X||α = (CV (X, X))1/α. (8)

The covariation norm of a SαS random variable X is equal to the
scale parameter of this variable. For 1 < α ≤ 2 the codifference of
SαS random variables X and Y can be rewritten in the form

CD(X, Y ) = ||X||αα + ||Y ||αα − ||X − Y ||αα. (9)
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CARMA(1,1) processes with symmetric
α-stable Lévy motion. Measures of
dependence.

Proposition 1 Let {Y (t), t ∈ R} be the solution of (2) and a > 0,
then for 1 < α ≤ 2 the covariation of Y (t) on Y (s) for s, t ∈ R has
the following form:

CV (Y (t), Y (s)) =


|b|α e−a(t−s)

aα
for s < t,

|b|α ea(α−1)(t−s)

aα
, for s ≥ t.
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Proposition 2 If {Y (t), t ∈ R} is the solution of (2) and a > 0,
then for 1 < α ≤ 2 the codifference of Y (t) on Y (s) (s, t ∈ R) has the
following form:

CD(Y (t), Y (s)) = |b|α 1 + e−aα|t−s| − |1 − e−a|t−s||α

aα
.
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Theorem 1 If {Y (t), t ∈ R} is the solution of equation (2) and
a > 0, then:

(a) for 1 < α ≤ 2 and each t ∈ R the following formula holds:

lim
h→∞

CD(Y (t), Y (t− h))
CV (Y (t), Y (t− h))

= lim
h→∞

CD(Y (t + h), Y (t))
CV (Y (t + h), Y (t))

= α, (10)

(b) for 1 < α < 2 and each t ∈ R the following formula holds:

lim
h→∞

CD(Y (t− h), Y (t))
CV (Y (t− h), Y (t))

= lim
h→∞

CD(Y (t), Y (t + h))
CV (Y (t), Y (t + h))

= 0. (11)
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Examples
Example 1 The discrete version of (2).
Let us consider the discrete version of considered SαS CARMA(1,1)
processes defined in (2), i.e. time series model given by the equation:

X(n) + aX(n− 1) = bξ(n), (12)

where a, b 6= 0 are real numbers and {ξ(n), n ∈ Z} are independent,
SαS innovations with the scale parameter σξ. The time series
{X(n), n ∈ Z} satisfying (12) is the special case of presented in
Nowicka [3] ARMA models with SαS innovations. This is also the
special case of PARMA models with SαS innovations considered in
Nowicka-Zagrajek and Wy lomańska [4] and described in
Nowicka-Zagrajek and Wy lomańska [5] ARMA models with
time-varying coefficients and SαS innovations. Using results obtained
in Nowicka-Zagrajek and Wy lomańska [4] and Nowicka-Zagrajek and
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Wy lomańska [5] we obtain the following formulas for the coddiference
and covariation under the assumption |a| < 1:

CV (X(n), X(n− k)) = CV (X(n + k), X(n)) =
(−a)k|σξb|α

1 − |a|α
, (13)

CV (X(n), X(n + k)) = CV (X(n− k), X(n)) =
|a|αk|σξb|α

(−a)k(1 − |a|α)
, (14)

CD(X(n), X(n− k)) = CD(X(n + k), X(n))

=
σα

ξ (1 + |a|αk − |1 − (−a)k|α)|b|α

1 − |a|α
, (15)

for every n ∈ Z and for k ∈ Z, k > 0. Results 13 – 15 are not
surprising because of the stationarity of X(n).
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It is not difficult to show that for 1 < α < 2 and for every n ∈ Z we
obtain the similar results as in the continuous case:

(a)

lim
k→∞

CD(X(n + k), X(n))
CV (X(n + k), X(n))

= lim
k→∞

CD(X(n), X(n− k))
CV (X(n), X(n− k))

= α,

(b)

lim
k→∞

CD(X(n− k), X(n))
CV (X(n− k), X(n))

= lim
k→∞

CD(X(n), X(n + k))
CV (X(n), X(n + k))

= 0.
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Example 2 In order to illustrate our theoretical results let us
consider SαS CARMA(1,1) process:

DY (t) + 0.5Y (t) = DL∗(t),

for {L∗(t), t ∈ R} is given in (3) and 1 < α ≤ 2.
As a comparison let us take into account the corresponding to the
process {Y (t), t ∈ R} the discrete ARMA(1,1) model with the same
parameters given by:

X(n) + 0.5X(n− 1) = ξ(n),

where {ξ(n), n ∈ R} are independent SαS random variables with
1 < α ≤ 2.
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Realizations of SαS CARMA(1,1) process
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Realizations of ARMA(1,1) model with SαS innovations
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Functions CD(Y (t+h),Y (t))
αCV (Y (t+h),Y (t)) and CD(Y (t),Y (t+h))

αCV (Y (t),Y (t+h))
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Functions CD(X(n+k),X(n))
αCV (X(n+k),X(n)) and CD(X(n),X(n+k))

αCV (X(n),X(n+k))
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Applications
As an application to stochastic volatility modelling, Berndorff-Nielsen
and Shephard ([1]) introduced a model for asset-pricing in which the
logarithm of an asset price is the solution of the stochastic differential
equation:

DY (t) = µ + βσ2(t) + σ(t)DW (t),

where {σ2(t)}, the instantaneous volatility, is a non-negative
Lévy-driven Ornstein-Uhlenbeck process, {W (t)} is standard
Brownian-motion and µ and β are constants (see [2]).
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Much of the analysis of Berndorff-Nielsen and Shephard can however
be carried out after replacing the Ornstein-Uhlenbeck process by a
symmetric a-stable CARMA process with α = 2 (second order
CARMA process). This has the advantage of allowing the
representation of volatility processes with a larger range of
autocorrelations functions than is possible in the Ornstein-Uhlenbeck
framework. Brockwell and Marquardt in [2] propose the take
CARMA(3,2).
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Let us consider the index level associated with the return on the
indexes for NYSE and AMEX for the period 1962-2005. On the next
Figure we present the considered time series and the trend that was
removed before the further analysis.
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The data can be modelled by the CARMA process. As a best model
we choose the CAR(1) given by the formula

DY (t) + 0.0073Y (t) = DL∗(t),

where {L∗(t), t ∈ R} is a two-sided symmetric α−stable Lévy motion
with α = 1.219. The Jarque-Bera test as well as the Lilliefors test
reject the hypothesis that the residuals come from a distribution in
the normal family.
On the next Figure we illustrate the asymptotic behaviour of the
coddiference (CD(h)) and covariation (CV (h)) for h ∈ [0, 1000]
obtained as an estimator based on the estimated CAR(1) parameter
and index of stability.
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On the next Figure we present the one-step prediction for the year
2005. The data from that year were not taken to the previous
estimation. The mean prediction error is equal 3.6163%.
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