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Abstract
In this paper we clarify the relationship between the relaxation rate and relaxation time
distributions underlying the Kohlrausch–Williams–Watts (KWW) photoconductivity build-ups
in indium- and gallium-doped Cd1−x Mnx Te mixed crystals. We discuss the role of asymptotic
properties of the corresponding probability density functions. We show that the relaxation rate
distribution, as a completely asymmetric α-stable distribution, leads to an infinite mean value of
the effective relaxation rate. In contrast, the relaxation time distribution related to it leads to a
finite mean value of the effective relaxation time. It follows from the experimental data analysis
that for all the investigated samples the KWW exponent α decreases linearly with increasing
photon flux in the range of (0.6–0.99) and its values are more spread in the case of
gallium-doped material. We also observe a linear dependence of the mean relaxation time on
the characteristic material time constant, which is consistent with the theoretical model.

1. Introduction

For many years relaxation processes were a subject of
intensive investigations. These studies revealed that a wide
class of various materials, e.g. amorphous and crystalline
semiconductors, insulators, polymers, disordered crystals,
molecular solid solutions and glasses, exhibit non-exponential
relaxation patterns. It has been stated that, regardless of the
relaxing medium the empirically observed relaxation patterns
reflect some universal behavior of the investigated system. It
was found that the relaxation responses obtained by different
experimental techniques can be well characterized by a small
class of fitting functions exhibiting asymptotically power-law
properties [1–3].

The most popular function applied to fit the time-domain
relaxation data is the stretched-exponential function, known

also as the Kohlrausch–Williams–Watts (KWW) function:

�KWW(t) = e−(At)α , (1)

where 0 < α < 1 is the stretching exponent and A is an inverse
of the characteristic material time constant. The corresponding
response function, i.e. the negative time derivative of the
KWW function, exhibits the short-time power-law property
and decays stretched-exponentially for long times:

fKWW(t) = −d�KWW(t)

dt
∝

{
tα−1, t → 0

e−(At)α , t → ∞.
(2)

Until the development of stochastic approaches to
relaxation, the origins of such response characteristics
remained unclear. Fortunately, the recent progress in stochastic
modeling [4–8] allows us to disclose physical mechanisms
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responsible for the above asymptotic property of the KWW
fitting function.

It has been reported in [9, 10] that persistent photocon-
ductivity build-up in semiconducting multiternary alloys pos-
sessing metastable defects called DX centers follows the non-
exponential relaxation pattern and can be properly described
using the KWW function. It has been shown that the detected
KWW type of measured responses results from a heavy-tailed
distribution of the DX centers’ relaxation rates [11]. The aim of
this paper is to clarify the properties of the relaxation time dis-
tribution underlying the KWW photoionization of the DX cen-
ters in indium- and gallium-doped Cd1−xMnx Te mixed crys-
tals. The proposed approach gives a deeper insight into the
non-exponentiality of photoconductivity build-ups in the stud-
ied materials.

2. Mathematical description of stretched-exponential
relaxation processes

According to the historically oldest approach to relaxation, a
macroscopic non-exponential time-domain relaxation response
results from a classical (exponential) Debye process with
different relaxation times [12]. As a consequence the
non-exponential relaxation function can be mathematically
expressed as a weighted average of an exponential decay e−t/τ

with respect to the distribution g(τ ) dτ of the random effective
relaxation time T :

�(t) = 〈e−t/T 〉. (3)

The above formula reflects stochastic properties of the
considered physical system as a whole. It is a well-known fact
of probability theory [13] that the average (3) can be expressed
in the integral form

�(t) = 〈e−t/T 〉 =
∫ ∞

0
e−t/τ g(τ ) dτ, (4)

if the random relaxation time T takes values τ from the range
[0,∞) with probability g(τ ) dτ , where g(τ ) is the effective
relaxation time probability density function (pdf).

The relaxation function can also be expressed by means
of the random relaxation rate β = 1/T taking values b from
the range [0,∞). Formula (4) can then be rewritten into an
equivalent form:

�(t) = 〈e−βt 〉 =
∫ ∞

0
e−bt ρ(b) db, (5)

where ρ(b) denotes now the effective relaxation rate pdf.
In the above formula the relaxation function �(t), as the
exponentially weighted mean value of the effective relaxation
rate β , is simply expressed by means of the Laplace transform
of the relaxation rate pdf ρ(b). It follows from [5–8] that such
a representation allows a better understanding of the stochastic
mechanism underlying the non-exponential relaxation. Both
probability density functions (cf equations (4) and (5)) are
interrelated. The relationship between them is given by the
formula

ρ(b) = 1

b2
g

(
1

b

)
. (6)

Using the notion of the random relaxation rate β the
stretched-exponential relaxation function (1) may be expressed
as

�KWW(t) = e−(At)α = 〈e−βKWWt〉 =
∫ ∞

0
e−btρKWW(b) db.

(7)
Thus the relaxation function �KWW(t) is expressed as the

Laplace transform of the relaxation rate pdf ρKWW(b). It has
been shown in [4–8] that βKWW is an α-stable, non-negative
random variable possessing the completely asymmetric α-
stable pdf [14]. In general, the explicit form of the completely
asymmetric α-stable densities is unknown. It can, however, be
expressed by means of the series representation [14], namely
we have

ρ(b) =
[

B(α)λ(α)

2π(1 − α)

] 1
α
(

b

γ

)− λ(α)

2 1

b

× exp

[
−B(α)

(
b

γ

)−λ(α)]
, for b → 0 (8)

where

B(α) = (1 − α)α
α

1−α

(
cos

(πα

2

))− 1
1−α

, λ(α) = α

1 − α

and

ρ(b) = 1

πb

∞∑
n=1

(−1)n+1 
(nα + 1)

n!
[(

cos
(πα

2

)) 1
α b

γ

]−nα

× sin(nπα), for b → ∞ (9)

where γ [s−1] > 0 is some fixed positive constant and

(·) signs the gamma function. For b → 0 the
behavior of the α-stable pdf ρ(b) is dominated by the term
exp[−B(α)(b/γ )−λ(α)] whereas for b → ∞ the relaxation
rate pdf exhibits the power-law properties. The asymptotic
properties of the relaxation rate pdf are directly related to
the asymptotic behavior of its Laplace transform. It is a
well-known fact that the properties of a function p(x) for
x → ∞ correspond to the properties of its Laplace transform
L(p(x), t) for t → 0. The Tauberian theorems [13] imply
then that the short-time power law tα−1 of the KWW response
function fKWW(t), see equation (2), follows from the power-
law tail property

ρKWW(b) ∝ b−α−1, 0 < α < 1, b → ∞ (10)

of the relaxation rate pdf for large b. It is clear from probability
theory that the KWW relaxation rate, distributed according to
the distribution with the tail property (10), cannot lead to the
finite mean value of the effective relaxation rate, i.e.

bKWW = 〈βKWW〉 =
∫ ∞

0
bρKWW(b) db = ∞. (11)

Property (10) denotes that the effective rate distribution in
the KWW relaxation pattern is scale-invariant. The distribution
looks the same at each length scale, i.e. it is not possible to
define a characteristic macroscopic rate, as it may with the
same probability take both large and small values.
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Figure 1. The KWW relaxation rate (a) and relaxation time (b) probability density functions calculated for various values of the stretching
exponent α.

Figure 2. The log–log plot of the KWW relaxation rate (a) and relaxation time (b) probability density functions for the stretching exponent
α = 0.6.

Due to the fact that ρKWW(b) and gKWW(τ ) are related by
equation (6), we get

gKWW(τ ) = 1

τ 2
ρKWW

(
1

τ

)
, (12)

from which one can easily obtain that the power-law
asymptotic behavior of ρKWW(b) for large b yields the
following dependence of gKWW(τ ):

gKWW(τ ) ∝ τα−1, τ → 0. (13)

In contrast to the KWW relaxation rate pdf ρKWW(b),
the relaxation time distribution gKWW(τ ) does not exhibit
the power-law tail for large τ . Thus, the relaxation time
distribution allows us to calculate the finite mean value of the
random effective relaxation time T :

τKWW = 〈TKWW〉 =
∫ ∞

0
τgKWW(τ ) dτ < ∞. (14)

In figure 1 samples of the KWW relaxation rate and
relaxation time pdfs calculated for various values of the

stretching exponent α are plotted. In the limiting case, when
α tends to 1, the densities tend to δ-Dirac function. Note that
relaxation rate pdfs are unimodal, regardless of the value of α

whereas relaxation time pdfs are unimodal solely, when α > 2
3 .

For α � 2
3 , the densities are monotonically decaying. In

figure 2 the sample relaxation rate and relaxation time density
pdfs for α = 0.6 are presented in a log–log scale. It is
clear from the plot that both the densities exhibit different
asymptotic properties.

3. Experiment

Single crystals of Cd0.93Mn0.07Te:In, Cd0.9Mn0.1Te:In and
Cd0.99Mn0.01Te:Ga, grown by the Bridgman method, were
used for this study. Prior to the measurements the samples
were annealed in cadmium vapor to reduce the cadmium
vacancies. Slices of the material were mechanically polished
and etched in a 2% Br2 in methanol solution. Capacitance–
voltage measurements performed with a 1 MHz capacitance
bridge yielded the room temperature donor net concentration

3
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Figure 3. The transient of the normalized relative photoconductivity (relaxation data) and the negative time derivative of the transient
(response data) for indium- and gallium-doped Cd1−x Mnx Te. The kinetics were recorded at 77 K for 1.24 eV photon energy, under the same
illumination conditions. The solid lines are the best fits of the stretched-exponential function (1) to the measured data.

Figure 4. Stretching exponent versus photon flux plot. For all the
samples under study α decreases with increasing photon flux.

of the order of 1015 cm−3 for Cd0.93Mn0.07Te:In and 1016 cm−3

for Cd0.9Mn0.1Te:In and Cd0.99Mn0.01Te:Ga samples.
For the photoconductivity measurements, ohmic contacts

were made by indium soldering of gold wires to fresh surfaces
of the wafers. The four-point probe method was utilized. In
the experiment, the measurement of potential difference across
the sample was carried out at 10 μA current supplied from a
Keithley constant-current source. A tungsten lamp served as a
light source for illumination of the sample and a shutter with
a 0.2 s time constant was used to turn the light on and off.
The light passed through a monochromator and with the help
of fiber optics the monochromatic beam was focused on the
sample immersed in liquid nitrogen. A thermopile was used to
measure the light intensity.

All photoconductivity transients were recorded at 77 K
after exposing the samples to monochromatic light with
photon energy equal to 1.24 eV. This energy is less than the
bandgap in the investigated materials. The measurements
were carried out at various photon fluxes. Prior to each
measurement, the investigated sample had to be warmed up
to a temperature at which persistent photoconductivity was
suppressed. Subsequently, the sample was cooled down in
darkness to liquid nitrogen temperatures. Under illumination,
the measurement was carried out until conductivity was
saturated. Typically the build-up of conductivity lasted several
minutes.

4. Results and discussion

It has been stated that photoconductivity build-ups in
Cd1−x Mnx Te:In and Cd1−x Mnx Te:Ga exhibit the KWW
relaxation pattern [9, 10]. In figures 3(a)–(c), the kinetics
of photoconductivity build-up at 77 K, obtained for the
investigated samples, are depicted. The normalized relative
change �σ(t) in the conductivity due to illumination:

�σ(t) = σ(tsat) − σ(t)

σ (tsat) − σ(ton)
(15)

is presented in a semi-logarithmic scale. Here σ(ton) represents
the value of conductivity at the instant of turning the light on
and σ(tsat) is the saturated conductivity under illumination.
The observed non-exponential transients of the normalized
relative photoconductivity may be properly described in terms
of the stretched-exponential function (cf equation (1)).

In figures 3(d)–(f) the response data (defined as the growth
rate of the normalized relative conductivity f (t) = − d�σ(t)

dt )
are shown in a log–log scale. In this representation, within
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Figure 5. α-stable densities of the DX centers’ relaxation rates for various values of the parameter α ∈ (0, 1). The densities decay as b−α−1

for b → ∞.

the short-time range, a time dependence of f (t) ∼ tα−1 is
observed as a straight line (cf the data in the ellipses). This is
the fingerprint of the power-tail property (10) of the relaxation
rate pdf. This power-law property has been observed for
gallium- and indium-doped samples and for various photon
fluxes. It can be noted that, within the whole measured time
range, the response function can be perfectly fitted by the
stretched-exponential response function.

In table 1 values of the parameters, obtained as a result
of fitting the experimental data by means of the stretched-
exponential function, are reported. It was found that, regardless
of donor types, the values of the stretching exponent α decrease
linearly with increasing photon flux (see figure 4). For
indium-doped material the values of α fall in the range of
(0.89–0.99), whereas for gallium-doped samples they fall in
the range of (0.66–0.80). It was discussed in [11] that the
value of the stretching exponent reflects the internal stochastic
characteristic of the investigated medium. The material is more
dispersive, i.e. the defect relaxation rates are more spread,
when α takes smaller values. For α approaching 1, the
defects’ relaxation rates are focused around the mode of their
distribution.

Within the stochastic approach to relaxation processes
it can be shown that the observed stretched-exponential

Table 1. The values of fitting parameters: stretching exponent α and
time constant τ = 1/A for various photon fluxes.

Cd0.97Mn0.03Te:In Cd0.9Mn0.1Te:In Cd0.99Mn0.01Te:Ga

Photon flux
(arb. units) α

1/A
(s) α

1/A
(s) α

1/A
(s)

2 0.99 345 0.95 213 — —
3 — — — — 0.80 282
4 0.96 244 0.94 137 0.77 144
5 — — — — 0.74 107
6 0.94 175 0.93 114 — —
7 — — — — 0.69 66
8 — — — — 0.66 41
9 0.91 120 0.89 100 — —

behavior of the photoconductivity transients in indium- and
gallium-doped Cd1−xMnxTe may be related to an α-stable
relaxation rate distribution of the photoionized defects—the
DX centers [11]. In figure 5 the KWW relaxation rate
distribution functions ρKWW(b) for indium- and gallium-doped
Cd1−x Mnx Te are plotted in a log–log scale. The values of
relaxation parameters used for density calculations are given
in table 1. Note that the smaller the value of α is, the
heavier the tail of the density becomes. Hence, the tails of
the densities decay slower for gallium-doped samples. The

5
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Figure 6. Densities of the DX centers relaxation times. Note the power-law property τα−1 for τ → 0.

power-law asymptotic property observed for large b remains
in agreement with those described by formula (10).

According to the fact that the relaxation rate density and
the relaxation time density are related, it follows from (6), (8)
and (9) that the relaxation time pdf may also be given in terms
of a series representation, i.e.

g(τ ) = 1

πτ

∞∑
n=1

(−1)n+1 
(nα + 1)

n! (τ A)nα sin(πnα)

for τ → 0 (16)

and

g(τ ) = 1

τ

[
B(α)λ(α)

2π(1 − α)

] 1
α

(γ τ )
λ(α)

2 exp
[−B(α)(γ τ )λ(α)

]
,

for τ → ∞ (17)

where

B(α) = (1 − α)α
α

1−α

(
cos

(πα

2

))− 1
1−α

, λ(α) = α

1 − α

and
A = γ[

cos
(

πα
2

)] 1
α

, (18)

is one of the KWW fitting parameters (cf equation (1)),
which is understood as an inverse of characteristic material

Table 2. The values of parameter γ for various photon fluxes.

Cd0.93Mn0.07Te:In Cd0.9Mn0.1Te:In Cd0.99Mn0.01Te:Ga
Photon flux
(arb. units) γ (s−1) γ (s−1) γ (s−1)

2 0.00004 0.0003 —
3 — — 0.0008
4 0.0002 0.0006 0.0018
5 — — 0.0027
6 0.0005 0.0008 —
7 — — 0.0050
8 — — 0.0088
9 0.0010 0.0014 —

time constant. According to equation (18) the value of A
is determined by the value of the stretching exponent α and
some positive constant γ . In table 2 values of the parameter γ

obtained for all the investigated samples are reported. It would
appear that the value of this parameter depends on the donor
type in the investigated Cd1−x Mnx Te. It takes larger values
for gallium-doped samples. For indium-doped material values
of γ are smaller for samples with smaller indium content.
Unfortunately, the physical meaning of this constant is not
clear for us at the moment.

In figure 6 the relaxation time gKWW(τ ) pdfs, correspond-
ing to the relaxation rate densities depicted in figure 5, are

6
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Figure 7. The expected value of the KWW relaxation time versus 1/A. The value of A results from fitting the experimental data by means of
the stretched-exponential function (1).

shown in a log–log scale. In contrast to ρKWW(b), the relax-
ation time pdf does not exhibit the power-law decay for large
values of τ . The power-tail behavior τα−1 is observed as a
linear dependence solely for τ → 0.

Both considered densities exhibit various asymptotic
behavior. Therefore to obtain the complete information
concerning the random properties of the relaxing defects
it is useful to look at the system in terms of both the
representations (4) and (5). The proposed approach allows
us also to calculate the expected value of the effective
relaxation time. Taking into consideration equation (12)
and relationship (6) one can find the expected value of the
relaxation time:

τKWW = 〈TKWW〉 =
∫ ∞

0
τgKWW(τ ) dτ, (19)

even without the explicit knowledge of ρKWW(b). Namely,
since from (6)

ρKWW(b) = 1

2π i

∫ i∞

−i∞
ebt�KWW(t) dt (20)

where b = 1/τ , we get from (12) that

τKWW =
∫ ∞

0

1

b

[
1

2π i

∫ i∞

−i∞
ebt�KWW(t) dt

]
db. (21)

Moving the b−1 term inside the integral over dt ,
interchanging the order of integration and moving the �(t)
term outside the integration over db yields

τKWW =
∫ ∞

0
e−(At)α dt = 1

A



(
1

α
+ 1

)
, (22)

which bonds the expected value of the effective relaxation time
τKWW with the values of the KWW fitting parameters α and
A. In figure 7 the expected value of the relaxation time versus
the inverse of A is depicted. The experimental results remain
in agreement with the demonstrated theoretical calculation,
i.e. the linear dependence of τKWW on 1/A is observed for all
the analyzed materials. In table 3 the expected value of the
relaxation time τKWW and parameter 
( 1

α
+ 1) for different

photon fluxes is presented. It is clear from the table that
the relaxation time gets shorter with increasing photon flux.
This tendency, observed for all the studied samples, stays in
agreement with our physical intuition. Higher photon flux
results in quicker ionization of the defects. Furthermore, the
relaxation time takes smaller values in the case of gallium-
doped samples as compared to indium-doped ones. Moreover,
the smaller expected value of the effective relaxation time
is related to the Cd1−x Mnx Te:In samples with higher indium
content. Values of the parameter 
( 1

α
+ 1) given in table 3

were determined in two ways: as the gamma function value

7
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Table 3. Parameter 
( 1
α

+ 1) and expected values τKWW of the relaxation time for various photon fluxes. Values of τKWW were calculated
using equation (22).

Cd0.93Mn0.07Te:In Cd0.9Mn0.1Te:In
Photon flux
(arb. units) τKWW (s) 
( 1

α
+ 1) Slope coefficient τKWW (s) 
( 1

α
+ 1) Slope coefficient

2 347 1.00 ± 0.01

1.02 ± 0.04

218 1.02 ± 0.01

1.03 ± 0.044 249 1.02 ± 0.01 141 1.03 ± 0.01
6 180 1.03 ± 0.01 118 1.03 ± 0.01
9 126 1.05 ± 0.01 106 1.06 ± 0.01

Cd0.99Mn0.01Te:Ga
Photon flux
(arb. units) τKWW (s) 
( 1

α
+ 1) Slope coefficient

3 320 1.13 ± 0.01

1.16 ± 0.08
4 168 1.17 ± 0.02
5 129 1.20 ± 0.02
7 85 1.28 ± 0.02
8 55 1.34 ± 0.02

and as the slope coefficient of linear fit to the τKWW versus 1/A
data.

For indium-doped samples the value of 
( 1
α

+ 1) slightly
changes with varying photon flux. For gallium-doped material
differences would seem to be more significant. Values of
this parameter obtained from calculations remain in agreement
within the error range of these which were determined as the
slope coefficients of the τKWW versus 1/A dependence.

5. Conclusions

In this paper the properties of the effective relaxation rate
and relaxation time distributions, underlying the stretched-
exponential relaxation pattern observed in gallium- and
indium-doped Cd1−xMnx Te, have been discussed. It was
shown that the stretched-exponential relaxation function,
which properly describes photoconductivity build-ups in
these materials, can be expressed by means of the Laplace
transform of an α-stable distribution of the effective DX
centers’ relaxation rate. The asymptotic properties of the
heavy-tailed relaxation rate pdf have been straightforwardly
related to the short-time power-law property of the measured
photoconductivity response transients. Furthermore, the
relation between the DX centers’ relaxation rate and the
relaxation time densities was brought into the limelight.
For the first time the effective relaxation time pdfs
were presented for Cd0.97Mn0.03Te:In, Cd0.9Mn0.1Te:In and
Cd0.99Mn0.01Te:Ga. It was emphasized that the heavy-tailed
property of the DX centers’ relaxation rate distribution yields
the infinite mean value of effective relaxation rate. However,
the relaxation time distribution does not possess the power-
law tail for large values of time. Therefore, it is possible to
calculate the mean value of the KWW relaxation time. The
relation between the expected value of the KWW relaxation
time τKWW and the characteristic material time constant 1/A
obtained from the data fitting was clarified. Summarizing, the

KWW relaxation time distribution approach gives additional
information concerning the random characteristic of the DX
centers in the studied materials.
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