
J Stat Phys
DOI 10.1007/s10955-011-0310-z

Option Pricing in Subdiffusive Bachelier Model

Marcin Magdziarz · Sebastian Orzeł ·
Aleksander Weron

Received: 21 April 2011 / Accepted: 9 August 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract The earliest model of stock prices based on Brownian diffusion is the Bachelier
model. In this paper we propose an extension of the Bachelier model, which reflects the
subdiffusive nature of the underlying asset dynamics. The subdiffusive property is mani-
fested by the random (infinitely divisible) periods of time, during which the asset price does
not change. We introduce a subdiffusive arithmetic Brownian motion as a model of stock
prices with such characteristics. The structure of this process agrees with two-stage scenario
underlying the anomalous diffusion mechanism, in which trapping random events are su-
perimposed on the Langevin dynamics. We find the corresponding fractional Fokker-Planck
equation governing the probability density function of the introduced process. We construct
the corresponding martingale measure and show that the model is incomplete. We derive
the formulas for European put and call option prices. We describe explicit algorithms and
present some Monte-Carlo simulations for the particular cases of α-stable and tempered
α-stable distributions of waiting times.

Keywords Subdiffusion · Fractional Fokker-Planck equation · Bachelier model · Option
pricing · Model of financial markets · Infinitely divisible distribution · Tempered stable
distribution

1 Introduction

The modern approach to financial engineering based on continuous-time processes began
in the year 1900 with the pioneering thesis of Louis Bachelier, [1], “Théorie de la Spécula-
tion”. Probably the most remarkable achievement of Bachelier was the development of the
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mathematical theory of Brownian motion. He initiated the study of diffusion processes five
years before the famous physical papers by Albert Einstein, [14] and Marian Smoluchowski,
[38], and decades before the works of mathematicians Norbert Wiener, Kiyoshi Itô and Paul
Lévy [16, 21, 42]. Bachelier observed that the stock price movements are analogous to the
motion of small particles suspended in liquids. With this assumption he derived the under-
lying equations of motion and found the pricing formulas for put and call options on such
stocks. Let us add here that, in accordance with tradition at Sorbonne, he also defended a
second thesis on mechanics of fluids [8].

In the contemporary terms, Bachelier assumed that the stock price follows an arith-
metic Brownian motion (ABM). Although the trajectories of ABM can become negative,
the Bachelier model appears to be an appropriate tool to handle short-lived derivatives [28].
Moreover, it has been demonstrated recently [37], that option pricing formulas of Bachelier
and Black-Scholes coincide very well in the sense that Bachelier’s model yields good short
time approximations of prices and volatilities.

In dissertation [1] and subsequent works Bachelier anticipated much of what was to
become standard fare in stochastic calculus, diffusion theory and mathematical finance: ran-
dom walk of market price, limit of random walks, Brownian motion, and martingale mea-
sure. The innovative ideas of Bachelier were much above the prevailing level of existing
financial theory, physics and mathematics. For example, he calculated the probability that
the Brownian motion does not exceed a fixed level and found the distribution of the supre-
mum of the Brownian motion. Even more surprisingly, he derived the distribution of the
Ornstein-Uhlenbeck process In spite of its mathematical elegance and novelty, the theory
of Bachelier was neglected for over fifty years. Samuelson, [36], was the first to rediscover
Bachelier’s ideas to introduce a more adequate description of stock price dynamics based
on the geometric Brownian motion (GBM). The culminating point in the extensive research
on GBM in the context of financial engineering, was the result of Black, Scholes and Mer-
ton [4, 26], who derived consistent formulas for the fair prices of European options. Their
discovery was of such great importance that Merton and Scholes were awarded the Nobel
Prize for Economics in 1997. After the recent findings [37], it seems that the Black-Scholes-
Merton success was overestimated. From the physical point of view the Bachelier approach
is more natural. Since the probability density function (PDF) corresponding to ABM satis-
fies the well-known diffusion-advection equation [27].

Analysis of miscellaneous financial markets shows that majority of economical processes
are far away from the classical diffusion models considered in financial mathematics. Hence,
in recent years we observe an increasing number of mathematical models which deal with
non-ideal properties of real-life financial markets. For example, Black-Scholes model and
other Lévy type models [7] are incapable of adequately fitting implied volatility surfaces of
equity options across both strike and maturities. In order to overcome this difficulty during
the last decade dozens of alternative models have been proposed within the class of H-self-
similar models, see [15].

The often encountered property of financial data are the characteristic periods of time in
which economic process stays motionless (periods of stagnation). Such behavior is typical
for emerging markets with low number of transactions [17] and for interest rate markets [30].
For interest-rate, currency, and commodity markets, see [18]. Notably, analogous behavior is
observed in complex physical systems, in which the motion of small particles is interrupted
by the trapping events—the random periods of time when the particle gets immobilized
in a trap. Real-life examples of subdiffusive dynamics include: charge carrier transport in
amorphous semiconductors, nuclear magnetic resonance, diffusion in percolative and porous
systems, transport on fractal geometries and dynamics of a bead in a polymeric network, as
well as protein conformational dynamics (see [27] and references therein).
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Following the same line as Bachelier, we infer that the constant periods of stagnation in
financial processes are analogous in nature to the trapping events of the subdiffusive parti-
cle. Therefore, the physical models of subdiffusion can be successfully applied to describe
financial data.

The usual model of subdiffusion in physics is the celebrated Fractional Fokker-Planck
equation (FFPE). This equation was derived from the continuous-time random walk scheme
with heavy-tailed waiting times (see [27]). Since then it became the standard mathemati-
cal tool in the analysis of complex systems, [10–13]. Equivalent description of subdiffusion
is in terms of subordination, where the standard diffusion process is time-changed by the
so-called inverse subordinator [22, 25]. Following this line, in this paper we introduce a
subdiffusive ABM as a model of stock prices. This process is defined as the standard ABM
subordinated by the infinitely divisible (id) inverse subordinator. For a historical review on
financial models exploiting the method of subordination, see [15]. Since the id inverse sub-
ordinators do not have independent increments, the examined here process does not belong
to the extensively studied class of subordinated additive processes [6, 15], which has found
widespread applications in finance.

We underline that the presented here methodology can be easily extended to other dif-
fusion processes time-changed by the inverse subordinators. For the sake of clarity and
simplicity, we consider only ABM. Analogous results can be obtained for other diffusion
processes (see [23, 39] for the case of GBM with α-stable waiting times).

The paper is organized as follows. In the next section we give the precise definition of
subdiffusive ABM, and find the corresponding fractional Fokker-Planck equation governing
the dynamics of PDF. In Sect. 3 we prove that the model is arbitrage-free and incomplete. We
also derive formulas for the fair prices of European options in our model. Finally, we con-
sider two particular examples of waiting-time distributions: α-stable and tempered α-stable.
We discuss the methods of simulation of the trajectories of subdiffusive ABM and present
some numerical results illustrating our findings.

2 Subdiffusive Model of Stock Prices

In modern terms, in the Bachelier model the stock price dynamics follows ABM

X(t) = X0 + μt + σB(t), t ≥ 0. (1)

Here, μ ∈ R is the drift parameter, σ ∈ R+ is the volatility and B(t) is the standard Brownian
motion (Wiener process) on the probability space (Ω, F ,P). This market model is arbitrage-
free and complete.

Option pricing formulas in the Bachelier model can be derived using the standard mar-
tingale method. Considering a European call option on a stock X with expiry date T and
strike price K , one can show that its fair price is given by [28]

C(X0,K,T ,σ ) = σ
√

T n

(
X0 − K

σ
√

T

)
+ (X0 − K)N

(
X0 − K

σ
√

T

)
. (2)

Here, n (respectively N ) is the PDF (respectively, cumulative distribution function) of the
standard normal distribution. We assume for simplicity that the risk-free interest rate r = 0,
which is common for the Bachelier model (see [28]). By the put-call parity, the price of the
put option yields

P (X0,K,T ,σ ) = C(X0,K,T ,σ ) + K − X0. (3)



M. Magdziarz et al.

The following inequality between Bachelier price CB = C(X0,K,T ,σ ) and the Black-
Scholes price CBS was obtained in [37]

0 ≤ CB − CBS ≤ X0

12
√

2
σBT 3/2,

where σB is the implied volatility in the Bachelier model. Moreover, the difference between
the implied volatilities in both models was estimated in [37] as follows

0 ≤ σBS − σB ≤ T

12
(σBS)3.

This demonstrates how close the Bachelier and the Black-Scholes option pricing formulas
are. Now, our goal is to extend the Bachelier model in order to capture the subdiffusive char-
acter of the underlying asset (the random periods of stagnation in which the price does not
change). Recall that this property is particularly visible in the emerging markets, in which
the number of transactions is low. We begin with defining the so-called inverse subordinator.
It is defined as

SΨ (t) = inf{τ > 0 : TΨ (τ) > t}. (4)

Here, TΨ (t) is the strictly increasing Lévy process [3] with the Laplace transform

〈exp(−uTΨ (t))〉 = exp(−tΨ (u)). (5)

The Laplace exponent is given by Ψ (t) = ∫ ∞
0 (1 − e−ux)ν(dx) with the Lévy measure ν

satisfying
∫ ∞

0 (1 ∧ x)ν(dx) < ∞. To exclude the case of compound Poisson process, we
additionally assume that ν(0,∞) = ∞. Contrary to TΨ (t) which is a pure jump process,
the trajectories of SΨ (t) are continuous. Moreover, they are singular with respect to the
Lebesgue measure. Additionally, for every jump of TΨ (t) there is a corresponding flat period
of its inverse. These flat periods, distributed according to id law, are characteristic for the
subdiffusive dynamics and they represent the waiting times in which the test particle gets
immobilized in the trap.

Now, in analogy with the physical description of subdiffusion, we introduce the subdif-
fusive ABM

YΨ (t) = X(SΨ (t)) = X0 + μSΨ (t) + σB(SΨ (t)), (6)

t ∈ [0, T ], as a model of stock prices. Here, the processes X(t) and SΨ (t) are assumed
independent. The typical trajectory of YΨ (t) with tempered α-stable waiting times (i.e.
Ψ (u) = (u + λ)α − λα , 0 < α < 1, λ > 0) is shown in Fig. 1. The main difference between
the classical and subdiffusive ABM are the constant periods in the realizations of the latter
process. Depending on the choice of the exponent Ψ (u), we obtain different id distributions
of the waiting times in which the price does not change. This assures flexibility and uni-
versality of the introduced model. Important examples of id laws include: α-stable, Pareto,
exponential, gamma, Linnik, Mittag-Leffler, and tempered α-stable distributions, [7].

Now, we present the fractional Fokker-Planck equation governing the PDF of YΨ (t). This
type of equation is the usual tool used in physics to analyze subdiffusive dynamics. PDF of
the process YΨ (t) is the solution of the following fractional Fokker-Planck equation

∂w(x, t)

∂t
= Φt

[
−μ

∂

∂x
+ σ 2

2

∂2

∂x2

]
w(x, t), (7)
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Fig. 1 Sample realizations of the
standard ABM X(t) (top panel),
and the corresponding
subdiffusive ABM
YΨ (t) = X(SΨ (t)) with
tempered stable waiting times
(bottom panel). The constant
intervals of the latter process are
typical for subdiffusion and
represent the periods of
stagnation

w(x,0) = δ(x − X0). Here Φt is the integro-differential operator defined as

Φtf (t) = d

dt

∫ t

0
M(t − y)f (y)dy,

with the memory kernel M(t) defined via its Laplace transform

M̂(u) =
∫ ∞

0
e−utM(t)dt = 1

Ψ (u)
.

For the derivation of formula (7), see Appendix A. The above result allows to find, at least in
some particular cases, closed-form formulas for the PDF of YΨ (t). Moreover, approximated
solutions of (7) can be derived by the finite element method (see [9]), or by the Monte Carlo
techniques based on the simulation algorithm of YΨ (t) (see Sect. 4).

3 Lack of Arbitrage, Incompleteness and Option Pricing Formula

Let us consider a market, whose evolution up to time horizon T is contained in the proba-
bility space (Ω, F ,P). The asset price in this market is described by the subdiffusive ABM
YΨ (t). Denote by (Ft )t∈[0,T ] the filtration generated by YΨ (t), i.e. history of the process up
to time t . The usual requirement for pricing rules in a given market model is that it does not
admit arbitrage opportunities. Recall that to assure that the market model is arbitrage-free, it
is enough to prove the existence of the equivalent martingale measure, see [7]. The martin-
gale property formalize the concept of the fairness of the game, i.e. its increment process is
a fair-game, meaning that the expectation value of increments is zero, for more details and
connection to anomalous diffusion see [41].

Let us introduce the following measure

Q(A) =
∫

A

exp

{
−γB(SΨ (T )) − γ 2

2
SΨ (T )

}
dP, (8)
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where γ = μ

σ
and A ∈ F . Clearly, Q is a probability measure equivalent to P. Moreover, in

Appendix B it is proved that the subdiffusive ABM YΨ (t) is a martingale with respect to Q.
Consequently, by the Fundamental theorem of asset pricing [7] we obtain that the market
model, in which the asset price is described by the subdiffusive ABM, is arbitrage-free.

Another typical question raised in the context of market model is the question of its
completeness. Recall that the market is complete if every FT -measurable contingent claim
admits a replicating self-financing strategy [7]. Completeness of a market is usually verified
in the framework of the martingale methodology. The Second Fundamental theorem of asset
pricing states that the model is complete if and only if there is a unique martingale measure.
In Appendix C we give two very different proofs of the incompleteness of financial market
model based on subdiffusive ABM YΨ (t). In the first one the whole family of equivalent
martingale measures is constructed, whereas in the second proof we show that not every
contingent claim can be replicated. Both proofs are of independent interest, therefore we
decided to insert each of them.

The next step is the derivation of the option pricing formulas. Here, we will concentrate
on the European options, however, other derivatives can be priced in a similar manner. From
Appendix C we know that the subdiffusive model is incomplete. As a consequence, we
obtain different prices of derivatives depending on the choice of the martingale measure. In
what follows, we will concentrate only on the measure Q defined in (8), since it is the natural
extension of the martingale measure from the classical Bachelier model, in the context of
subordination. Moreover, the relative entropy (also called the Kullback-Leibler divergence
[20]) of Q is smaller than the relative entropy of measures Qε defined in (20). This means
that the distance between measure Q and the “real-life” measure P is smallest in terms of
relative entropy. The relative entropy of Q is equal to

D = −
∫

Ω

log
dQ

dP
dP = γ 2

2
〈SΨ (T )〉.

On the other hand, the relative entropy of Qε yields

Dε = −
∫

Ω

log
dQε

dP
dP = log

〈
exp

{
−γB(SΨ (T )) −

(
ε + γ 2

2

)
SΨ (T )

}〉

+
(

ε + γ 2

2

)
〈SΨ (T )〉 = log〈exp{−εSΨ (T )}〉 +

(
ε + γ 2

2

)
〈SΨ (T )〉

≥ γ 2

2
〈SΨ (T )〉 = D.

This confirms that the measure Q minimizes the relative entropy.
It is important to emphasize here that although the recipes for obtaining option prices are

the same for Bachelier’s as for the Black-Scholes approach, the arguments in favor of them
are very different. Namely, an equilibrium argument in Bachelier case, as opposed to the no
arbitrage arguments in the Black-Scholes approach, [37].

Consider the market model, in which the asset price follows the subdiffusive ABM YΨ (t).
Further, let the martingale measure Q be defined in (8). Then, the corresponding fair price
of the European call option with expiry date T and strike price K is given by

CΨ (X0,K,T ,σ ) = 〈C(X0,K,SΨ (T ), σ )〉

=
∫ ∞

0
C(X0,K,x,σ )gΨ (x,T )dx. (9)
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Here, gΨ (x,T ) is the PDF of SΨ (T ) and C(X0,K,T ,σ ) is given by (2).
The above formula follows from the fact that

CΨ (X0,K,T ,σ ) = 〈(YΨ (T ) − K)+〉Q

=
〈
exp

{
−γB(SΨ (T )) − γ 2

2
SΨ (T )

}
(YΨ (T ) − K)+

〉
,

where 〈.〉Q denotes expectation with respect to the martingale measure Q. Therefore, condi-
tioning on SΨ (T ), we obtain

CΨ (X0,K,T ,σ ) = 〈C(X0,K,SΨ (T ), σ )〉 =
∫ ∞

0
C(X0,K,x,σ )gΨ (x,T )dx,

where gΨ (x,T ) is the PDF of SΨ (T ). This ends the proof of formula (9).
The price of the corresponding European put option is easily recovered from the put-call

parity (3)

PΨ (X0,K,T ,σ ) = CΨ (X0,K,T ,σ ) + K − X0. (10)

There are two ways of finding the values of the price CΨ (·). The first one is by the Monte
Carlo method. One simulates trajectories of the inverse subordinator SΨ (t) on the inter-
val [0, T ] and calculates the expected value in (9). The following efficient approximation
scheme [22] can be used to simulate numerically the trajectories of SΨ (t)

SΨ,δ(t) = (min{n ∈ N : TΨ (δn) > t} − 1)δ. (11)

Here, δ > 0 is the step length and TΨ (τ) is the subordinator introduced in (5). As shown
in [22], SΨ,δ(·) converges uniformly and strongly to SΨ (·) as δ ↘ 0. To simulate SΨ,δ(t),
one only needs to generate the values TΨ (δn), n = 1,2, . . . . Since TΨ (t) is a Lévy process,
this can be done by the general method presented in [33]. For some particular cases of id
distributions, more efficient algorithms are at hand (see Sect. 4).

The second way of finding CΨ (·) is by approximating the integral in (9). However, this
can be performed only in the cases, when the PDF gΨ (x,T ) is known explicitly. Some
particular examples are presented in Sect. 4.

4 Examples of Waiting Times

4.1 α-Stable Waiting Times

The first considered here example of waiting-time distribution is the α-stable law, which is
the most prominent representative of the class of heavy-tailed distributions ([19, 35]). In the
α-stable case the Laplace exponent in (5) is given by

Ψ (u) = uα, 0 < α < 1.

Consequently, TΨ (t) is the 1/α-self-similar stable subordinator. Therefore, the subordinated
Brownian motion B(SΨ (t)) is α/2-self-similar. This desired feature plays an important role
in the modeling of financial markets ([15]), it also simplifies significantly all the calculations
in the α-stable case.
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Fig. 2 The difference between the classical Bachelier price of the European call option and the subdiffusive
one C(X0,K,T ,σ ) − CΨ (X0,K,T ,σ ), according to the exercise date T and strike price K . In the subdif-
fusive model the waiting times follow the α-stable law (Ψ (u) = uα ). Here, X0, σ and α are fixed and equal
100, 1 and 0.9, respectively. For small T the subdiffusive price is larger than the classical Bachelier price (the
difference is negative), while for the larger T the subdiffusive price is smaller than the Bachelier one

Additionally, the operator Φt in formula (7) reduces to the fractional derivative of the
Riemann-Liouville type [34]

0D
1−α
t f (t) = 1

Γ (α)

d

dt

∫ t

0
(t − s)α−1f (s)ds,

and the solution of (7) can be represented in terms of the special Fox function (see [27]).
Moreover, the PDF gΨ (x,T ) of the inverse α-stable subordinator SΨ (t) yields

gΨ (x,T ) = T −αgα(x/T α),

where gα(z) = H 1 0
1 1 (z|(1−α,α)

(0,1) ) is the Fox function [34]. In particular, for α = 0.5 we get that

g0.5(z) = 1√
π

exp(− z2

4 ), which allows to evaluate numerically integral (9) and to find the fair
prices of call and put options.

In the α-stable case, the approximation scheme (11) works very efficiently. The values
TΨ (δn), n = 1,2, . . . , in (11) can be generated by the standard Euler method [19]:

TΨ (0) = 0,

TΨ (δn) = TΨ (δ(n − 1)) + δ1/αξn,

where ξn, n ∈ N, are the i.i.d. positive α-stable random variables. The method of generating
ξn is the following [40]

ξn = sin(α(V + c1))

(cos(V ))1/α

(
cos(V − α(V + c1))

W

)(1−α)/α

, (12)

where c1 = π/2, V is the uniformly distributed on (−π/2,π/2) random variable and W has
exponential distribution with mean one.

The above algorithm allows to simulate efficiently trajectories of SΨ (t). Therefore,
Monte Carlo methods can be employed to approximate the price CΨ (·) in (9). In Fig. 2
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we present the results of the Monte Carlo simulations. Shown is the difference be-
tween the classical Bachelier price of the European call option and the subdiffusive one
C(X0,K,T ,σ ) − CΨ (X0,K,T ,σ ).

4.2 Tempered α-Stable Waiting Times

The class of tempered stable distributions was introduced in [32]. It leads to an appropriate
modification of the Lévy measure corresponding to α-stable law, which resulted in many de-
sired properties of tempered laws. In particular, tempered α-stable distributions are infinitely
divisible. Moreover, they have finite moments of all orders, which makes them particularly
attractive for applications. On the other hand, tempered stable distributions resemble stable
laws in many aspects (see [32] for the details).

For the case of tempered α-stable waiting times, the Laplace exponent in (5) is given by

Ψ (u) = (u + λ)α − λα, 0 < α < 1, λ > 0.

Note that for λ ↘ 0, we recover the Laplace exponent of α-stable distribution.
As for the operator Φt in (7), its inverse superposed with the standard derivative Φ−1

t ◦ ∂
∂t

is the tempered fractional derivative, which was originally developed in the paper [5]. This
allows to apply the finite element method (see [9]) to approximate solutions of (7).

As for the algorithm of simulation of SΨ (t), it is very similar to the α-stable case. The
values TΨ (δn), n = 1,2, . . ., in (11) are generated by the standard Euler method

TΨ (0) = 0,

TΨ (δn) = TΨ (δ(n − 1)) + Zn,

where Zn are independent, identically distributed tempered α-stable random variables with
the Laplace transform

〈e−uZn〉 = e−δ((u+λ)α−λα).

The algorithm of generating Zn is the following [2]:

(I) Generate exponential random variable E with mean λ−1;
(II) Generate positive α-stable random variable S using formula (12) and put R = δ1/αS;

(III) If E > R put Zn = R, otherwise goto step (I).

The results of the above algorithm are presented in Fig. 1. We observe a typical trajectory
of ABM with tempered stable waiting times. Similarly to the stable case, one can use the
above algorithm to perform Monte Carlo simulations in order to approximate the price CΨ (·)
in (9), see Figs. 2–6.

5 Concluding Remarks

In this paper we have applied the recent advances in the theory of anomalous diffusion to the
problem of option pricing. We have introduced an extension of the classical Bachelier model,
which captures the subdiffusive character of the underlying asset. The model is defined as
the standard ABM subordinated by the id inverse subordinator. This assures the flexibility
of the model, since the periods of stagnation of the price process can be chosen from the
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Fig. 3 (Color online) The comparison of the Bachelier prices of the European call option CΨ (X0,K,T ,σ ),
according to the α and λ parameters. Tempered stable distribution take intermediate place between pure
stable and Gaussian distributions, as one can see, such behavior is common also for option prices. For λ ↘ 0
option prices with tempered subordinator (blue lines, α = 0.8, λ > 0) tend to the option price with pure stable
subordinator (black line, α = 0.8, λ = 0). In turn, for large λ they tend to the classical Bachelier price (red
line, α = 1, λ = 0). Here, X0, K , σ are fixed and equal 100, 100, 1, respectively and T ∈ [5,10]

Fig. 4 Bachelier prices of
European call option
CΨ (X0,K,T ,σ ), according to
the α parameter. Here, λ, X0, K ,
σ are fixed and equal 0.001, 100,
100, 1, respectively and
T ∈ [0,10]

broad family of nonnegative id distributions. We have shown that the subdiffusive model is
arbitrage-free and incomplete. Moreover, we have found the formulas for the fair prices of
European options and mentioned, how to approximate them numerically. A more detailed
considerations were introduced for two significant classes of waiting-time distributions: α-
stable (Fig. 2) and tempered α-stable (Figs. 3–6).

Calibration of the subdiffusive model is very similar to the standard procedure used for
diffusion processes. One only needs to remove the waiting times (constant periods) from the
trajectory of the subdiffusive ABM (cf. Fig. 1). In this way one obtains the trajectory of the
standard ABM, which can be analyzed in the usual way. Moreover, the sequence of removed
waiting times forms a sample from the underlying id distribution. This sample can be used
to verify statistically the distribution of waiting times, [29].
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Fig. 5 Bachelier prices of
European call option
CΨ (X0,K,T ,σ ), according to
the exercise date T and strike
price K . In the subdiffusive
model the waiting times follow
the tempered stable law
(Ψ (u) = (u + λ)α − λα ). Here,
α, λ, X0, σ are fixed and equal
0.9, 0.1, 100, 1, respectively

Fig. 6 The difference between the classical Bachelier price of the European call option and the subdiffusive
one C(X0,K,T ,σ ) − CΨ (X0,K,T ,σ ), according to the exercise date T and strike price K . In the subdif-
fusive model the waiting times follow the tempered α-stable law. Here, X0, σ , α and λ are fixed and equal
100, 1, 0.8 and 0.1 respectively. For small T the subdiffusive price is larger than the classical Bachelier price
(the difference is negative), while for the larger T the subdiffusive price is smaller than the Bachelier one

We believe that the introduced model will provide a more adequate description of the
price processes especially in emerging markets, and that the derived pricing formulas will
be applicable whenever the subdiffusive regime turns up.

We underline that the presented here methods and algorithms can be successfully em-
ployed to other diffusion processes in statistical mechanics. In this paper, for the sake of
clarity and simplicity of the presentation, we concentrated only on ABM. Nonetheless,
analogous methods can be applied to other diffusions time-changed by the large class of
id inverse subordinators.
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Appendix A

DERIVATION OF THE FFPE (7). The process X(τ) is a standard ABM, thus its PDF f (x, τ )

obeys the ordinary Fokker Planck equation

∂f (x, τ )

∂τ
=

[
−μ

∂

∂x
+ σ 2

2

∂2

∂x2

]
f (x, τ ). (13)

Let us introduce the notation

LFP =
[
−μ

∂

∂x
+ σ 2

2

∂2

∂x2

]
.

The Laplace transform of (13) with respect to the variable τ has the form

uf̂ (x,u) − f (x,0) = LFP f̂ (x,u). (14)

Here, by f̂ we denote the Laplace transform of f .
Next, 7 in the Laplace space u yields

uŵ(x,u) − w(x,0) = LFP

u

Ψ (u)
ŵ(x,u). (15)

We denote the PDFs of TΨ (τ) and SΨ (t) by h(t, τ ) and g(τ, t), respectively. By the property
P(SΨ (t) ≤ τ) = P(TΨ (τ ) ≥ t), we obtain

g(τ, t) = − ∂

∂τ

∫ t

−∞
h(t ′, τ )dt ′.

Consequently, by some standard calculations we obtain

ĝ(τ, u) = Ψ (u)

u
e−τΨ (u).

Using the total probability formula and the independence of X(τ) and SΨ (t), we obtain that
the PDF p(x, t) of X(SΨ (t)) is given by

p(x, t) =
∫ ∞

0
f (x, τ )g(τ, t)dτ.

Thus, its Laplace transform with respect to the variable t is given by

p̂(x,u) = Ψ (u)

u
f̂ (x,Ψ (u)). (16)

Next, by the change of variables u → Ψ (u) in (14) we obtain

Ψ (u)f̂ (x,Ψ (u)) − f (x,0) = LFP f̂ (x,Ψ (u)).

Consequently, from (16) and the fact that f (x,0) = p(x,0) we infer that p̂(x,u) satisfies
the equation

up̂(x,u) − p(x,0) = LFP

u

Ψ (u)
p̂(x,u).

Comparing the above with (15) we have that w(x, t) = p(x, t). This ends the proof.
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Appendix B

PROOF OF MARTINGALE PROPERTY FOR ABM YΨ (t). Let us introduce the following fil-
tration

Gt = HSΨ (t) (17)

where

Hτ =
⋂
u>τ

{σ(B(y) : 0 ≤ y ≤ u) ∨ σ(SΨ (y) : y ≥ 0)}. (18)

By analogous reasoning as Theorem 2.1 in [24], the processes B(SΨ (t)) and

exp{−γB(SΨ (t)) − γ 2

2 SΨ (t)} are martingales with respect to (Gt ,P). Here, γ = μ

σ
. We

will show that

KΨ (t) = B(SΨ (t)) + γ SΨ (t)

is a (Gt ,Q)-martingale, where Q is given by (8). Let us put

H(t) =
〈
dQ

dP

∣∣∣∣Gt

〉
=

〈
exp

{
−γB(SΨ (T )) − γ 2

2
SΨ (T )

}∣∣∣∣Gt

〉
.

Here, 〈.|Gt 〉 denotes expectation conditioned by the history of the process up to time t , i.e.
filtration Gt . By the martingale property, we get that

H(t) = exp

{
−γB(SΨ (t)) − γ 2

2
SΨ (t)

}

or, equivalently

dH(t) = −γH(t)dB(SΨ (t)), H(0) = 1. (19)

Moreover, the quadratic variation of B(SΨ (t)) satisfies [B(SΨ (t)),B(SΨ (t))] = SΨ (t). Now,
taking advantage of formula (19) and the Girsanov-Meyer theorem (see [31]), we get that
the process

B(SΨ (t)) −
∫ t

0

1

H(s)
d〈H(s),B(SΨ (s))〉

= B(SΨ (t)) + γ

∫ t

0

1

H(s)
H(s)d〈B(SΨ (s)),B(SΨ (s))〉

= B(SΨ (t)) + γ SΨ (t) = KΨ (t)

is a local martingale with respect to Q. Since 〈sups≤t |KΨ (s)|〉Q < ∞, KΨ (t) is also a Q-
martingale. Consequently, YΨ (t) = σKΨ (t) + X0 is a Q-martingale.

Appendix C

FIRST PROOF OF INCOMPLETENESS OF THE MARKET MODEL. For every ε > 0, let us
define the probability measure

Qε(A) = C

∫
A

exp

{
−γB(SΨ (T )) −

(
ε + γ 2

2

)
SΨ (T )

}
dP, (20)
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where C = (〈exp{−γB(SΨ (T )) − (ε + γ 2

2 )SΨ (T )}〉)−1 is the normalizing constant, γ =
μ/σ , and A ∈ F .

For any p > 0 and n ∈ N, we have

〈Sn
Ψ (t)〉 =

∫ ∞

0
xn−1

P(SΨ (t) > x)dx =
∫ ∞

0
xn−1

P(TΨ (x) < t)dx

=
∫ ∞

0
xn−1

P(e−pTΨ (x) > e−pt )dx ≤ ept

∫ ∞

0
xn−1e−xΨ (p) = eptΓ (n)

Ψ n(p)
.

Thus, for λ > 0 we get

〈eλSΨ (t)〉 =
∞∑

n=1

λn〈Sn
Ψ (t)〉
n! ≤ ept

∞∑
n=1

λnΓ (n)

Ψ n(p)n! = ept

∞∑
n=1

λn

Ψ n(p)n
< ∞ (21)

for large enough p (recall that Ψ (p) → ∞ as p → ∞). This shows that the exponential mo-
ments of inverse subordinators are finite. Thus, the normalizing constant C in the definition
of Qε is finite. Clearly, Qε is equivalent to P.

Let us put

Y (t) = exp

{
−γB(t) − γ 2

2
t

}
, Z(t) = σB(t) + μt.

We will show that Y (t)Z(t) is an (Ht ,P)-martingale, where (Ht ) is defined in (18). Let
s < t and A ∈ Hs . Let Q̂ be the martingale measure corresponding to the classical Bachelier

model ( dQ̂

dP
= exp(−γB(T ) − γ 2

2 T )). We have

〈Y (t)Z(t)1A〉 = 〈1AZ(t)Y (t)/Y (T )〉Q̂

= 〈1AZ(t)〉Q̂ = 〈1AZ(s)〉Q̂ = 〈Y (s)Z(s)1A〉.

Thus, Y (t)Z(t) is an (Ht ,P)-martingale.
Let us define ZSΨ (T )(t) = Z(t ∧ SΨ (T )). Then, the stopped process

Y (t ∧ SΨ (T ))ZSΨ (T )(t) is also an (Ht ,P)-martingale. Since the bounded random variable
e−εSΨ (T ) is H0-measurable, therefore

(e−εSΨ (T )Y (t ∧ SΨ (T ))ZSΨ (T )(t))t≥0

is an (Ht ,P)-martingale as well. Additionally, for any A ∈ Ht we have

Qε(A) = 〈1Ae−εSΨ (T )Y (t ∧ SΨ (T ))〉.

Using the above result one can verify that ZSΨ (T )(t) is an (Ht ,Qε)-martingale. Moreover

〈
sup
t≥0

ZSΨ (T )(t)
〉
Qε

=
〈

sup
t≤SΨ (T )

Z(t)
〉
Qε

=
〈
exp

{
−γB(SΨ (T )) −

(
ε + γ 2

2

)
SΨ (T )

}
sup

t≤SΨ (T )

Z(t)

〉
< ∞,

which follows from Hölder inequality, Doob’s maximal inequality and (21).
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Thus, ZSΨ (T )(t) is a uniformly integrable (Ht ,Qε)-martingale. It follows that there exists
a random variable X such that ZSΨ (T )(t) = 〈X|Ht 〉Qε . Finally, we get that ZSΨ (T )(SΨ (t)) =
σB(SΨ (t)) + μSΨ (t) and also YΨ (t) = X0 + σB(SΨ (t)) + μSΨ (t) are (HSΨ (t),Qε)-
martingales.

SECOND PROOF OF INCOMPLETENESS OF THE MARKET MODEL. We will show that not
every random variable (contingent claim) X ∈ GT , such that 〈X2〉Q < ∞, can be replicated
by a self-financing strategy.

Let us assume that the contingent claim X is a function of the stock price at time T ,
X = h(YΨ (T )). Moreover, let us assume that h(x) is a continuous function h : R → R+ such
that 〈h2(YΨ (T ))〉Q < ∞ and h′′(x) �= 0 for some x ∈ R. Now, let us assume (a contrario)
that there exists a replicating, self-financing strategy for X = h(YΨ (T )). Consequently, the
derivative payoff function Ct = f (YΨ (t), t) (where f (y, t) is a smooth function) at time t

is given by

f (YΨ (t), t) = Vt(φ) = atYΨ (t) + btβ(t), (22)

and

CT = f (YΨ (T ), T ) = aT YΨ (T ) + bT β(T ) = h(YΨ (T )), (23)

where φ = (at , bt ) = (a(YΨ (t), t), b(YΨ (t), t)) is a trading strategy. Taking advantage of the
self-financing condition we have

df (YΨ (t), t) = dVt (φ) = atdYΨ (t) + btdβ(t).

From the stock price model and by the fact that β ≡ 1, we have

df (YΨ (t), t) = atμdSΨ (t) + atσdB(SΨ (t)) + 0dt. (24)

Now, by the Itô formula for semimartingales we get

df (YΨ (t), t) = ft (YΨ (t), t)dt + σfy(YΨ (t), t)dB(SΨ (t))

+
(

μfy(YΨ (t), t) + 1

2
σ 2fyy(YΨ (t), t)

)
dSΨ (t). (25)

Now, comparing the coefficients from (24) and (25), we find that

at = fy(YΨ (t), t), fyy(YΨ (t), t) = 0, ft (YΨ (t), t) = 0. (26)

Consequently, replacing YΨ (t) by x in (22), (23) and using formulas (26), we obtain the
following system of equations:

f (x, t) = xfx(x, t) + b(x, t), f (x,T ) = h(x), fxx(x, t) = 0. (27)

From the third condition we find the general formula for f (x, t):

f (x, t) = C1(t)x + C2(t),

from the second condition, we get that at t = T :

C1(T )x + C2(T ) = f (x,T ) = h(x).
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It means that h′′(x) = 0 for all x ∈ R. This contradicts the assumption that h′′(x) �= 0 for
some x ∈ R. Therefore, not every contingent claim can be replicated, which implies that the
subdiffusive Bachelier market is incomplete.
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