

Natural and Modified Forms of Distributed Order Fractional Diffusion Equations

Aleksei Chechkin Akhiezer Institute for Theoretical Physics, Kharkov, Ukraine

In collaboration with

Rudolf Gorenflo, FU Berlin

Igor Sokolov, HU Berlin

Joseph Klafter, TAU Tel Aviv

Vsevolod Gonchar, AITP, Kharkov

Nickolai Korabel, BIU, Ramat Gan

Review: A. Chechkin, I. Sokolov, J. Klafter, in: **Fractional Dynamics**, S.C. Lim, R. Metzler, J. Klafter (Eds), World Scientific (2011?)

Outline

- Introduction: fractional kinetics, relation to random walk scheme, time and space fractional derivatives
- Time and space fractional diffusion equations in *normal* and *modified* forms, equivalence of the two forms
- Distributed order fractional derivative
- Distributed order fractional diffusion equations (DODE) in *normal* and *modified* forms
 - \checkmark non-equivalence of the two forms
 - ✓ different regimes of anomalous diffusion

• Summary: the Table

FRACTIONAL KINETICS: DIFFUSION AND KINETIC EQUATIONS WITH FRACTIONAL DERIVATIVES⇔ "STRANGE" KINETICS (SHLESINGER, ZASLAVSKY, KLAFTER, 1993): CONNECTED WITH DEVIATIONS

	"Normal" Kinetics	Fractional Kinetics
Diffusion		$\left\langle x^2(t)\right\rangle \propto t^{\mu}$, $\mu \neq 1$
law	$\left\langle x^2(t)\right\rangle \propto t$	$\left\langle x^2(t)\right\rangle \propto \ln^{\nu} t , \nu > 0$
Relaxation	Exponential	Non-exponential
		"Lévy flights in time"
Stationary	Maxwell-	Confined Lévy flights
state	Boltzmann	as non-Boltzmann
	equilibrium	stationarity

Simplest Types of "Fractionalisation"

• time – fractional diff eq

$$\frac{\partial f}{\partial t} = D \frac{\partial^2 f}{\partial x^2}$$
 DIFFUSION EQ
Caputo/Riemann-Liouville derivative

DIFFUSION EQ

• space – fractional diff eq

 $\frac{\partial}{\partial t} \to \frac{\partial^{\beta}}{\partial t^{\beta}} \quad , \quad 0 < \beta < 1$

$$\frac{\partial^2}{\partial x^2} \to \frac{\partial^\alpha}{\partial |x|^\alpha} \quad , \quad 0 < \alpha < 2$$

Riesz derivative : symmetric combination of left/right side RL derivatives

• multi-dimensional / anisotropic **Question** : Derivation ?

Answer: from Generalized Master Equation and/or and/or Generalized Langevin Description

• time-space / velocity fractional

Underlying physical picture: Random walk with long jumps and long waiting times

Random walk x(t), PDF f(x,t), consisting of

- Random jumps : $\xi_i = x(t_i) x(t_{i-1})$ \Longrightarrow Jump PDF : $\lambda(\xi)$ i=1,2,...
- Random waiting times : $\tau_i = t_i t_{i-1}$ \implies Waiting time PDF : $w(\tau)$

Question : Diffusion equation for f(x,t) in the long time – space limit ?

Answer : Depends on the asymptotic behavior of $\lambda(\xi)$ and $w(\tau)$.

mean square displacement

$$\left\langle \xi^2 \right\rangle = \int_{-\infty}^{\infty} d\xi \,\xi^2 \lambda(\xi)$$
 either finite or infinite

mean waiting time

$$\left\langle \tau \right\rangle = \int_{0}^{\infty} d\tau \, \tau w(\tau)$$

either finite or infinite

Time fractional derivatives HSC SM, Wroclaw in Caputo and Riemann-Liouville forms

Fractional integral

n

 $\frac{d}{dt^{\beta}}$

$$J^{\beta}f(t) := \frac{1}{\Gamma(\beta)} \int_{0}^{t} (t-\tau)^{\beta-1} f(\tau) d\tau \quad , \quad \beta \in \mathsf{R}^{+}$$

Caputo

$$\frac{d^{\beta}}{dt^{\beta}}f(t) \coloneqq J^{1-\beta}\frac{d}{dt}f(t)$$

$$f := \frac{1}{\Gamma(1-\beta)} \int_{0}^{t} d\tau \ t - \tau^{-\beta} \frac{d}{d\tau} f(\tau)$$

0 < β < 1

D

$$D_t^{\beta} f(t) \coloneqq \frac{d}{dt} J^{1-\beta} f(t)$$

 $D_t^{\beta} f \div s^{\beta} f(s)$

Riemann-Liouville

$$\int_{t}^{\beta} f := \frac{1}{\Gamma(1-\beta)} \frac{d}{dt} \int_{0}^{t} d\tau \frac{f(\tau)}{(t-\tau)^{\beta}}$$

(2)

Laplace transform

(1)

definition

$$\frac{d^{\beta}f}{dt^{\beta}} \div s^{\beta}\tilde{f}(s) - s^{\beta-1}f(0)$$

Laplace (Fourier) transform pair

"natural" generalization (take $\beta = 1$)

HSC SM, Wroclaw

Two Forms of Time Fractional Diffusion Equations

Caputo form

Riemann-Liouville form

"normal" form

"modified" form

$$\frac{\partial^{\beta}}{\partial t^{\beta}} f(x,t) = K_{\beta} \frac{\partial^{2}}{\partial x^{2}} f(x,t) \qquad 0 < \beta \le 1 \qquad \frac{\partial}{\partial t} f(x,t) = K_{\beta} D_{t}^{1-\beta} \frac{\partial^{2}}{\partial x^{2}} f(x,t)$$

$$f(x,t=0) = \delta(x)$$
Fourier-Laplace
$$f(x,t) \div f(k,s) = \int_{-\infty}^{\infty} dx e^{ikx} \int_{0}^{\infty} dt e^{-st} f(x,t)$$
normal form
$$\int f(k,s) = \frac{s^{\beta-1}}{s^{\beta} + K_{\beta}k^{2}} \qquad \text{modified form}$$

Normal and modified forms are equivalent

SPACE FRACTIONAL DERIVATIVE VIA ITS FOURIER TRANSFORM

 $f(x) \div f(k) = \int_{-\infty}^{\infty} dx \, e^{ikx} f(x) \quad , \quad f(x) = \int_{-\infty}^{\infty} \frac{dk}{2\pi} \, e^{-ikx} f(k)$

1st derivative:

Fourier

transform

pair

2nd derivative: $\frac{d^2 f}{dx^2} \div -ik^2 f(k) = -k^2 f(k)$

Symmetric Riesz der.:

$$\frac{d^{\alpha} f}{d|x|^{\alpha}} \equiv -\Delta^{\alpha/2} \div -|k|^{\alpha} f(k)$$

Coincide with the "usual" second order derivative :

$$\frac{d^{2}f}{d|x|^{2}} = \int_{-\infty}^{\infty} \frac{dk}{2\pi} -k^{2} f(k)e^{-ikx} = \frac{d^{2}f}{dx^{2}}$$

HSC SM, Wroclaw

"modified" form

Two Forms of Space Fractional Diffusion Equations

"normal" form

$\frac{\partial f}{\partial t} = K_{\alpha} \frac{\partial^{\alpha} f}{\partial |x|^{\alpha}} \qquad 0 < \alpha \le 2 \qquad \frac{\partial^{2-\alpha}}{\partial |x|^{2-\alpha}} \frac{\partial f}{\partial t} = -K_{\alpha} \frac{\partial^{2}}{\partial x^{2}} f$ where $\frac{d^{\alpha}\phi(x)}{d|x|^{\alpha}} \div -|k|^{\alpha}\phi(k)$ $f(k,t) \div f(x,t)$ Characteristic function: $f(k,t) = \exp -K_{\alpha} |k|^{\alpha} t \quad \text{modified form}$ normal form

Normal and modified forms are equivalent

Applications of fractional diffusion / kinetic equations

Space fractional

- Fluid and plasma turbulence
- Strange diffusion on DNA
- Lévy flights of photons
- Propagation of light in fractal media
- Diffusion of guiding centers in turbulent magnetized plasmas
- Human travel
- Deterministic maps
- Hamiltonian chaos

See, e.g., R. Metzler, J. Klafter, *Phys Rep* 2000,
I. Sokolov, J. Klafter, A. Blumen, *Physics Today* 2002,
R. Metzler, A. Chechkin, J. Klafter, *Encyclopedia of Complexity and System Science*, 2009.

Time fractional

- Transport in amorphous materials
- Transport of passive tracers in underground water
- Financial markets, stock prices
- Deterministic maps
- Hamiltonian chaos

HSC SM, Wroclaw

Normal and Anomalous diffusion

 However: many (most of ?) systems demonstrate non-scaling or multiscaling anomalous behavior e.g.,

crossover between different power laws,

✓ non-power-law logarithmic behavior ...

Q: Is it possible to extend the notion of fractional derivative operator in order to describe such anomalous behavior ?

A: Different possibilities !

Possibility 1. Tempered α - stable Lévy distributions and exponentially truncated Lévy flights

Possibility 2. Diffusion equations with variable order derivatives

Time fractional, inhomoheneous media

$$\frac{\partial f}{\partial t} = \frac{\partial^2}{\partial x^2} K(x) D_t^{1-\beta(x)} f$$

Ch, Gorenflo, Sokolov, 2005

HSC SM, Wroclaw

Time fractional, non-stationary media

Possibility 3. Diffusion equations with distributed order fractional derivative

HSC SM, Wroclaw

C form

 $\int_{a}^{b} d\mu p(\mu) \frac{d^{\mu}}{dt^{\mu}} \phi(t)$

Ordinary differential equations:

• Caputo form: generalizing stress-strain relation of inelastic media (M. Caputo, *Elasticita e Dissipazione*. Zanichelli Printer, Bologna, 1969)

R-L form

- R-L form with constant weight (Nakhushev, 1998)
- Ordinary diff equations containing sums of fractional derivatives (Podlubny, 1999)
- Distributed order eqs within functional calculus technique (Kochubei, 2008)
- Bagley and Torvik (2000), Diethelm and Ford (2001), numerical methods
- Hartley and Lorenzo, review (2002)

I. Natural Form of Distributed Order Time Fractional Diffusion Equation

(2)

$$\int_{0}^{1} d\beta p(\beta) \frac{\partial^{\beta} f}{\partial t^{\beta}} = \frac{\partial^{2} f}{\partial x^{2}}$$

If $p(\beta) = \delta(\beta - \beta_0)$

Solution of Eq(1) is a PDF

 $f(k,s) = \frac{1}{s} \frac{I_C(s)}{I_C(s) + k^2}$

(1)
$$p(\beta) \ge 0$$
, $\int_0^1 d\beta p(\beta) = 1$

Ch.,Gorenflo, Sokolov, 2002

(mono)fractional diffusion equation

0

$$f(x,t) \div f(k,s) = \int_{-\infty}^{\infty} dx e^{ikx} \int_{0}^{\infty} dt e^{-st} f(x,t)$$
$$I_{C}(s\tau) = \int_{0}^{1} d\beta \, s^{\beta} \, p(\beta)$$

$$f(k,s) = \frac{I}{s} \int_{0}^{\infty} du \ e^{-u \left[I_{C} + k^{2}\right]} = \int_{0}^{\infty} du$$

$$\int_{0}^{\infty} \int_{0}^{\infty} du \ \frac{e^{-x^{2}/(4\pi u)}}{\sqrt{4\pi u}} G(u,t) > 0$$

$$\int_{0}^{\infty} \int_{0}^{\infty} du \ \frac{e^{-x^{2}/(4\pi u)}}{\sqrt{4\pi u}} G(u,t) > 0$$

Random process is subordinated to a Gaussian process using operational time

du $e^{-uk^2} \tilde{G}(u,s)$, where $\tilde{G}(u,s) = \frac{I_C(s)}{s} e^{-uI_C(s)}$ G(u,t) is a PDF providing subordination transformation from t to u. Indeed,

1.
$$\tilde{G}(u,s)$$
 is completely monotonic
2 $\int_0^\infty du G(u,t) = 1$

Fundamental solution in terms of Mellin-Barnes integral

Decelerating Subdiffusion: more anomalous in course of time

$$\int_{0}^{1} d\beta p(\beta) \frac{\partial^{\beta} f}{\partial t^{\beta}} = \frac{\partial^{2} f}{\partial x^{2}}$$

Ch, Gonchar, Gorenflo, Sokolov, 2003

Generic case
$$p(\beta) = B_1 \delta(\beta - \beta_1) + B_2 \delta(\beta - \beta_2)$$
, $\beta_1 < \beta_2$

$$\left\langle x^{2}(s)\right\rangle = \left(-\frac{\partial^{2}f(k,s)}{\partial k^{2}}\right)_{k=0}$$

$$\left\langle x^{2}(t)\right\rangle \propto \begin{cases} t^{\beta_{2}} & , t \to 0\\ t^{\beta_{1}} & , t \to \infty \end{cases}$$

2-parametric Mittag-Leffler

19 t

lg t

Tauberian theorems: small / large $s \rightarrow \log$ / short t

Distributed order diffusion equation for superslow diffusion

 $f(x,t) \Box \exp \left| -\left(\frac{\Gamma(\nu+1)}{D\tau}\right)^{1/2} \frac{|x|}{\ln^{\nu/2} t/\tau} \right|$

HSC SM, Wroclaw

$$\int_{0}^{1} d\beta \tau^{\beta-1} p(\beta) \frac{\partial^{\beta} f}{\partial t^{\beta}} = \frac{\partial^{2} f}{\partial x^{2}} \text{ with } p \beta = \nu \beta^{\nu-1} \Longrightarrow \left\langle x^{2}(t) \right\rangle \propto \ln^{\nu} t$$

Laplace distribution

Relation to CTRW: Extremely broad waiting time PDF :

$$w(t) \propto rac{1}{t \log(t/\tau)^{\nu+1}}$$

No moments

Havlin, Weiss (1990): disordered systems

Example: iterated map (J. Drager, J. Klafter, 2000)

$$x_{t+1} = x_t + ax_t^z \exp\left[-\left(\frac{b}{x_t}\right)^{z-1}\right] \quad , \quad z > 1$$

Aging, ergodicity breaking etc ???

Chechkin, Klafter, Sokolov, 2003

Fractional Fokker-Planck equation for superslow diffusion

$$\int_{0}^{1} d\beta \tau^{\beta-1} p(\beta) \partial^{\beta} f / \partial t^{\beta} = L_{FP} f(x,t) \quad f(x,0) = \delta(x) \qquad L_{FP} = \frac{\partial}{\partial x} \frac{U'(x)}{m\gamma} + D \frac{\partial^{2} f}{\partial x^{2}}$$
Separation ansatz: $f(x,t) = T(t)\varphi(x) \quad r_{n}(t) \quad \frac{T_{n}(t)}{\lambda_{n}\tau \ln^{\nu}(t/\tau)}, \quad t \to \infty \quad r \to \infty$

$$\begin{cases} \text{Contrasts with } Mittag-Leffler \\ relaxation \\ -t^{\beta} \end{cases}$$

Difference from Sinai model

Einstein relation (contrasts with Sinai diffusion)

$$\left\langle x(t)\right\rangle_{F} = \frac{F\left\langle x^{2}(t)\right\rangle_{0}}{2k_{B}T}$$

Interesting mathematical aspects of superslow diffusion equation: Meerschaert & Scheffler, 2005, 2006; Hanyga, 2007, Kochubei, 2008.

II. Modified Form of Distributed Order Time Fractional Diffusion Equation

$$\frac{\partial f}{\partial t} = \int_{0}^{1} d\beta p(\beta) D_{t}^{1-\beta} \frac{\partial^{2} f}{\partial x^{2}}$$

Thermodynamical interpretation

(no such for normal form)

$$j(x,t) = \Phi_t \partial f(x,t) / \partial x$$

 $\partial f / \partial t = -\partial j / \partial x$

Flux dependent on the past history

Solution in F-L space

$$F(k,s) = \frac{I_{RL}}{s I_{RL} + k^2} I_{I}$$

$$I_{RL}(s) = \left[\int_0^1 d\beta \, s^{-\beta} \, p(\beta)\right]^{-1}$$

No general proof of positivity

Accelerating subdiffusion

Generic case of two exponents :

$$p(\beta) = B_1 \delta(\beta - \beta_1) + B_2 \delta(\beta - \beta_2), \quad 0 < \beta_1 < \beta_2 \le 1$$

Positivity proved !

$$\left\langle x^{2}(t) \right\rangle \propto \begin{cases} t^{\beta_{1}} &, short times \\ t^{\beta_{2}} &, long times \end{cases}$$

Behavior is opposite to that for normal form demonstrating decelerating subdiffusion

PDF in terms of infinite series of the Fox functions

Numerical simulation of accelerating subdiffusion: approximation by single order solution in the whole time domain

Rescaled PDF for

t = 0.001; 0.01; 0.1; 1.0; 10; 100

• Solution of double order eq

with $\beta 1 = 0.5$; $\beta 2 = 1$

- Solution of single order eq

with β eff = 0.5; 0.5; 0.6; 0.73; 0.8; 0.95

Deff = 1; 1.05; 1.7; 1.95; 2.0; 1.4

The system governed by the distributed-order time-fractional diffusion equation has the properties very similar to the system whose exponent varies in time : $\beta = \beta(t) \Rightarrow$ similarity

to fractional diffusion equations of variable order

 \Rightarrow Decelerating subdiffusion

$$\frac{dx(s)}{ds} = \eta(s), \frac{dt(s)}{ds} = \tau_1(s) + \tau_2(s) + \dots$$

Distributed order time fractional diffusion equations and random walk models (continued)

Fig. 1. The pooling of outputs.

Mixture "pooling" of CTRW processes: The fastest survives at $t \rightarrow \infty$ \Rightarrow Accelerating subdiffusion

$$X(t) = \sum_{i=1}^{N} c_i X_i(t)$$
 ?

Subordination picture ?

Multifractal properties of underlying random processes

$$\left\langle \left| X(t) \right|^{q} \right\rangle = C(q) t^{\mu q}$$

 $\mu = \frac{\beta}{2}$ Time fract $\mu = \frac{1}{\alpha}$ Space fract

Random fractal (self-affine) process, μ = const

In particular, the processes whose PDFs obey (mono)fractional diffusion equations:

$$\left\langle \left| X(t) \right|^{q} \right\rangle = C(q) t^{\varphi(q)}$$

φ (q) – nonlinear function"standard" characterization ofnon-self-affinity (multifractality)

$$\left\langle \left| X(t) \right|^{q} \right\rangle = C(q) t^{\varphi(q,t)}$$

Processes whose PDFs obey distributed order fractional diffusion equations

III. Natural Form of Distributed Order Space Fractional Diffusion Equation

$$\frac{\partial f}{\partial t} = \int_{0}^{2} d\alpha p(\alpha) \frac{\partial^{\alpha} f}{\partial |x|^{\alpha}}, \quad p(x,0) = \delta(x)$$

$$f(k,t) = \exp -t \int_{0}^{2} d\alpha p(\alpha) |k|^{\alpha}$$

$$\int_{-\infty}^{\infty} dx f(x,t) = f(k = 0, t) = 1$$
Proved:
$$f(x,t) = 0$$

$$f(k,t) = \exp -a_{1} |k|^{\alpha_{1}} t - a_{2} |k|^{\alpha_{2}} t$$

$$Lévy \text{ stable law}$$

$$L_{\alpha,0}(k) = \exp -|k|^{\alpha}$$

$$f(x,t) = \frac{t^{-1/\alpha_{1}-1/\alpha_{2}}}{a_{1}^{1/\alpha_{1}}a_{2}^{1/\alpha_{2}}} \int_{-\infty}^{\infty} dx' L_{\alpha_{1},0} \left(\frac{x - x'}{a_{1}t^{1/\alpha_{1}}}\right) L_{\alpha_{2},0} \left(\frac{x'}{a_{2}t^{1/\alpha_{2}}}\right) > 0$$
Analogue of the second

Analogue of the second moment, $q < \alpha_1$, as a measure of diffusion properties

Do

$$M_{q}(t;\alpha) = \left\langle |x|^{q} \right\rangle^{2/q} \propto \begin{cases} t^{2/\alpha_{2}}, & t \to 0\\ t^{2/\alpha_{1}}, & t \to \infty \end{cases} \qquad 1/\alpha_{1} > 1/\alpha_{2}$$

Natural form leads to accelerating superdiffusion

Interesting application: together with A. Iomin (in progress)

IV. Modified Form of Distributed Order Space Fractional Diffusion Equation

$$\int_{0}^{2} d\alpha p(\alpha) \frac{\partial^{2-\alpha}}{\partial |x|^{2-\alpha}} \frac{\partial f}{\partial t} = -\frac{\partial^{2} f}{\partial x^{2}}, \quad f(x,0) = \delta(x)$$
Characteristic function :

$$f(k,t) = \exp\left\{-\frac{t}{\int_{0}^{2} d\alpha p(\alpha) |k|^{\alpha}}\right\}$$
No general proof of positivity
Double order case
$$p(\alpha) = A_{1}\delta(\alpha - \alpha_{1}) + A_{2}\delta(\alpha - \alpha_{2}) \qquad 0 < \alpha_{1} < \alpha_{2} \le 2, A_{1} > 0, A_{2} > 0$$

$$proved : \qquad f(x,t) > 0$$

$$M_{q}(t;\alpha) = \left\langle |x|^{q} \right\rangle^{2/q} \propto \begin{cases} t^{2/\alpha_{1}}, \quad t \to 0 \\ t^{2/\alpha_{2}}, \quad t \to \infty \end{cases}$$
Modified form leads to decelerating superdiffusion, in contrast to natural form

Now: Take particular case $\alpha_2 = 2$

D

Sokolov, Ch, Klafter, Acta Phys Polonica 2004

Fractional Diffusion Equation for Power Law Truncated Lévy Process

(observation: Stanley's group (2003): PDF of commodity prices; Cohen, Venkatesh (2006): database of S&P index) Sokolov, Ch, Klafter, 2005 • "PLT LFs" : PDF resembles Lévy stable distribution in the central part • at greater scales the asymptotics decay in a power-law way, but faster, than the Lévy stable ones, therefore, $\langle x^2 \rangle < \infty \Rightarrow$ the Central Limit Theorem is applied \Rightarrow

• at large times the PDF tends to Gaussian, however, *very slowly*

Governing equation: Particular case of the modified form of *distributed order space FDE*:

At small times the Lévy distribution is truncated by a power law with a power between 3 and 5. Due to the finiteness of the second moment the PDF *i(x,i)* slowly converges to a Gaussian

Power-law truncated Lévy flights: Probability to stay at the origin

$$LFs: f(0,t) = \int_{-\infty}^{\infty} \frac{dk}{2\pi} e^{-|k|^{\alpha}t} \propto t^{-1/\alpha} \quad , \quad 0 < \alpha \le 2$$

The slope $-1/\alpha$ in the double logarithmic scale changes into -1/2 for the Gaussian

Theory, $\alpha = 1$

Experiment on the ADITYA: probabilities of return to the origin for different radial positions of the probes [R.Jha et al. Phys. Plasmas.2003.Vol.10.No.3.PP.699-704]. Insets: rescaled PDFs.

Experiment on the ADITYA tokamak

Power-law truncated Lévy flights: Fractional-order moments

• "Normal" behavior of the 2nd moment for PLT LFs

$$\left\langle x^{2}(t) \right\rangle = -\frac{\partial^{2} f(k,t)}{\partial k^{2}} \bigg|_{k=0} = 2Dt$$
(1) Ch, Gonchar,
Gorenflo,
Korabel,
Sokolov, 2008

• Analogue of the 2nd moment for LFs to characterize superdiffusive behavior, $q < \alpha$

ent
uper-
$$M_q t; \alpha \equiv \left\langle \left| x t \right|^q \right\rangle^{2/q} \propto t^{2/\alpha}$$
: faster than t^1 , $q < \alpha < 2$ (2)

Superdiffusive behavior of fractional moments. Example: $\alpha = 1$.

1. Fractional moments for LFs:

Left: *Mq* versus time in log-log scale for q = 2.0, 1.5, 1.0, and 0.5 (lines 1, 2, 3 and 4, respectively). Right: the quantity $\alpha_q(t)$ for the same q values as in the left panel.

Power-law truncated LFs: Evolution of the PDFfrom truncated Cauchy (α = 1)to the Gaussian with a power-law tail

Ch, Gonchar, Gorenflo, Korabel, Sokolov, 2008

log-log scale

Conclusions

normal form

modified form

$\int_{0}^{1} d\beta p(\beta) \frac{\partial^{\beta} f}{\partial t^{\beta}} = K \frac{\partial^{2} f}{\partial x^{2}}$	$\frac{\partial f}{\partial t} = \int_{0}^{1} d\beta p(\beta) K D_{t}^{1-\beta} \frac{\partial^{2} f}{\partial x^{2}}$
Decelerating subdiffusion and superslow diffusion	Accelerating subdiffusion
$\frac{\partial f}{\partial t} = \int_{0}^{2} d\alpha p(\alpha) K \frac{\partial^{\alpha} f}{\partial x ^{\alpha}}$	$\int_{0}^{2} d\alpha p(\alpha) \frac{\partial^{2-\alpha}}{\partial x ^{2-\alpha}} \frac{\partial f}{\partial t} = -K \frac{\partial^{2} f}{\partial x^{2}}$

Might be useful for description of the different anomalous diffusion phenomena demonstrating non-scaling behavior

superdiffusion