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Outline 

  Introduction: fractional kinetics, relation to random walk scheme, 

    time and space fractional derivatives  

 Time and space fractional diffusion equations in normal and 

   modified forms, equivalence of the two forms 

 Distributed order fractional derivative 

 Distributed order fractional diffusion equations (DODE) in normal 

   and modified  forms 

  Summary: the Table 

  non-equivalence of the two forms  

 different regimes of anomalous diffusion  
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Fractional Kinetics: Diffusion and Kinetic 
Equations with Fractional Derivatives   
“Strange” KineticS (Shlesinger, Zaslavsky, Klafter, 

1993): connected  with  deviations 

“Normal” Kinetics Fractional Kinetics 

Diffusion 

law  

Relaxation  Exponential  Non-exponential  

“Lévy flights in time” 

Stationary 

state  

Maxwell-

Boltzmann 

equilibrium  

Confined Lévy flights 

as non-Boltzmann 

stationarity  
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Simplest Types of “Fractionalisation” 

 time – fractional  diff  eq 

 space  – fractional  diff  eq 

 multi-dimensional / anisotropic   time-space / velocity fractional  

Caputo/Riemann-Liouville derivative 

Riesz derivative : symmetric 

combination of left/right side RL 

derivatives 

Question : Derivation ? 

 

Answer:   from Generalized Master Equation and/or 

                 and/or  Generalized  Langevin  Description    
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            Underlying physical picture: 

Random walk with long jumps 

and long waiting times 
Random walk x(t) , PDF f(x,t), consisting of  

1( ) ( )i i ix t x t

1i i it t

 Random jumps : 

 Random waiting times : 

Question : Diffusion equation for f(x,t) in the long time – space limit ? 

( )Jump PDF : 

( )wWaiting time PDF : 

2 2 ( )d

0

( )d w

 mean square displacement 

 mean waiting time 

Answer : Depends on the asymptotic behavior of  ( )  and  w( ) .  

either finite or infinite 

either finite or infinite 

i=1,2,… 
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             Underlying physical picture: 

Random walk with long jumps 

and/or long waiting times 

2 finite

finite
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Space fractional DE 

Time fractional DE Space-time fractional DE 

Ordinary  DE 
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Belongs to 

domain of 

attraction of 

symmetric -

stable Lévy 

law 

Belongs to domain of 
attraction of one-sided 

-stable Lévy law 

HSC SM, Wroclaw 



 Time fractional derivatives 

in Caputo and Riemann-Liouville forms 
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Two Forms of Time Fractional Diffusion Equations 

Caputo form  

2

2
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t x

Riemann-Liouville form 
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“normal” form “modified” form 

normal  form modified form 

Normal and modified forms are equivalent 

( , 0) ( )f x t x

0<  1 

Fourier-Laplace 

transform : 
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( )
df

ikf k
dx

( ) ( ) ( ) , ( ) ( )
2

ikx ikxdk
f x f k dx e f x f x e f k

Space  fractional derivative  via  its 
Fourier  transform 
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1st derivative: 2nd derivative: 

Symmetric 
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Coincide with the “usual”  

second order derivative : 

Fourier   

transform 

pair 
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Two Forms of Space Fractional Diffusion Equations 

where 

“normal” form “modified” form 

normal  form modified form 

Normal and modified forms are equivalent 
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Applications of fractional diffusion / kinetic equations 

 Fluid and plasma turbulence 

 Strange diffusion on DNA 

 Lévy flights of photons 

 Diffusion of guiding centers in  

  turbulent magnetized plasmas 

Space fractional Time fractional 

 Propagation of light in fractal 

media 

 Human travel 

 Transport in amorphous 

materials 

 Transport of passive tracers 

  in underground water 

 Financial markets, stock 

prices 

 Deterministic maps 

 Hamiltonian chaos 

 Deterministic maps 

 Hamiltonian chaos 

See, e.g., R. Metzler, J. Klafter, Phys Rep 2000,  

I. Sokolov, J. Klafter, A. Blumen, Physics Today 2002, 

R. Metzler, A. Chechkin, J. Klafter, Encyclopedia of 

Complexity and System Science, 2009. 
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Normal and Anomalous diffusion  

Time-fractional eq Space fractional eq 

/2L t

L: typical (characteristic) scale of the solution 

Slow diffusion, 0 <  < 1 Fast diffusion, 0 <  < 2 

Normal diffusion eq 
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t x | |

f f
D

t x

Invariance under the scale transformation 
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Normal diffusion 
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 However: many (most of ?) systems demonstrate non-scaling 

   or multiscaling anomalous behavior e.g.,   

              

Q: Is it possible to extend the notion of fractional derivative operator in  

       order  to describe such anomalous behavior ? 

 crossover between different power laws,  

 non-power-law logarithmic behavior … 

A: Different  possibilities ! 

Possibility 1. Tempered  - stable Lévy distributions and exponentially 

                       truncated Lévy  flights   
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Possibility 2. Diffusion equations with variable order 

 derivatives 

( ) 2

( ) 2
( , ) ( ) ( , )

t

t
f x t K t f x t

t x
? 

2 ( )( ) tx t t

 Time fractional, non-stationary media 

 Space fractional: Lévy turbulence in plasma 

devices 

0
2
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( , )E r t Bdr

dt B
( )

( ) ( , )
rf

D r f r t
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 Time fractional, inhomoheneous media 
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Ch, Gorenflo, Sokolov, 2005 
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Possibility 3. Diffusion equations with 

distributed order fractional derivative 

Ordinary differential equations: 

( ) ( )

b

a

d
d p t

dt

C form 

( ) ( )

b

t

a

d p D t

R-L form 

( ) ( )
| |

b

a

d
d p x

d x

Riesz form 

p( )  0  , 

 Caputo form: generalizing stress-strain relation of inelastic media  (M. Caputo, 

   Elasticita e Dissipazione. Zanichelli Printer, Bologna,1969) 

  R-L form with constant weight (Nakhushev, 1998) 

 Ordinary diff equations containing sums of fractional derivatives (Podlubny, 1999) 

 Distributed order eqs within functional calculus technique (Kochubei, 2008)  

 Bagley and Torvik (2000), Diethelm and Ford (2001), numerical methods 

   Hartley and Lorenzo, review (2002) 

( ) 1

b

a

d p
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I. Natural Form of Distributed Order Time Fractional Diffusion Equation 

1 2
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Solution of Eq(1) is a PDF 
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u

G(u,t) is a PDF providing subordination 

transformation from t to u. Indeed, 

1.                 is completely monotonic ( , )G u s

2  0
( , ) 1duG u t

Random process is subordinated to 

a Gaussian process using 

operational time 

Fundamental solution in terms of Mellin-

Barnes integral 

(2) 

, where 

Ch.,Gorenflo, 

Sokolov, 2002 



Decelerating Subdiffusion: more anomalous in 

course of time 

Generic case  1 1 2 2 1 2( ) ( ) ( ) ,p B B

1 2

2
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k

f k s
x s

k

Tauberian theorems: small / large s  long / short t 
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2 , 0
( )

,

t t
x t

t t

2-parametric 

Mittag-

Leffler 

1 = 0.25 only 

2 = 0.95 only 

B1=0.03, 

B2=0.97 

B1=0.1, 

B2=0.9 

B1=0.3, 

B2=0.7 
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Distributed order diffusion equation 

for superslow diffusion  

2 ( ) lnx t t
1 2

1
2
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1pwith 

1/2

/ 2

( 1) | |
( , ) exp

ln /

x
f x t

D t

1

1
( )

log( / )
w t

t t

Relation to CTRW:  

Extremely broad 

waiting time PDF :   

No moments 

Laplace distribution 

Example: iterated map (J. Drager, J. Klafter, 2000) 

1

1 exp , 1

z
z

t t t
t

b
x x ax z

x

Havlin, Weiss (1990): 

disordered systems 

Chechkin, 

Klafter, 

Sokolov, 

2003 
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Aging, ergodicity breaking etc ??? 



Fractional Fokker-Planck equation for superslow diffusion 

1 1

0
( ) / ( , ) ( ,0) ( )FPd p f t L f x t f x x

2

2

( )
FP

U x f
L D

x m x

(0)
( ) ,

ln ( / )

n
n

n

T
T t t

t
( , ) ( ) ( )f x t T t xSeparation ansatz: 

Contrasts 

with 

Mittag-

Leffler 

relaxation 

~t  

2

0
( )

( )
2F

B

F x t

x t
k T

Einstein relation 

(contrasts with 

Sinai diffusion) 

Interesting mathematical aspects of superslow diffusion equation: 

Meerschaert & Scheffler, 2005, 2006; Hanyga, 2007, Kochubei, 

2008. 

Difference from Sinai model 



II. Modified Form of Distributed Order Time Fractional Diffusion 

Equation 

2
( , ) RL

RL

I
f k s

s I k

1 2
1

2
0

( ) t
f f

d p D
t x

1
1

0
( ) ( )RLI s d s p

Thermodynamical interpretation 

(no such for normal form) 

Accelerating subdiffusion 

/ /f t j x

( , ) ( , ) /tj x t f x t x

Flux dependent 

on the past 

history 

1 1 2 2 1 2( ) ( ) ( ) , 0 1p B BGeneric case of two exponents : 

1

2

2 ,
( )

,

t short times
x t

t long times

Behavior is opposite to that for 

normal form demonstrating 

decelerating subdiffusion 

PDF in terms of infinite series of the 

Fox functions 

Solution in F-L 

space 
No general proof 

of positivity 

Positivity proved ! 



Numerical simulation of accelerating subdiffusion: approximation 

by single order solution in the whole time domain 

The system governed by the distributed-order time-fractional 

diffusion equation has the properties very similar to the 

system whose exponent varies in time :  = (t)  similarity 

to fractional diffusion equations of variable order  

Rescaled PDF for 

t = 0.001; 0.01; 0.1; 1.0; 10; 100 

 Solution of double order eq 

 with 1 = 0.5; 2 = 1  

 Solution of single order eq 

with eff = 0.5; 0.5; 0.6; 0.73; 

0.8; 0.95 

Deff = 1; 1.05; 1.7; 1.95; 2.0; 

1.4  



Distributed order time fractional diffusion equations  

and random walk models 

Normal 

form 

1 2

2
0

( )
f f

d p K
t x

1( | ) 1/

0 1,

w

1

0
( ) ( ) |w d p w

Waiting time PDF: 

Mixture of waiting time PDFs: 

the longest waiting time 

survives at t     

 Decelerating subdiffusion 

(mono) 

fractional 

Normal form 

Subordination form, Langevin 

description:  

1 2
( ) ( )

( ) , ( ) ( ) ...
dx s dt s

s s s
ds ds

? 



Distributed order time fractional diffusion equations  

and random walk models (continued) 

1 2
1

2
0

( ) t
f f

d p KD
t x

Modified 

form 

Mixture “pooling” of CTRW 

processes: 

The fastest survives at t   

 Accelerating subdiffusion  

1

( ) ( )
N

i i
i

X t c X t

Subordination picture ? 

From Cox and 

Smith (1954): 

“pooling” of 

renewal 

processes 

? 



Multifractal properties of underlying random processes 

( ) ( )
q qX t C q t

Random fractal (self-affine) process, 

 = const 

In particular, the processes whose 

PDFs obey (mono)fractional diffusion 

equations: 

( )( ) ( )
q qX t C q t

 (q) – nonlinear function 

“standard” characterization of  

 non-self-affinity  (multifractality) 

( , )( ) ( )
q q tX t C q t

Processes whose PDFs obey 

distributed order fractional 

diffusion equations 

2

Time 

fract 

1 Space 

fract 



III. Natural Form of Distributed Order Space Fractional 

Diffusion Equation 
2

0

( ) , ( ,0) ( )
| |

f f
d p p x x

t x

2

0
( , ) exp ( ) | |f k t t d p k ( , ) ( 0, ) 1dx f x t f k t

Double order case 1 1 2 2( ) ( ) ( )p A A 1 2 1 20 2 , 0, 0A A

1 2
1 2( , ) exp | | | |f k t a k t a k t

1 2

1 21 2 1 2

1/ 1/

,0 ,01/ 1/ 1/ 1/
1 21 2

( , ) 0
t x x x

f x t dx L L
a a a t a t

,0( ) exp | |L k kLévy stable law 

2

1

2/2 /

2 /

, 0
( ; ) | |

,

q
q

q
t t

M t x

t t

Analogue of the second  

moment,  q < 1 , as a measure 

of diffusion properties 

Natural form leads to accelerating superdiffusion 

Proved: 

f(x,t) > 0  

1 21/ 1/

Interesting application: together  

with A. Iomin (in progress) 



IV. Modified Form of Distributed Order Space Fractional 

Diffusion Equation 

2 2 2

2 2
0

( ) , ( ,0) ( )
| |

f f
d p f x x

tx x

1

2

2/2 /

2 /

, 0
( ; ) | |

,

q
q

q
t t

M t x

t t

Modified form leads to 

decelerating superdiffusion, 

in contrast to natural form 

1 1 2 2( ) ( ) ( )p A A 1 2 1 20 2 , 0, 0A A

2

0

( , ) exp

( ) | |

t
f k t

d p k

( , ) ( 0, ) 1dx f x t f k t

( , ) 0f x t

, 

Double order case 

Now: Take particular case 2 = 2  

proved : 

Characteristic 

function : No general proof 

of positivity 

Sokolov, Ch, Klafter, Acta Phys 

Polonica 2004 



 “PLT LFs” : PDF resembles Lévy stable distribution in the central part 

 at greater scales the asymptotics decay in a power-law way, but faster, than 

the Lévy stable ones, therefore,                   the Central Limit Theorem is 

applied    

 at large times the PDF tends to Gaussian, however, very slowly 

2x

Governing equation: Particular case of the modified form of distributed 

order space FDE:  

2 2

2 2

( , ) ( , )
1

| |

f x t f x t
C D

tx x

0 <  < 2  

5

(5 )sin / 2
( , ) ,

DC t
f x t x

x

At small times the Lévy distribution is truncated by a power law with a power between 3 

and 5. Due to the finiteness of the second moment the PDF f(x,t) slowly converges to a 

Gaussian  

Fractional Diffusion Equation 

for Power Law Truncated Lévy Process 

(observation: Stanley’s group (2003): PDF of commodity prices;  

                      Cohen, Venkatesh (2006): database of S&P index) 
Sokolov, Ch, 

Klafter, 2005 



Theory,  = 1 Experiment on the ADITYA tokamak  

Experiment on the ADITYA: probabilities of return to the origin for different radial positions of the 

probes [R.Jha et al. Phys. Plasmas.2003.Vol.10.No.3.PP.699-704]. Insets: rescaled PDFs. 

Power-law truncated Lévy flights: Probability to stay at the origin 

| | 1/: (0, ) , 0 2
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Superdiffusive behavior of fractional moments. Example:  = 1.  

Left:  Mq versus time in log-log scale for q = 2.0, 1.5, 1.0, and 0.5 (lines 1, 2, 3 and 4, respectively). 

Right: the quantity q(t)  for the same q values as in the left panel. 

Power-law truncated Lévy flights: Fractional-order moments 

2
2

2
0

( , )
( ) 2

k

f k t
x t D t

k

2/
2 / 1; : , 2

q
q

qM t x t t faster than t q

1. Fractional moments for LFs:  

 “Normal” behavior of the 

    2nd moment for PLT  LFs 

 Analogue of the 2nd moment  

   for LFs to characterize super- 

   diffusive behavior, q <   

(1) 

(2) 

1
lg ;

( ) 2
(lg )

q
q

d M t
t

d t

1 : q = 2.0 

2: q  =  1.5 

3 : q =  1.0 

4 : q =  0.5 

“effective” 

index : 

Ch, Gonchar, 

Gorenflo, 

Korabel, 

Sokolov, 2008 



Power-law truncated LFs: Evolution of the PDF 

 from truncated Cauchy (  = 1)  

to the Gaussian with a power-law tail 

PDF  

at short time  

(= 0.001) 

PDF  

at long time 

( = 1000) 

linear scale log-log scale 

Ch, Gonchar, 

Gorenflo, 

Korabel, 

Sokolov, 2008 



Conclusions 
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normal form modified form 

1 2
1

2
0

( ) t
f f

d p KD
t x

Accelerating 

subdiffusion 

1 2

2
0

( )
f f

d p K
t x

Decelerating 

subdiffusion and 

superslow diffusion 
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Might be useful for description of the different anomalous diffusion 

phenomena demonstrating non-scaling behavior 


