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The Bernoulli Center for Fundamental Studies, Lausanne, August 22, 2023
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Perron Theorem

Perron Theorem

If A is a d × d matrix with positive entries, then, denoting its spectral radius by ρ(A),
the following holds:

ρ(A) > 0 is a simple eigenvalue (called the principal eigenvalue) of A,

an eigenvector corresponding to ρ(A) can be chosen to have its coordinates
positive (then it is called a principal eigenvector),

the remaining eigenvalues of A have their moduli less than ρ(A),

any nonzero vector belonging to the invariant subspace corresponding to the
remaining eigenvalues has coordinates of opposite signs.
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Perron Theorem: Interpretation in Terms of Dynamical Systems

The (nonnegative) iterates of A form a linear dynamical system, (Ak)∞k=0.

Denote by E the invariant linear subspace corresponding to ρ(A), and by F the comple-
mentary invariant subspace.

Then the directions of vectors not belonging to F are exponentially attracted towards
the direction of E : there exist C ≥ 1 and ν ∈ [0, 1) such that

∥Ak v∥
∥Ak u∥

≤ Cνk
∥v∥
∥u∥

v ∈ F , u ∈ E \ {0}, k = 1, 2, 3, . . . . (1)
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Basic Concepts: Generalizations

Instead of a singleton we take either

a compact metrizable space Y on which a (two-sided) continuous flow
ϕ = (ϕt)t∈R acts (topological case),

or

a measurable space (Ω,F,P) on which a (two-sided) P-preserving ergodic
measurable flow θ = (θt)t∈R acts (measurable case).
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Basic Concepts: Some Motivation

Motivation:

(in the topological case) a family of systems of linear ordinary differential
equations (ODEs)

u̇ = A(t) u, u ∈ Rd , t ∈ R, A(t) ∈ Rd×d ,

parameterized by A(·) ∈ Y , where Y is the closure, in an appropriate topology, of
the set of all time translates of a nonautonomous linear ODEs system,

(in the measurable case) a family of systems of ODEs

u̇ = A(θtω) u, u ∈ Rd , t ∈ R,

parameterized by ω ∈ Ω, where [ Ω ∋ ω 7→ A(ω) ∈ Rd×d ] is (at least) measurable.
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Basic Concepts: Some Motivation, cont’d

Another source of examples in the topological case:
Assume that for an autonomous (nonlinear) C 1 system of ODEs

v̇ = F (v),

Y is a compact invariant set. Then for ϕ on Y we take the flow generated by the original
ODEs system, and, to fit into the former example, we just assign to y ∈ Y the matrix
function

A(t) = [(DiFj)(ϕt(y))]
d
i ,j=1 .
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Definition of Topological Linear Skew-Product DS with Finite-Dimensional
Fibers

A topological linear skew-product dynamical system on Y × V , where V is a Euclidean
space (a fiber), covering a continuous flow ϕ on the base Y , is given as

((ϕt)t∈R, (Uy (t))y∈Y , t∈R),

where Uy (t) is, for each y ∈ Y and each t ∈ R, a linear automorphism of V satisfying
the following

Uy (0) = IdV for all y ∈ Y ,

(cocycle equation) Uy (t + s) = Uϕs(y)(t) ◦ Uy (s) for any y ∈ Y and any
s, t ∈ R,
the mapping [Y × R ∋ (y , t) 7→ Uy (t) ∈ L(V ,V ) ] is continuous.
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Definition of Measurable Linear Skew-Product DS with Finite-Dimensional
Fibers

A measurable linear skew-product dynamical system (DS) on Ω × V , where V is a
Euclidean space (a fiber), covering a measurable flow θ on the base Ω, is given as(

(θt)t∈R, (Uω(t))ω∈Ω, t∈R
)
,

where Uω(t) is, for each ω ∈ Ω and each t ∈ R, a linear automorphism of V , satisfying
the following

Uω(0) = IdV for all ω ∈ Ω,

(cocycle equation) Uω(t + s) = Uθs(ω)(t) ◦ Uω(s) for any ω ∈ Ω and any
s, t ∈ R,
the mapping [ Ω× R ∋ (ω, t) 7→ Uω(t) ∈ L(V ,V ) ] is measurable.
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Definition of Measurable Linear Skew-Product DS with Finite-Dimensional
Fibers, cont’d

The following Carathéodory conditions are sufficient for the measurability of [ (ω, t) 7→
Uω(t) ]:

for each ω ∈ Ω the mapping [R ∋ t 7→ Uω(t) ] is continuous,

for each t ∈ R the mapping [ Ω ∋ ω 7→ Uω(t) ] is measurable.
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Generalizations and Extensions

A fiber V is an infinite-dimensional Banach space (appears, e.g., when the
skew-product system is generated by a system of parabolic partial differential
equations (PDEs) or a system of delay ODEs).

Then

the assumption that Uy (t) (or Uω(t)) is a linear isomorphism is much too
strong; it is replaced by stipulating that Uy (t) or Uω(t) are bounded linear
operators; as a consequence, we have a linear skew-product semidynamical
system ((ϕt)t∈R, (Uy (t))y∈Y , t≥0) covering a (two-sided) dynamical system ϕ;

continuous/measurable dependence of Uy (t) (or Uω(t)) in the norm topology
is too strong an assumption; the strong operator topology is natural here;
even in the strong operator topology, joint continuity (from the right) at
t = 0 can be a problem.
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Generalizations and Extensions, cont’d

The dynamical system ϕ (or θ) on the base is defined only for t ≥ 0 (in such a
case we say that ϕ or θ is a one-sided semiflow).
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Standing Assumption

In the measurable case (one-sided semiflow on the base space is permitted) we make an
additional assumption.

(A) The functions [
Ω ∋ ω 7→ sup

0≤s≤1
ln+ ∥Uω(s)∥

]
and [

Ω ∋ ω 7→ sup
0≤s≤1

ln+ ∥Uθs(ω)(1− s)∥
]

belong to L1((Ω,F,P)).

Janusz Mierczyński Monotone Skew-Product Systems



Introduction
Ordered Banach Spaces

Monotone Dynamical Systems
Applications

Notation and Basic Concepts
Possible generalizations

Standing Assumption, cont’d

Under (A), Kingman’s subadditive ergodic theorem states the existence of λtop ∈
[−∞,∞) (the top Lyapunov exponent) such that

lim
t→∞

ln ∥Uω(t)∥
t

= λtop

for P-a.e. ω ∈ Ω.

Also, we assume that Ω is a Lebesgue space and that the measure P is complete.
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Standing Assumption, cont’d

Under (A), Kingman’s subadditive ergodic theorem states the existence of λtop ∈
[−∞,∞) (the top Lyapunov exponent) such that

lim
t→∞

ln ∥Uω(t)∥
t

= λtop

for P-a.e. ω ∈ Ω.
Also, we assume that Ω is a Lebesgue space and that the measure P is complete.
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Oseledets Filtration

The following is a (tiny) part (the first stage, indeed) of the Oseledets theorem.

Oseledets Filtration

Let V be separable. Assume that Uω(1) is a compact operator for all ω ∈ Ω. Let
λtop > −∞. Then there exist

a P-measurable subset Ω̃ ⊂ Ω with θt(Ω̃) = Ω̃ for all t ∈ R, P(Ω̃) = 1,

a family {F̃1(ω)}ω∈Ω̃
of subspaces of V of constant finite codimension, depending

measurably (as elements of the Grassmannian) on ω,

λ2 ∈ [−∞, λtop)

such that for any ω ∈ Ω̃ there holds:
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Oseledets Filtration, cont’d

Oseledets Filtration, cont’d

Uω(t) F̃1(ω) ⊂ F̃1(θt(ω)) for all t ≥ 0,

lim
t→∞

ln ∥Uω(t)↾F̃1(ω)
∥

t
= λ2,

lim
t→∞

ln ∥Uω(t) u∥
t

= λtop

for all u ∈ V \ F̃1(ω).
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Oseledets Decomposition

Oseledets Decomposition

Let the dynamical system θ on (Ω,F,P) be two-sided, and let V be separable. Assume
that Uω(1) is a compact operator for all ω ∈ Ω. Let λtop > −∞. Then there exists a

family {Ẽ1(ω)}ω∈Ω̃
of subspaces of V of constant finite dimension, depending

measurably on ω, such that for any ω ∈ Ω̃ there holds

Ẽ1(ω)⊕ F̃1(ω) = V ,

letting P(ω) stand for the projection of V onto F̃1(ω) along Ẽ1(ω), we have

lim
t→±∞

ln ∥P(θt(ω))∥
t

= 0

(the family of projections {P(ω)}
ω∈Ω̃

is tempered),

Janusz Mierczyński Monotone Skew-Product Systems



Introduction
Ordered Banach Spaces

Monotone Dynamical Systems
Applications

Notation and Basic Concepts
Possible generalizations

Oseledets Decomposition, cont’d

Oseledets Decomposition, cont’d

Uω(t) Ẽ1(ω) = Ẽ1(θt(ω)) for all t ≥ 0,

Ẽ1(ω) \ {0} can be characterized as the set of those u ∈ V for which there exists
a function ŵω : R → V satisfying

ŵω(0) = u, and Uθs(ω)(t) ŵω(s) = ŵω(s + t) for any s ∈ R and any t ≥ 0
(we call such functions entire orbits),

lim
t→±∞

ln ∥ŵω(t)∥
t

= λtop.
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Definition of Cone

By a cone in a Banach space V we understand a closed convex subset V+ ̸= {0} such
that

[0,∞)V+ ⊂ V+;

V+ does not contain a one-dimensional linear subspace of V .

A cone V+ is

solid if its interior, V++, is nonempty,

reproducing if V+ − V+ = V ,

total if the closure of V+ − V+ equals V .
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Definition of Cone, Cont’d

A pair (V ,V+), where V+ is a cone in V , is called an ordered Banach space.
For u, v ∈ V we write

u ≤ v if v − u ∈ V+,

u < v if v − u ∈ V+ and u ̸= v .

If V++ is solid, write u ≪ v if v − u ∈ V++.

A cone V+ is called normal if there is K > 0 such that

∥u∥ ≤ K∥v∥

for any 0 ≤ u ≤ v . When the cone V+ is normal, V can be renormed so that K = 1.
When speaking of a normal cone we always assume such renorming.
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Examples of Cones

Let V = Rd with the Euclidean norm,

V+ = { u = (u1, . . . , ud) : ui ≥ 0 for all 1 ≤ i ≤ d }.
The cone V+ is solid and normal, with

V++ = { u = (u1, . . . , ud) : ui > 0 for all 1 ≤ i ≤ d }.

Let V = C ([0, 1]) with the standard norm,

V+ = {u ∈ C ([0, 1]) : u(x) ≥ 0 for all x ∈ [0, 1] }.
The cone V+ is solid and normal, with monotone norm. The interior of V+ equals

V++ = {u ∈ C ([0, 1]) : u(x) > 0 for all x ∈ [0, 1] }.
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Examples of Cones, cont’d

Let V = Lp((0, 1)), 1 ≤ p < ∞, with the standard norm,

V+ = {u ∈ Lp((0, 1)) : u(x) ≥ 0 for Lebesgue-a.e. x ∈ (0, 1) }

The cone V+ is not solid but reproducing and normal, with monotone norm.
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Examples of Cones, cont’d

Let V = C 1([0, 1]) with the standard norm,

V+ = {u ∈ C 1([0, 1]) : u(x) ≥ 0 for all x ∈ [0, 1] }

The cone V+ is solid but not normal.The interior of V+ equals

V++ = {u ∈ C 1([0, 1]) : u(x) > 0 for all x ∈ [0, 1] }.

Let V = C ([0, 1]) with the standard norm, but now

V+ = {u ∈ C ([0, 1]) : u is nondecreasing and u(x) ≥ 0 for all x ∈ [0, 1] }

The cone V+ is normal and not reproducing, but total.

Janusz Mierczyński Monotone Skew-Product Systems



Introduction
Ordered Banach Spaces

Monotone Dynamical Systems
Applications

Examples of Cones, cont’d

Let V = C 1([0, 1]) with the standard norm,

V+ = {u ∈ C 1([0, 1]) : u(x) ≥ 0 for all x ∈ [0, 1] }

The cone V+ is solid but not normal.The interior of V+ equals

V++ = {u ∈ C 1([0, 1]) : u(x) > 0 for all x ∈ [0, 1] }.

Let V = C ([0, 1]) with the standard norm, but now

V+ = {u ∈ C ([0, 1]) : u is nondecreasing and u(x) ≥ 0 for all x ∈ [0, 1] }

The cone V+ is normal and not reproducing, but total.
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Entire Positive Orbits
Strong Monotonicity, Exponential Separation
Hilbert’s Projective Metric
Separation in Measurable Case
Top Lyapunov Exponent as an Integral

Definition of Monotone Linear Skew-Product Dynamical System

From now on we assume that (V ,V+) is an ordered Banach space.

A topological linear skew-product semidynamical system ((ϕt), (Uy (t))) on Y × V is
monotone if Uy (t)V+ ⊂ V+ for all y ∈ Y and all t ≥ 0.

A measurable linear skew-product semidynamical system ((θt), (Uω(t))) on Ω × V is
monotone if Uω(t)V+ ⊂ V+ for all ω ∈ Ω and all t ≥ 0.
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Entire Positive Orbits

Theorem

Let ((θt), (Uω(t))) be a monotone measurable linear skew-product semidynamical
system, with two-sided θ and total V+. Assume that λtop > −∞. Then for P-a.e.
ω ∈ Ω there holds

Ẽ1(ω) ∩ V+ ̸= {0},

there is an entire orbit ŵω such that ŵω(t) ∈ (Ẽ1(ω) ∩ V+) \ {0} for all t ∈ R
(such ŵω is called an entire positive orbit).
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Strong Monotonicity

We say a monotone topological linear skew-product semidynamical system ((ϕt), (Uy (t)))
is strongly monotone if V is strongly ordered and Uy (1) (V+\{0}) ⊂ V++ for all y ∈ Y .
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Exponential Separation

Theorem on Exponential Separation

Let ((ϕt), (Uy (t))) be a strongly monotone topological linear skew-product
semidynamical system covering a two-sided flow ϕ on Y , such that Uy (1) is compact
for all y ∈ Y . Then there exist

a family E of one-dimensional linear subspaces {E (y)}y∈Y = {span{w(y)}}y∈Y ,
∥w(y)∥ = 1, continuously depending on y ∈ Y ,

a family F of one-codimensional linear subspaces {F (y)}y∈Y continuously
depending on y ∈ Y ,

constants C ≥ 1 and µ > 0

such that for any y ∈ Y there holds:
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Exponential Separation, cont’d

Theorem on Exponential Separation, cont’d

1 E (y)⊕ F (y) = V ,

2 Uy (t)E (y) = E (ϕt(y)) for all t ≥ 0,

3 Uy (t)F (y) ⊂ F (ϕt(y)) for all t ≥ 0,

4 w(y) ∈ V++,

5 F (y) ∩ V+ = {0},
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Exponential Separation, cont’d

Theorem on Exponential Separation, cont’d

6

∥Uy (t) v∥
∥Uy (t) u∥

≤ Ce−µt ∥v∥
∥v∥

for all t ≥ 0, v ∈ F (y) and u ∈ E (y), u ̸= 0.

The property 6 (in general, with no conditions on dimension) was called exponential
separation. However now, especially in the theory of smooth dynamical systems, it is
called dominated splitting. In some 1970–80s papers by Bronshtĕın and Chernĭı a more
general property was called a Perron condition.
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Comments on Exponential Separation

The dynamical meaning of the exponential separation is the following: for any y ∈ Y and
any vector u ∈ V \ F (y), the directions of Uy (t) u converge, as t → ∞, exponentially
to directions in E .
It follows, in particular, that any y ∈ Y and any u ∈ V \ F (y) the vectors Uy (t) u
eventually belong to V++. Consequently, F can be characterized as the set of vectors
which never, in the future, get into V++.
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Comments on Exponential Separation

Perhaps even more important property is that for each y ∈ Y the function ŵy : R → V++

defined by

ŵy (t) :=


w(ϕt(y))

∥Uϕt(y)(−t)w(ϕt(y))∥
for t < 0

Uy (t)w(y) for t ≥ 0

is a positive entire orbit, and any positive entire orbit is of the form αwy (·), where α > 0.
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Exponential Separation: References

The first to prove such a theorem in the case of V finite-dimensional was D. Ruelle:
Analycity (sic!) properties of characteristic exponents of random matrix products, Adv.
Math. 32 (1979), 68–80 (discrete time).
In the infinite-dimensional case it was proved by P. Poláčik and I. Tereščák: Exponential
separation and invariant bundles for maps in ordered Banach spaces with applications
to parabolic equations, J. Dynam. Differential Equations 5 (1993), 279–303 (discrete
time).
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Exponential Separation: References, cont’d

J. Húska, P. Poláčik and M. V. Safonov (in various combinations) proved the existence
of exponential separation in a very concrete situation of second order parabolic PDEs,
making use of (a form of) the Harnack inequality, see, e.g., their joint paper Harnack
inequalities, exponential separation, and perturbations of principal Floquet bundles for
linear parabolic equations, Ann. Inst. H. Poincaré 24 (2007), 711–739.

Their ideas were applied later in J. M. and W. Shen’s monograph Spectral Theory
for Random and Nonautonomous Parabolic Equations and Applications, Chapman &
Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 139, CRC Press,
Boca Raton, 2008.
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Exponential Separation: References, cont’d
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Their ideas were applied later in J. M. and W. Shen’s monograph Spectral Theory
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Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 139, CRC Press,
Boca Raton, 2008.
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Exponential Separation: A Generalization

One should mention here an (again abstract) result proved by I. Tereščák (Dynam-
ics of C 1 smooth strongly monotone discrete-time dynamical systems, unpublished
manuscript), where it is assumed that there is a discrete-time one-sided topological
semidynamical system on the base space Y , that is, the iterates of a continuous F : Y →
Y , and that Uy (1), y ∈ Y , are compact linear operators from V into V , depending
continuously in the norm topology on y ∈ Y , and such that Uy (1) (V+ \ {0}) ⊂ V++

for all y ∈ Y .
Then the family F is well defined, and may be characterized as the set of those (y , u)
such that Uy (k) u /∈ V++ for any k ∈ N. Instead of one w(y) there is a whole family of
unit vectors in V++, with the property that the union of all those families over y ∈ Y
is compact. Exponential separation is retained.
The proof rests on applying the inverse limit construction.
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Hilbert’s Projective Metric

A useful tool is Hilbert’s projective metric.
Let V+ be a cone. We introduce an equivalence relation ∼ on V+: u ∼ v (we say u
and v are comparable) if and only if there are 0 < α ≤ β such that αu ≤ v ≤ βu.
Equivalence classes of ∼ are called parts of V+. Notice that {0} is a part of V+, and if
V+ is solid then V++ is a part of V+.

For comparable nonzero u, v ∈ V+ define

d(u, v) := ln
inf{α > 0 : u ≤ αv}
sup{α > 0 : αu ≤ v}

.

d satisfies all the properties of a metric, except that d(u, v) = 0 is equivalent to the
existence of α > 0 such that u = αv . d(·, ·) is called Hilbert’s projective metric (perhaps
pseudometric would be more correct).
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Properties of Hilbert’s Projective Metric

If V+ is normal, then for any comparable u, v ∈ V+, ∥u∥ = ∥v∥ = 1, there holds
∥u − v∥ ≤ 3(ed(u,v) − 1). If V is a Banach lattice we can take 1 instead of 3.

As a consequence of the above, if V+ is normal then the intersection of any part
of V+ with the unit sphere is a complete metric space with respect to d(·, ·).

Janusz Mierczyński Monotone Skew-Product Systems



Introduction
Ordered Banach Spaces

Monotone Dynamical Systems
Applications

Definitions
Entire Positive Orbits
Strong Monotonicity, Exponential Separation
Hilbert’s Projective Metric
Separation in Measurable Case
Top Lyapunov Exponent as an Integral

Properties of Hilbert’s Projective Metric, cont’d

For a linear operator L : V → V such that L(V+) ⊂ V+ define its projective
diameter ∆(L) and its Birkhoff contraction ratio q(L) as

∆(L) := sup
{
d(Lu, Lv) : u, v ∈ V+, Lu ∼ Lv

}
,

q(L) := sup
{ d(Lu, Lv)

d(u, v)
: u, v ∈ V+, u ∼ v , d(u, v) > 0

}
.

Then either ∆(L) = ∞ and q(L) = 1, or ∆(L) < ∞ and q(L) = 1
4 tanh∆(L).

Here “Birkhoff” refers to Garrett Birkhoff, the son of George David Birkhoff (of
the Birkhoff ergodic theorem).
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A Generic Theorem on Separation

Theorem on Separation, Measurable Case

Let ((θt), (Uω(t))) be a monotone measurable linear skew-product semidynamical
system, with two-sided θ, with (V ,V+) an ordered Banach space, such that V+ is
normal and reproducing and V ∗ is separable. Assume that there exist

e ∈ V+ \ {0} and Uω(1) e ̸= 0 for all ω ∈ Ω,

a measurable κ : Ω → [1,∞) with ln+ lnκ ∈ L1((Ω,F,P)) such that for any
ω ∈ Ω and any u ∈ V+ \ {0} there is β(ω, u) > 0 with the property that

β(ω, u) e ≤ Uω(1) u ≤ κ(ω)β(ω, u) e

(the above property is called focusing).
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A Generic Theorem on Separation, cont’d

Theorem on Separation, Measurable Case, cont’d

Then there exist an invariant Ω1 ⊂ Ω, P(Ω1) = 1, and

a measurable function w : Ω1 → V+ with w(ω) ∼ e, ∥w(ω)∥ = 1 for all ω ∈ Ω1,

a measurable family of one-codimensional subspaces {F1(ω)}ω∈Ω1

with the properties that, for each ω ∈ Ω1,

putting E1(ω) := span{w(ω)}, Uω(t)E1(ω) = E1(θt(ω)),

Uω(t)F1(ω) ⊂ F1(θt(ω)),

F1(ω) ∩ V+ = {0},

lim
t→∞

ln ∥Uω(t) u∥
t

= λtop for any u ∈ V+ \ {0},

Janusz Mierczyński Monotone Skew-Product Systems



Introduction
Ordered Banach Spaces

Monotone Dynamical Systems
Applications

Definitions
Entire Positive Orbits
Strong Monotonicity, Exponential Separation
Hilbert’s Projective Metric
Separation in Measurable Case
Top Lyapunov Exponent as an Integral

A Generic Theorem on Separation, cont’d

Theorem on Separation, Measurable Case, cont’d

the function ŵω : R → V defined as

ŵω(t) :=


w(θt(ω))

∥Uθt(ω)(−t)w(θt(ω))∥
for t < 0

Uω(t)w(ω) for t ≥ 0

is a positive entire orbit, unique up to multiplication by positive scalars.
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A Generic Theorem on Separation, cont’d

Theorem on Separation, Measurable Case, cont’d

If λtop > −∞ then there is σ > 0 such that for each ω ∈ Ω0 there holds
E1(ω)⊕ F1(ω) = V and

lim
t→∞

1

t
ln

∥Uω(t)↾F1(ω)∥
∥Uω(t)w(ω)∥

= −σ.
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A Generic Theorem on Separation, Idea of Proof

w(ω) is defined as the pullback limit,

lim
t→∞

Uθ−t(ω)(t) e

∥Uθ−t(ω)(t) e∥

in Hilbert’s projective metric.
F1(ω) equals the nullspace of w∗(ω), the analog of w(ω) for the dual of the system on
the dual space Ω× V ∗.
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An Aside: Finite-Dimensional Case

In: L. Arnold, V. M. Gundlach and L. Demetrius, Evolutionary formalism for products
of positive random matrices, Ann. Appl. Probab. 4 (1994), 859–901, a proof is given,
using Hilbert’s projective metric, of the theorem in finite-dimensional case.

Janusz Mierczyński Monotone Skew-Product Systems



Introduction
Ordered Banach Spaces

Monotone Dynamical Systems
Applications

Definitions
Entire Positive Orbits
Strong Monotonicity, Exponential Separation
Hilbert’s Projective Metric
Separation in Measurable Case
Top Lyapunov Exponent as an Integral

A Generic Theorem on Separation, Idea of Proof, cont’d

For a proof of the general theorem see J. M., W. Shen Principal Lyapunov exponents
and principal Floquet spaces of positive random dynamical systems. I. General theory,
Trans. Amer. Math. Soc. 365 (2013), 5329–5365, with some extensions in J. M.,
S. Novo, R. Obaya Principal Floquet subspaces and exponential separations of type II
with applications to random delay differential equations, Discrete Contin. Dyn. Syst. 38,
December 2018, special issue on Llavefest, 6163–6193.
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Separation vs. Oseledets Decomposition

If we assume additionally that Uω(1) is compact, then the decomposition E1(ω) ⊕
F1(ω) = V obtained above is P-a.e. equal to Ẽ1(ω)⊕ F̃1(ω) = V , see M. Kryspin, J. M.,
S. Novo, R. Obaya, Two dynamical approaches to the notion of exponential separation
for random systems of delay differential equations, preprint, 2023, arXiv 2305.17990.
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A Related Result: Top Lyapunov exponent as an Integral

Let us go back to a strongly monotone linear skew-product dynamical system generated
by

u̇ = A(θt(ω))u, u = (u1, . . . , ud) ∈ Rd
+,

where A(·) is a d × d-matrix with all entries positive. If (θt) is two-sided, then w(ω)
is well-defined for P-a.e. ω ∈ Ω, and it is a simple consequence of (G. D.) Birkhoff’s
ergodic theorem that

λtop =

∫
Ω

⟨A(ω)w(ω),w(ω)⟩P(dω).

If (θt) is one-sided, then, as there need be no (at least uniquely determined) function
w(·), the above result cannot be extended word for word.
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A Related Result: Top Lyapunov exponent as an Integral, cont’d

M. Benäım, C. Lobry, T. Saari and E. Strickler in A note on the top Lyapunov exponent
of linear cooperative systems (arXiv: 2302.05874) consider a situation where Ω is the
path-space of a uniquely ergodic Feller Markov process on a compact metric space S .
Then there exists a probability measure Π on S×∆, where ∆ is the standard probability
simplex in Rd , such that

λtop =

∫
S×∆

⟨A(s) u,1⟩Π(ds du)

a.e. on Ω, where 1 = (1, . . . , 1).
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Carrying Simplices

A C 1 system of ODEs

ẋi = xi fi (x1, . . . , xd) x = (x1, . . . , xd) ∈ Rd
+

is called totally competitive if Dj fi (x) < 0, 1 ≤ i , j ≤ d . For a totally competitive
systems of ODEs for which both the origin and the point at infinity are repellers (plus
an additional assumption on the linearizations at equilibria) there exists an unordered
invariant set Σ (the carrying simplex), homeomorphic to the standard probability (d−1)-
simplex via radial projection and attracting any bounded set bounded away from the
origin.
It follows from results by Müller and Kamke that the derivative dynamical system re-
stricted to S is monotone for time reversed. Further, if we take a compact invariant
Y ⊂ Σ ∩ Rd

++ then for the restriction to Y we have a strongly monotone linear skew-
product dynamical system.
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Carrying Simplices, cont’d

Here the interpretation is the following: the one-codimensional linear subspaces are
regarded as tangent hyperplanes. Indeed, it can be proved that V equals a sort of C 1

tangent bundle of the carrying simplex Σ restricted to Y ,
The main part in the construction is played by the difference between the exponential
growth rates on Σ and in directions transverse to Σ. If that difference is (relatively) big
then Y can be proved to be of class C k with k > 1 (provided, of course, that the vector
field is sufficiently regular).
An interesting sufficient condition, expressed in terms of Hilbert’s projective metric, was
given by Michel Benäım in: On invariant hypersurfaces of strongly monotone maps, J.
Differential Equations 137 (1997), 302–319.
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Persistence in Population Models

Assume that a system of two populations is modeled by a system of ODEs

u̇i = ui fi (u), u = (u1, u2) ∈ R2
+,

satisfying appropriate dissipativity conditions. For an invariant measure µ supported on
Cj := { u ∈ R2

+ : uj = 0 }, j = 1, 2, the number∫
Cj

fi dµ,

where {i , j} = {1, 2}, called the exterior Lyapunov exponent, is important in ascertaining
the persistence.
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Persistence in Population Models, cont’d

Indeed, if

min
µ∈M1

∫
C1

f2 dµ > 0 and min
µ∈M2

∫
C2

f1 dµ > 0,

where Mj , j = 1, 2, denotes the set of all invariant measures supported on Cj , then
there exits η > 0 such that any solution starting in R2

++ is eventually at a distance > η
of R2

+ \ R2
++ (B. Garay, J. Hofbauer, S. J. Schreiber).

The above property holds under some stochastic perturbation, as shown, among others,
in M. Benäım, J. Hofbauer and W. H. Sandholm, Robust permanence and imperma-
nence for stochastic replicator dynamics, J. Biol. Dyn. 2 (2008), 180–195, and in S.
J. Schreiber, On persistence and extinction for randomly perturbed dynamical systems,
Discrete Contin. Dyn. Syst. Ser. B 7 (2007), 457–463.
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Persistence in Population Models, cont’d
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Persistence in Population Models: Connections to Monotone Flows

Consider a model of two spatially distributed interacting populations

∂ui
∂t

= ∆ui + ui fi (x , u), t > 0, u = (u1, u2) ∈ R2
+, x ∈ D, (PDE)

where ∆ is the Laplace operator, D ⊂ RN , N = 1, 2 or 3, is a bounded domain with
sufficiently smooth boundary ∂D, endowed with the Dirichlet boundary conditions

ui (t, x) = 0 i = 1, 2, t > 0, x ∈ ∂D. (BC)
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Persistence in Population Models: Connections to Monotone Flows, cont’d

As is usual in applications of the dynamical systems theory to (evolutionary) PDEs, a
solution of (PDE)+(BC) is looked upon as a function of time variable t taking values
in a Banach space V (2) of R2- (or rather R2

+-)valued functions (or equivalence classes
of functions) defined on D.

Under suitable regularity assumptions, for any initial value u0 = (u0,1, u0,2) ∈ V (2)

defined on D there is a locally unique solution u(·; u0) to (PDE)+(BC) defined on some
[0,T ), T > 0, and satisfying u(0; u0) = u0. We will use the semiflow notation: ϕt(u0)
instead of u(·; u0).
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Persistence of Population Models: Connections to Monotone Flows, cont’d

Examples of such spaces V (2) are:

L2(D,R2),

more generally, Lp(D,R2), with 1 < p < ∞,

sometimes, L1(D,R2) or L∞(D,R2),

Sobolev spaces W k
p (D,R2), k = 1, 2, . . .,

various interpolation spaces, as Sobolev–Slobodetskĭı spaces, Bessel potential
spaces, Besov spaces, fractional power spaces,

via Sobolev embedding theorems, Hölder spaces;

and another thread:

C (D̄,R2),

C 1(D̄,R2).

Janusz Mierczyński Monotone Skew-Product Systems



Introduction
Ordered Banach Spaces

Monotone Dynamical Systems
Applications

Carrying Simplices
Persistence in Population Models
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and another thread:

C (D̄,R2),

C 1(D̄,R2).
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Put

V
(2)
+ := { u = (u1, u2) ∈ V : u1(x) ≥ 0 and u2(x) ≥ 0, for (perhaps a.e.) x ∈ D }.

We consider only solutions starting from u0 ∈ V
(2)
+ . By the standard parabolic maximum

principle they remain in V
(2)
+ (as long as they exist).

Assume that (PDE)+(BC) is dissipative: there is a bounded subset of V
(2)
+ such that

each solution eventually takes values in that subset.
A first consequence of dissipativity is that each solution is defined on [0,∞).
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Further, it follows from dissipativity that there exists a compact and invariant set A ⊂
V

(2)
+ (the global attractor) attracting each bounded subset of V

(2)
+ .

By the injectivity property for parabolic PDEs, the solution operator restricted to A is,
for each t ≥ 0, a homeomorphism, so we have a two-sided topological dynamical system
on A.

The compact set { u ∈ A : u2 = 0 } is also invariant. We take this set for Y .
The topological skew-product linear semiflow is generated on Y × V by a single PDE

∂v

∂t
= ∆v + f2(x , ϕt(y)(x)) v , t > 0, x ∈ D, y ∈ Y

(plus the boundary conditions).
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The strong parabolic maximum principle provides that the above semiflow has required
monotonicity properties. For instance, when we take V = C (D̄) the semiflow is strongly
monotone, so there is exponential separation.
Taking for P an ergodic invariant probability measure with support contained in Y we
obtain a measurable monotone skew-product semidynamical system to which we can
apply Hilbert’s projective metric. The principal Lyapunov exponent plays the role of the
invasion rate by the second species.
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