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STRICTLY COOPERATIVE SYSTEMS WITH A FIRST INTEGRAL*
JANUSZ MIERCZYIQSKIf

Abstract. We consider systems of differential equations dx/dt--Fi(x,’", xn) in the nonnegative
orthant in the n-space satisfying the following hypotheses: i) F(Q) 0; ii) if x Yi and xj yj for j then
Fk(x) Fk(y) for k i; iii) F possesses a first integral with positive gradient. We prove that every solution
to such a system either converges to an equilibrium or eventually leaves any compact set.

Key words, equilibrium, first integral, Lyapunov function, co-limit set, nonnegative orthant, order
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1. Introduction. The purpose of the present paper is to study the limiting behavior
of solutions of systems of ordinary differential equations possessing a first integral,
where the right sides of equations as well as the first integrals are subject to some
monotonicity conditions. We prove that any solution to such a system either converges
to an equilibrium or eventually leaves any compact set.

Particular classes of systems of differential equations F(x), x U c ", satisfy-
ing conditions OFi/Oxj>-O for ij, were studied by many authors (see references in
1 ]; see also [3, Chap. III]). Recently, in 1 and [2], M. W. Hirsch initiated investigation
of systems of that type (which he calls cooperative systems), using ideas taken from
the dynamical systems theory. Such systems may describe, for instance, competition
between biological species or chemical reactions. In cooperative systems it is natural
to expect convergence of bounded solutions to an equilibrium or to a closed orbit. A
decisive step toward answering this conjecture was made by M. W. Hirsch, who in [2]
proved that, for systems that are cooperative and irreducible (that is, the matrices
[(OF/Oxj)(p)] are irreducible), almost all (with respect to the Lebesgue measure) points
whose forward orbits are bounded approach the equilibrium set. In 11 J. Smillie has
found a class of cooperative irreducible systems for which the following holds: every
solution either converges to an equilibrium or eventually leaves any compact set.

To our knowledge, a general class of first integrals for cooperative systems was
considered only in [2, Thm. 4.7]. However, that result is negative: if the set of equilibria
is countable then every continuous invariant function is constant. On the other side,
many authors (e.g. [5], [6], [7], [9], [10]) considered cooperative (or related) systems
on the nonnegative orthant g having Yi xi as a first integral. For such systems it was
proved that every solution converges to an equilibrium. In [9] and [10] these results
were extended to the case of nonautonomous cooperative systems periodic (resp.
almost periodic) in t.

The results contained in the present paper are a generalization of the theorems
mentioned above to the case of not necessarily linear first integral. Methods used here
are geometric, and the only nonelementary tool made use of is the Brouwer fixed-point
theorem. The exposition is independent of any other work on this subject; however,
the idea of a Lyapunov function L is taken from the author’s previous work [8].

2. Definitions and preliminary lemmas. We define R_={x"" xi>0},= 0"-+-
{X" Xi--O for some i}, Int"+=Rg\0"+. Moreover, we denote ei-
(0,-.., 0, l, 0,..., 0)--the ith vector ofthe standard base in ’, B {x "" 0 <- xi <- 1
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for each i}, B+ {x B: xi 1 for some i}, x < y if xi < y for each i, and x <iY if x <y
and xj yj forj i. (.,.) will denote the usual inner product in Rn, [[. [[--the correspond-
ing norm.

Let H" R_-> be a C function. By a gradient of H at p we mean the vector
((OH/OXl)(p), (OH/Oxn)(p)) (written grad H(p)).

Let F:

_
->" be a vector field. By a first integral for F we understand a function

H’->R+, of class C 1, such that gradH(p)#0 at each p and
(gradH(p),F(p))=O.

A point p e

_
for which F(p)=0 is called an equilibrium.

Let x: [0, T)-> be a nonextendible solution to the initial value problem dx/dt
F(x), x(0) x. We say the set {x(t): 0 -< < T} is a forward orbit of x.

The set to(x) consists of those points y for which there exists a sequence
tk -> T such that X(tk)-> y. This set is called an to-limit set of x. The following facts are
well known.

THEOREM 2.1. Ifto(X) {y} then the solution x is defined on [0, +o) and converges
to an equilibrium y.

THEOREM 2.2. If tO(X)= then x(. eventually leaves any compact set.
The set A c R_ is called positively invariant if for each a A its forward orbit is

contained in A.
We consider a system of ordinary differential equations in defined by a C

vector field F: II" -dxi(2.1) -F/(x,’’’,x,,)=F(x), x_, F=(F,’’.,F,,),
dt

satisfying:
(A1) F(0) 0;
(A2) If x <iY then F(x) < F(y) for j i;
(A3) There exists a first integral H for F such that grad H(x)> 0 for x e R_ and

(for convenience) H(0)= 0. Systems satisfying (A2) will be called strictly cooperative.
Let M denote the least upper bound of the values of H. From (A3) it follows that

H is onto [0, M), where 0 < M-<
By Int H-l(h) we denote the set {x e Int _: H(x)=h}.
LEMMA 2.1. Let c be an equilibrium. Then c+_ is positively invariant. Moreover,

c is a unique equilibrium on c + O_.
Proof. By performing, if necessary, the change of coordinates i xi c, we reduce

a general case to the case c 0. Let x e. Then let I denote the subset of {1, , n}
such that xi- 0 exactly for e I. If x 0 then x > 0 for indices j belonging to some
nonvoid subset J of {1,...,n}. For convenience assume I={1,...,k}, J-
{k+ 1,..., n}. By (A2) we obtain

Fi(O, O, Xk+l, x,) > Fi(O, O, Xk+E, x,) > > Fi(O) --O .foriI.

Therefore on the boundary of R_ (except 0) the vector field F is directed inward,
which in a standard way implies that

_
is positively invariant. Q.E.D.

LEMMA 2.2. Let c be an equilibrium. Then for every e > 0 there exists 8 > 0 such
that for each h H(c) 8, H(c) + 8 f’l [0, M) there exists an equilibrium Ch such that
H(Ch) h, ch > c for h > H(c) (resp. Ch < c for h < H(c)) and IIc -cll--<

Proof. We consider the case h > H(c). From (A3) it follows that H(c+ n-1/ei) >
H(c). Set mini H(c + n-1/e)- H(c). For x
Let for a moment h (H(c), H(c)+ ) be fixed. By g(x) we denote the straight line
passing through c and x. Let the mapping K: (c+n-I/B+)-->H-l(h)fq(c+_) be
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defined in the following way: K(x) is the unique point on e(x) at which H(K(x)) h.
The existence and uniqueness of this point follow from (A3). Having in mind our
choice of h, we infer that K is in fact onto H-l(h)fq(c+ n-I/EB) H-l(h)f’l(c+R).
The definition of K implies that K is one-to-one. Moreover, K-1 is continuous as a
"central projection" onto (c / n-/EB/). Therefore, from the compactness ofthe domain
of K, K is a homeomorphism. Thus H-l(h)fq(c+g_) is homeomorphic to the (n-
1)-dimensional disk. This set, as an intersection of positively invariant sets, is positively
invariant. The Brouwer fixed-point theorem tells us that there is an equilibrium
Ch H-l(h)f’l(c+Rg). From Lemma 2.1 it follows that (Ch)i > Ci. Moreover, for every
y c+ n-1/2B we have [[y-cl[ _-< e, so [ICh-Cll <-- e. The case h < H(c) is treated in an
analogous way. Q.E.D.

PROPOSITION 2.1. The set S of equilibria is linearly ordered by <.
Proof. Suppose there exist c, d S such that c d for I, cj < dj for j J, c > d

for L and at least two of these sets are nonempty. Consider the point z, zk
max.{ck, dk} for 1 _--< k_-< n. Proceeding as in the proof of Lemma 2.1 we obtain F(z) >
F(d) =0.for i/, F(z)> F(d)=0 forjJ and Ft(z)>F(c)=O for lL. But from
this it follows that (F(z), grad.H(z))>0, a contradiction. Q.E.D.

COROLLARY. For each h [0, M) there is at most one equilibrium on H-l(h).
PROPOSITION 2.2. There exists U, 0 < U <-M, such that there is an order-preserving

homeomorphism between [0, U) and the set S of equilibria of F.
Proof. The function H S is continuous. From the corollary and Proposition 2.1

it follows that H S is one-to-one, so Z, the function inverse to HI S, exists. Lemma
2.2 implies that Z is continuous and preserves order. Therefore Z is a homeomorphism.
The statement on the domain of Z also follows from Lemma 2.2. Q.E.D.

Let Z denote, as in the above proof, the function inverse to HIS. We define the
function L: R +, L(x)= min {Z-(xi) z?l(xi) is defined}, where Z? denotes the
function inverse to the ith coordinate of Z.

LEMMA 2.3. L is well defined and continuous.

Proof. Suppose that for each i, Zi(h)-ai as h- U. Then a=(al,’’ ", an) would
be an equilibrium, and H(a)= U. But by Lemma 2.2 there would exist an equilibrium
b> a and H(b)> U. Thus for some i, Z(h)-oo as h- U, so L is well defined.

In order to prove the continuity of L notice that, by Lemma 2.2, the image of Z
is a right-open interval. Therefore if in the definition of L(x) the minimum is realized
exactly by indices I then for y belonging to some sufficiently small neighborhood
of x the minimum is realized by indices from some subset of I. The minimum of a
finite family of continuous functions is continuous, so we have obtained the desired
result. Q.E.D.

Remark. As we have said in the Introduction, L has a simple geometric interpreta-
tion. Namely, the level surface corresponding to h is equal to the set Z(h)+ Og_.

LEMMA 2.4. For h [0, U), sup {L(x)" x H-l(h)} is attained only at Z(h). For
h U, M), sup {L(x)" x H-l(h)} is attained nowhere.

Proof. First assume h [0, U). It is easy to check out that L(Z(h)) h. Suppose
that for some xZ(h), xH-l(h), we have L(x)>-_h. From the definition of L it
follows that x >= Zi(h) for every i. But for some j, x Z(h). (A3) implies that H(x) > h,
a contradiction.

Now we assume h U, M). Let x be any point of H-l(h). Denote L(x) by g.
This means that xZ(g)+O (of course g<h). Let I stand for the set of indices
for which x Z(g). Define the point in the following way: x + 1 for /, x
for j I. From (A3) it follows that H()> h. Considering, as in the proof of Lemma
2.2, the straight line passing through Z(g) and x, we can find a point y Z(g) + Int R_
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such that H(y) h. But the fact that y Z(g) + Int R_ means that H(y) > h, a contra-
diction. Q.E.D.

3. The main result.
THEOREM 3.1. For x

_
we have either to(x)= {Z(H(x))} or to(x)= .

Proof Let I denote the set of indices realizing the minimum in the definition of
L(x(t)). Analogously, as in the proof of Lemma 2.1 we can show that i(t)> 0 for
i L Hence L is strictly increasing along the forward orbits of (2.i), except for the
constant solutions. Let x be fixed, and let E denote the set H-l(n(x)). H is a
first integral, so the forward orbit of x is contained in E. Furthermore, from the
closedness of E it follows that to(x)c E. Now it suffices to show that to(x)c
{y E: L(y)=supze L(z)}. Suppose not. Then there exists y to(x) such that L(y)<
SUpze L(z). From Lemma 2.4, y is not an equilibrium, so L strictly increases along
the orbit of y. Let v be any point.on the forward orbit of y, distinct from y. Obviously
L(v) > L(y). Choose neighborhoods V of v, Y of y, such that infz v L(z) > SUpz v L(z).
From the very definition of the to-limit set we can find moments tl < t2 such that
X(tl) V x(t2) Y. From this we deduce that L(x(tl))<L(x(t2)), which contradicts
our choice of V and Y. Q.E.D.

The following example shows that the case to(x)- is possible.
Example. Consider the nonnegative quadrant +. As a first integral choose a

function H(Xl, x2) Gl(X) + G2(x2), where G2(x2) x2, and G: R+R+ is a function
of class C2 such that G(0)= 0, G is positive and limx,_,oo Gl(X)= 1. Let W: R+ +
be a function of class C such that W(0)= 0, W’ is positive and limx_ W(x)= 1. As
the equilibrium set S we choose the graph of W, i.e., S {(xl, x2): x2 W(x), Xl R/}.
We define

f2(xl, x2)- .W(Xl)-x2, Fl(Xl x2)-- -(F2(Xl x2))/(G(Xl))-- (x2 W(Xl))/(a(xl)).

It is easy to check out that F is C and that H is a first integral for our system. Moreover

(OF2/OXl)(Xl, x2) W’(Xl) > O, (OF1/Ox2)(Xl, x2) 6(Xl)]-1 > O,

so that the system is strictly cooperative. From the choice of W it follows that
supxsH(x)=2. Hence the level surface H-(3) does not intersect S, so for each
x e H-’(3), to(x) .

Remark. Professor Morris W. Hirsch has informed the author that he obtained
the same result under slightly different hypotheses [4].
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