# Fixed point theorems for topological contractions

Robert Rałowski Wrocław University of Science and Technology (joint work with Michał Morayne)

> Inspirations in Real Analysis Będlewo, April 2024

### Theorem (Banach fixed-point theorem, 1920)

Every Lipschitz contraction on complete metric space has unique fixed point.

Here  $f: X \to X$  is a Lipschitz contraction iff existst  $c \in [0,1)$  s.t. for every  $x,y \in X$ 

$$d(f(x), f(y)) \le c \cdot d(x, y).$$

## Topological contraction

#### Definition

Let X be a  $T_1$ -topological space and  $f: X \to X$ .

We say that f is a topological contraction on X iff for every open cover  $\mathcal U$  of X there are  $U\in\mathcal U$  and  $n\in\omega$  s.t.  $f^n[X]\subseteq U$ 

### Theorem (Lebesgue number)

For every compact metric space, X and any open cover U there exists  $\epsilon > 0$  s.t.

$$\forall x \in X \exists U \in \mathcal{U} \ B(x, \epsilon) \subseteq U.$$

#### Fact

Every Lipschitz contraction on a compact metric space is a topological contraction.



# Fixed point theorem for compact $T_1$ spaces

### Theorem

Let X be  $T_1$  compact topological space and  $f: X \to X$  be a closed topological contraction on X. Then there exsists an unique  $x \in X$  s.t. x = f(x).

### Corollary

Every Lipschitz contraction on compact metric space has unique fixed point.

### Example

Let  $(\omega, \tau)$  be  $T_1$  topological space where

$$\tau = \{\emptyset\} \cup \{A \in \mathscr{P}(\omega) : A^c \text{ is finite } \}.$$

Then  $\omega \ni n \mapsto f(n) = n + 1 \in \omega$  is a continuous, topological contraction without any fixed point, (f is not closed map !!!).



Lipschitz contraction is continuous but topological not neccessary.

### Example

Let  $X = \{1/n : n \in \mathbb{N}\} \cup \{0,2,3\}$  be endowed with the usual Euclidean metric from the real line. Let for  $x \in X$ :

$$f(x) := \begin{cases} 2 & \text{if } x = 1/n, \\ 3 & \text{if } x = 0, 2, 3. \end{cases}$$

The mapping f is a closed topological contraction because  $f^2[X] = \{3\}$ ; it is closed because  $f[X] = \{2,3\}$ ; and it is not continuous because

$$f\left(\lim_{n}\frac{1}{n}\right)=f(0)=3\neq 2=\lim_{n}f\left(\frac{1}{n}\right).$$

Here fixed point here is 3. Moreover,  $f \subseteq X \times X$  is not closed set.

# Weak Čech completeness

### Definition

Tychonoff topological space X is Čech complete if

- exists  $\{U_i : i \in \omega\}$ ,  $U_i$  open cover of X for  $i \in \omega$ ,
- for every centered  $\{F_m \in Clo(X) : m \in \omega\}$  s.t.  $\forall i \in \omega \exists m \in \omega \exists U \in \mathcal{U}_i F_m \subseteq U$

then  $\bigcap \{F_m \mid m \in \omega\} \neq \emptyset$ .

If we drop assumption that X is Tychonoff space then X is weak Čech complete.

#### Theorem

If X is a  $T_1$  weak Čech complete space and  $f: X \to X$  is a topological contraction, then f has a unique fixed point.

# Weak contraction (or feebly topologically contractive)

### Definition (Kupka)

Let X - topological space, then  $f:X\to X$  is weak topological contraction if for each open cover  $\mathcal U$  we have

$$\forall x, y \in X \,\exists n \in \omega \,\exists U \in \mathcal{U} \, f^n[\{x, y\}] \subseteq U$$

### Theorem (Kupka, 1998)

If X top. space  $f: X \to X$  s.t.

- f has closed graph,
- f is weak top. contraction

then f has fixed point. Moreover, if X is  $T_1$  then fixed point is unique.

### Corollary

If X is a Hausdorff topological space and f is a continuous weak topological contraction on X, then f has a unique fixed point.

### **Theorem**

If X is a Hausdorff first-countable topological space and f is a closed weak topological contraction on X, then f has a unique fixed point.

### Definition (Atsuji space)

Complete metric space is Atsuji if Lebesgue number Theorem is true.

### Corollary (Beer)

Let (X,d) be an Atsuji space and  $f:X\to X$  be a continuous (or closed) mapping. If there exists an  $x_0\in X$  such that  $\liminf_{n\to\infty}d(f^n(x_0),f^{n+1}(x_0))=0$ , then f has a fixed point.

## Lacally Hausdorff space

#### Definition

A topological space X is *locally Hausdorff* if every point of the space has an open neighbourhood U such that the topology of X restricted to U is Hausdorff.

#### **Theorem**

If X is a locally Hausdorff  $T_1$  topological space and f is a continuous weak topological contraction on X, then f has a unique fixed point.

## Peripherally Hausdorff space

### Definition

For every  $\alpha \in On$  define a class  $\mathcal{F}_{\alpha}$  as follows: for every  $T_1$  topological space X, we say that  $X \in \mathcal{F}_{\alpha}$  is  $\alpha$ -Hausdorff space if if  $\alpha = 0$  then  $X = \{x\}$  and, if  $\alpha > 0$  then  $\forall x \in X \exists \beta < \alpha \ [x] \in \mathcal{F}_{\beta}$  where

$$[x] = \bigcap \{ cl(U) : x \in U - \text{ is open in } X \}.$$

We say that X is peripherally Hausdorff iff  $\exists \alpha \in On X \in \mathcal{F}_{\alpha}$ , We have

- If  $\beta \leq \alpha$  then  $\mathcal{F}_{\beta} \subseteq \mathcal{F}_{\alpha}$ ,
- ▶  $X \in \mathcal{F}_1$  iff X is a Hausdorff space.

### Definition (Hausdorff rank)

Let X-peripherally Hausdorff space, define Hausdorff rank of X

$$rank_H(X) = min\{\alpha \in On : X \in \mathcal{F}_{\alpha}\}.$$

#### **Theorem**

For every  $\alpha \in On$  there is X-peripherally Hausdorff space s.t.  $\alpha \leq rank_H(X)$ .

### Proposition

If  $(X, \tau(X)) \in \mathcal{F}_{\alpha}$  and  $Y \subseteq X$  is nonempty then  $(Y, \tau(Y)) \in \mathcal{F}_{\alpha}$ , where  $\tau(Y) = \tau(X \upharpoonright Y) = \{U \cap Y : U \in \tau(X)\}.$ 

Here we used transfinite induction and  $[x]_Y \subseteq [x]_X$  and  $\tau([x]_X \upharpoonright [x]_Y)) = \tau([x]_Y)$  where  $\tau([x]_X) = \{U \cap [x]_X : U \in \tau(X)\}$  and  $\tau([x]_Y) = \{U \cap [x]_Y : U \in \tau(Y)\}$ .

#### **Theorem**

If X, Y are peripherally Hausdorff spaces then

$$rank_H(X \times Y) = \max\{rank_H(X), rank_H(Y)\}.$$



# Weak<sup>+</sup> topological contraction

#### Definition

Let X - topological space, then  $f:X\to X$  is weak<sup>+</sup> topological contraction if for each open cover  $\mathcal U$  we have

$$\forall x, y \in X \exists U \in \mathcal{U} \forall^{\infty} n \in \omega \ f^{n}[\{x, y\}] \subseteq U$$

#### **Theorem**

For every peripherally Hausdorff space X, every continuous weak<sup>+</sup> topological contraction on X has unique fixed-point.

## Example

$$X = \{-1\} \cup [0,1].$$

Let the base of *X* consist of all sets of the form:

- ▶  $J \cap [0,1]$ , where J is an open interval, and
- ►  $((L \setminus \{0\}) \cap X) \cup \{-1\}$ , where L is an open interval containing 0.

Let  $f: X \to X$  be defined by

$$f(x) = \frac{1}{2} \cdot x$$
 where  $x \in [0, 1]$  and  $f(-1) = 0$ .

Then X is a compact peripherally Hausdorff (in fact 2-Hausdorff) space and f is a continuous weak<sup>+</sup> contraction but  $f \subseteq X \times X$  is not closed. Of course, the point 0 is a fixed point of f.

- M. Atsuji, Uniform continuity of continuous functions of metric spaces, Pacific Journal of Mathematics 8 (1958), 11-16.
- G. Beer, More about metric spaces on which continuous functions are uniformly continuous, Bulletin of the Australian Mathematical Society 33 (1986), 397–406.
- R. Engelking, General Topology, Państwowe Wydawnictwo Naukowe, Warszawa 1977.
- I. Kupka, A Banach Fixed Point Theorem for Topological Spaces, Revista Columbiana de Matematicas, 26 (1992), pp 95-100.
- I. Kupka, Topological conditions for the existence of fixed point. Mathematica Slovaca 48 (1998), no 3, pp. 315-321.
- Krzysztof Leśniak, Nina Snigireva, Filip Strobin, Weakly contractive iterated function systems and beyond: a manual., J. Difference Equ. Appl., 26 (8) (2020), 1114–1173



https://doi.org/10.1016/j.bulsci.2023.103231

M. Morayne. R. Rałowski, Fixed point theorems for topological contractions and the Hutchinson operator, https://arxiv.org/pdf/2308.02717.pdf



https://prac.im.pwr.edu.pl/~twowlc/index.html

# Weak\* topologies

### **Theorem**

Let X be a linear topological space. Let V be a neighbourhood of the zero vector in X. We define Y as

$$Y := \{x^* \in X^* : |x(x^*)| \le 1, \text{ for each } x \in U\}$$

Let  $f: Y \to Y$  be a weak\*-continuous mapping satisfying

$$\lim_{n} |z(f^{n}(x^{*}) - f^{n}(y^{*}))| = 0$$

for every  $z \in X$ 

Then f has a unique fixed point in Y.

We use the dual notation:  $x(x^*) := x^*(x)$  for functionals  $x^*$  which are members of  $X^*$  and elements x of the space X.

## Compact semigroups

#### **Theorem**

- ▶ G is a Hausdorff compact topological monoid and
- ▶  $f: G \rightarrow G$  is a continuous mapping such that for each  $x, y \in G$  and each neighbourhood V of the neutral element there exist  $z \in G$  and
- ▶  $n \in \mathbb{N}$  such that  $f^n(x), f^n(y) \in zV$

then f has a unique fixed point.