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Baire space

Definition
A topological space X is a Baire space if the intersection of
countably many dense open subsets of X is a dense subset of X .

Equivalently, the countable union of closed sets with empty
interiors has empty interior.

Theorem (Baire)

Every complete-metrisable topological space or Hausdorff compact
space is Baire space.



T1 - Baire space

Theorem 1
If X is a T1 second countable compact space, TFAE

I X is a Baire space,

I every nonempty open subset of X contains a closed subset
with nonempty interior.



Proof of the Theorem 1 (→ direction)

Lemma
If X is a T1 second countable compact space, then each closed
subset of X is a countable intersection of open sets.

Namely, by Lemma every open set is a union of countably many
closed sets and one of them must have nonempty interior because
X is a Baire space.

�



Proof of the Theorem 1 (← direction).

Firstly, assume that for every open subset U of X there exists a
nonempty open set V s.t. cl(V ) ⊆ U.

I Let F = {Fn : n ∈ ω} be a family of closed subsets with
int(Fn) = ∅.

I ∅ 6= W ⊆ X - open subset. We show that W \
⋃
F 6= ∅,

I define family {Vn : n ∈ ω} of nonempty open sets in X s.t.:
I V0 ⊆ cl(V0) ⊆W ∩ F c

0 ,
I Vn+1 ⊆ cl(Vn+1) ⊆ Vn ∩ F c

n+1 for each n ∈ ω.
I then

∞⋂
n=0

cl(Vn) ∩
⋃
F = ∅,

I As X is compact, W ∩
⋂∞

n=1 cl(Vn) 6= ∅. Hence

W 6⊆
⋃
F .



Example 1

Set τ = {U :∈ P(ω) : ω \ U ∈ [ω]<ω}.
Then (ω, τ) is a T1 second-countable compact space which is not
a Baire space.
Only ω is a closed with nonempty interior set in (ω, τ).

Remark
Example 1 shows a difference between the T1 and T2 cases,
because every T2 compact space is a Baire space.



Example 2, A condition in Theorem 1 does not imply T2

Let X = [−1, 1] and base of topology B = B(−1,1) ∪B−1 ∪B1:

B(−1,1) = {(−1, 1) ∩ (a, b) : a, b ∈ R},

B−1 = {[−1, 1) \ [p, q] : p, q ∈ Q ∩ (−1, 1) ∧ p < q}

B1 = {(−1, 1] \ [p, q] : p, q ∈ Q ∩ (−1, 1) ∧ p < q}

Then

I X is a compact T1 but not T2, second countable Baire space,

I if [p, q] ⊆ U ⊆ (−1, 1) for rationals −1 < p < q < 1 then

[p, q] = ([−1, 1]\[p, q])c =
(
([−1, 1)\[p, q])∪((−1, 1]\[p, q])

)c
,

and thus [p, q] is closed in X . But (p, q) is a open set in X .

I let U ∈ B−1 then [p, q] ⊆ U for some rationals
−1 < p < q < 1. Then U contains open (p, q) in X and [p, q]
is closed in X . If U ∈ B1 then we argue as above.



In Theorem 1 we cannot drop the second countabilty

Example 3

Let X = [0, 1]; a base of a toplogy on X : B = B[0,1) ∪B1 where

B[0,1) = {[0, 1) ∩ (a, b) : a, b ∈ R}

B1 = {U ∈P([0, 1]) : 1 ∈ U ∧ [0, 1] \ U is finite ]}

Then we have

I X is compact and T1,

I X is a Baire space,

I if U ⊆ [0, 1) is open then each closed set F ⊆ U is finite
(because 1 ∈ F c). Then int(F ) = ∅.



Theorem (Banach fixed-point theorem, 1920)

Every Lipschitz contraction on complete metric space has unique
fixed point.

Here f : X → X is a Lipschitz contraction iff existst c ∈ [0, 1) s.t.
for every x , y ∈ X

d(f (x), f (y)) ≤ c · d(x , y).



Topological contraction

Definition
Let X be a T1-topological space and f : X → X . We say that f is
a topological contraction on X iff for every distinct x , y ∈ X there
exists n ∈ ω s.t.

f n[X ] ⊆ {x}c or f n[X ] ⊆ {y}c .

For the compact metric spaces we have

Theorem (Lebesgue number)

For every compact metric space, X and any open cover U there
exists ε > 0 s.t.

∀x ∈ X∃U ∈ U B(x , ε) ⊆ U.

Fact
Every Lipschitz contraction on a compact metric space is a
topological contraction.



Fixed point theorem for compact T1 spaces

Theorem 2
Let X be T1 topological space and f : X → X be a closed
topological contraction on X . Then there exsists an unique x ∈ X
s.t. x = f (x).

Corollary

Every Lipschitz contraction on compact metric space has unique
fixed point.

Example 4

Let (ω, τ) be T1 topological space where

τ = {∅} ∪ {A ∈P(ω) : Ac is finite }.

Then ω 3 n 7→ f (n) = n + 1 ∈ ω is a continuous, topological
contraction without any fixed point, (f is not closed map !!!).



Proof of the Theorem 2

I For each n ∈ ω, f n[X ] is a closed subset of X with
f n+1[X ] ⊆ f n[X ],

I because X is compact

F =
⋂
{f n[X ] : n ∈ ω} 6= ∅.

I If x , y ∈ F are two distinct points then {{x}c , {y}c} is an
open cover of T1-space X and then there exists n ∈ ω s.t.

F ⊆ f n[X ] ⊆ {x}c ∨ F ⊆ f n[X ] ⊆ {y}c ,

which is impossible.

I If F = {x} then for every n ∈ ω x ∈ f n[X ] so
f (x) ∈ f n+1[X ] ⊆ f n[X ]. Then f (x) ∈ F , hence x = f (x).

I for each y ∈ X if y = f (y) then y ∈ F . Hence y = x .



Theorem 3
Let X be a T1-topological space and f : X → X be a closed map.
Then f is a topological contraction iff for every open cover U of X
there are n ∈ ω and U ∈ U s.t. f n[X ] ⊆ U.

Proof.
Let U be an open cover of X .

I By fixed point theorem there is x ∈ X s.t. x = f (x).

I then x ∈ U for some U ∈ U
I for some n ∈ ω f n[X ] ⊆ U. If not then for each n ∈ ω

f n[X ] ∩ Uc 6= ∅,
I there is y s.t. y ∈ F :=

⋂
{f n[X ] : n ∈ ω} ∩ Uc 6= ∅,

I F ⊆ f n[X ] ⊆ {x}c or F ⊆ f n[X ] ⊆ {y}c for some n ∈ ω,
contradiction.

The other direction is obvious.



Lipschitz contraction is continuous but topological not neccessary.

Example 5

Let X = {1/n : n ∈ N} ∪ {0, 2, 3} be endowed with the usual
Euclidean metric from the real line. Let for x ∈ X :

f (x) :=

{
2 if x = 1/n,
3 if x = 0, 2, 3.

The mapping f is a closed topological contraction because
f 2[X ] = {3}; it is closed because f [X ] = {2, 3}; and it is not
continuous because

f

(
lim
n

1

n

)
= f (0) = 3 6= 2 = lim

n
f

(
1

n

)
.

(Of course, the fixed point here is 3).



IFS - iterated function systems

Let X be a T1 compact space, m ∈ ω then

F = {fi : i < m} ∈ [XX ]<ω is an IFS.

F is a contractive IFS if

I each f ∈ F is closed,

I for every open cover U of X there is n ∈ ω s.t.

∀s ∈ {0, . . . ,m − 1}n ∃U ∈ U fs [X ] ⊆ U,

where fs = fs(n−1) ◦ . . . ◦ fs(0) and ◦ is a composition.

Lebesgue number Lemma implies

Fact
Every Lipschitz contractive IFS on compact metric space is
contractive as above.



Hutchinson operator

Set 2X hyperspace of all closed subsets of X with Vietoris topology.
Let F = {fi : i < m} be an IFS on a T1 space X .
The Hutchinson operator F : 2X → 2X induced by F is given by

2X 3 K 7→ F (K ) =
⋃
i<m

fi [K ] ∈ 2X .

Every fixed point of the Hutchinson operator is called attractor.

Theorem 4
Let X be a T1 compact space. Let F be an IFS on X . Then the
Hutchinson operator induced by F has a fixed point.



Proof.
Let F be the Hutchinson operator of IFS F . Let F 0(X ) = X .

for α + 1 : Fα+1(X ) = F (Fα(X ))

for a limit λ: Fλ(X ) =
⋂
α<λ F

α(X ).

Then for all α ∈ On

I Fα(X ) are closed and nonempty (compactness of X ),

I if α < β then F β(X ) ⊆ Fα(X ) (by A ⊆ B → F (A) ⊆ F (B)).

Thus it must stabilize at some ordinal α

Fα(X ) = Fα+1(X ) = . . . .

Thus Fα(X ) is a fixed point of F .



Example 6

Let X =

{
1

n
: n ∈ N

}
∪ {0,−1}

be considered with the usual Euclidean topology. Let F consist of
only one mapping f defined as follows:

f (0) = 0, f (−1) = 0,

f (1) = 1/2, f (1/2) = −1,

f (1/3) = 1/4, f (1/4) = 1/5, f (1/5) = −1,

f (1/6) = 1/7, f (1/7) = 1/8, f (1/8) = 1/10, f (1/9) = −1

. . . ,

If F is the Hutchinson operator {f } IFS, then F n(K ) = f n[K ], and
then

Fω(X ) =
∞⋂
n=1

f n[X ] = {0,−1} but Fω+1(X ) = Fω+2(X ) = . . . = {0}.



Two fixed points

Example 7

Let X be any T1 compact topological space and |X | ≥ 2.
Fix x0 ∈ X and f ≡ x0 be a constant mapping.
Define an IFS as

F = {idX , f },

where idX is the identity mapping on X .
The Hutchinson operator F induced by this IFS has two fixed
points: {x0} and X .



Theorem 5
Let X be a T1 compact space. Let F be a contractive IFS on X .
Then the Hutchinson operator induced by F is a topological
contraction on 2X .

Applying the Fix Point Theorem 2

Corollary

If X is a T1 compact space then every contractive IFS for which its
Hutchinson operator is closed in 2X has a unique attractor.

But by Theorem 4

Corollary

If X is a T1 compact space then every contractive IFS has a
unique attractor.



Example 8

We consider the space X = {0, 1, 2} with the discrete topology.
Let f1(2) = 1, f1(1) = 0, f1(0) = 0, and f2(1) = 2, f2(2) = 0,
f2(0) = 0. Both f1 and f2 are contractions because
f 21 [X ] = f 22 [X ] = {0}. Let F = {f1, f2} and let F be the
Hutchinson operator induced by the IFS F . We have

F (X ) = f1[X ] ∪ f2[X ] = {0, 1} ∪ {0, 2} = X

and
F ({0}) = f1[{0}] ∪ f2[{0}] = {0}.

Thus F has more than one fixed point and by last Corrolary the
IFS F is not contractive and by Theorem 2, F is not a topological
contraction.
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