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In this paper, we examine time series that exhibit behavior related to
two or more regimes with different statistical properties. The motivation
of our study are two real data sets from plasma physics with an observable
two-regimes structure. In this paper, we develop a procedure to estimate
the critical point of the division in a structural change in a time series.
Moreover, we propose three tests to recognize such specific behavior. The
presented methodology is based on the empirical second moment and its
main advantage is the assumption of a lack of distribution. Moreover, the
examined statistical properties are expressed in the language of empirical
quantiles of the squared data, therefore, the methodology is an extension of
the approach known from the literature. Theoretical results are confirmed
by simulations and analysis of real data of turbulent laboratory plasma.
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1. Introduction

The main issue in real data analysis is testing distribution. This problem
appears not only in the case of an independent identically distributed (i.i.d.)
sample [1–3] but also when we calibrate a model to a real data set [4–6]. In
this case, the distribution is fitted to the residual series that is assumed to
be i.i.d. But many independent variables seem to display changes in the
underlying data generating process over time [7], therefore, they cannot be
considered as an identically distributed sample. This typical behavior is
also observed in time series described in Sec. 2 that presents increments of
floating potential fluctuations of turbulent laboratory plasma for the small
torus radial position r = 9.7 cm. For this data set, known statistical tests for

∗ Presented at the XXV Marian Smoluchowski Symposium on Statistical Physics,
“Fluctuation Relations in Nonequilibrium Regime”, Kraków, Poland, September
10–13, 2012.

(1015)



1016 J. Gajda, G. Sikora, A. Wyłomańska

the stationarity, mentioned in Sec. 3 [8–12], are not useful. What is more,
under some assumptions they indicate the data are i.i.d. that is contradictory
to the behavior of the data observable in Fig. 1.

In this paper, we introduce three tests that can be useful for time series
for which we observe more than one regime with different statistical proper-
ties. Two of them are visual, therefore, we call them pre-tests and propose
to use them in the preliminary analysis to identify the specific behavior.
In order to confirm two or more regimes in the data set, we have devel-
oped a statistical test for regime variance. Moreover, we also introduce the
estimation procedure for the critical point that divides an examined time
series into two parts with different statistical properties. However, only an
inspection of the data can sometimes lead to the wrong preliminary choice
of the model, therefore, the aforementioned tests are based on the behavior
of the empirical second moment of the examined time series. This approach
was also considered in [13] for testing the behavior of two-regimes. The
advantage of this methodology based on the empirical moments is empha-
sized in [14, 15] and is also confirmed by the bottom panel of Fig. 1 which
presents the squared data for which the difference between two regimes is
more visible. In contrast to [13], where authors assume the Gaussian distri-
bution of the examined time series, in the presented methodology we do not
assume the distribution of a given series because the introduced tests exploit
only the empirical properties of the examined data set. More importantly,
they can be used for data for which the point of division into two regimes
is well-defined (is clearly observable), but also for data for which the point
is not visible. Moreover, we show by simulation study that the proposed
methodology can also be useful for an infinite-variance time series.

The rest of the paper is organized as follows: in Sec. 2, we present
the examined data sets that are the motivation of developing the presented
methodology. In Sec. 3, we overview the known statistical tests for station-
arity and present the estimation procedure to recognize the critical point
introduced in [16]. In Sec. 4, we introduce two visual pre-tests that indicate
the specific behavior of an examined time series, i.e. two regimes related
to different statistical properties. In this section, we also propose an inno-
vative procedure to estimate the critical point based on the behavior of an
empirical second moment of real data set and present the simulation study.
The estimation procedure can be useful not only for data with the Gaussian
distribution, therefore, we extend the methodology presented in [13], where
authors assume the normal behavior of an examined time series. In Sec. 5,
we introduce the statistical method for testing regime variance and test the
procedure by using simulated data. In the next section, we analyze real data
sets from plasma physics using the presented methodology. Finally, the last
section gives few concluding remarks.
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2. Motivation

The motivation of our study is presented in Fig. 1 real data set. This
time series describes increments of floating potential fluctuations (in volts) of
turbulent laboratory plasma for the small torus radial position r = 9.7 cm.
A precise description of the experiment is presented in [17]. The similar
data sets from plasma physics were also examined in [14]. The signal was
registered on June 15, 2006 with movable probe in scrape-off layer (SOL)
plasma of stellarator “URAGAN 3M”. Because the signal was registered every
0.0000016 seconds, the total length of the time series is 30 000, but for the
analysis we only took 1900 observations between 12 000–13 900.
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Fig. 1. The empirical time series from plasma physics that presents increments
of floating potential fluctuations (in volts) of turbulent laboratory plasma for the
small torus radial position r = 9.7 cm (top panel) and squared time series (bottom
panel).

As can be observed in Fig. 1, the empirical data set exhibits very special
behavior, namely the statistical properties of the time series change in time.
From the physical point of view, it is related to the so-called L–H transi-
tion phenomenon, that is a sudden transition from a low confinement mode
(L mode) to a high confinement mode (H mode), accompanied by suppres-
sion of turbulence and a rapid drop of turbulent transport at the edge of
thermonuclear device [14, 18]. From the mathematical point of view, this
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special behavior can be related to the fact that the first observations con-
stitute a random sample that comes from another distribution, than the
last part or those two parts come from the same distribution with differ-
ent parameters. Therefore, we can suspect that the time series satisfies the
following property

Xi
d
=

 X for i ≤ l ,

Y for i > l ,
(1)

where X and Y are independent and have different statistical properties,
and l is a fixed point. As we have mentioned in Sec. 1, inspection of the
data can sometimes lead to wrong preliminary conclusions, therefore, we
propose to consider the squared time series. As can be observed in Fig. 1,
the difference between two parts is more visible for squared data (bottom
panel of Fig. 1). The statistical properties are expressed in the language
of quantiles of a squared time series and we assume the random variables
X2 and Y 2 in relation (1) have different quantiles qα/2 and q1−α/2 for given
confidence level α. Here we take notation qa as a quantile of the order of a.

After preliminary analysis of the data set and confirmation that it consti-
tutes realizations of independent random variables (see Fig. 11), the hypoth-
esis of the same distribution of the time series was tested. The known statis-
tical tests such as Augmented Dickey–Fuller, Phillips–Perron or Kwiatkow-
ski–Phillips–Schmidt–Shin test for stationarity reject the hypothesis that
the data are nonstationary (in the sense presented in Sec. 3), which suggests
they are not useful for this data set. Therefore, we propose three tests that
can be used for data that exhibit similar behavior as observed in Fig. 1, but
also to this that after preliminary analysis we cannot reject the hypothesis
about the same distribution. An example is shown in Fig. 2. This time series
presents increments of floating potential fluctuations (in volts) of turbulent
laboratory plasma for the small torus radial position r = 9.8 cm. Similar to
the first data set, the signal was registered on June 15, 2006 and the total
number of observations was 30 000 but to illustration only observations from
12 000 to 15 000 were taken. After analysis of the time plot for the series
and squared series, we can suspect that the data cannot be considered as
an identically distributed sample but here, when some statistical properties
change is not as visible as for the first data set. Moreover, the tests for
stationarity presented in Sec. 3 indicate that under some assumptions the
time series can be considered as a stationary process. In the next sections,
we will show that this hypothesis is not true. We find a point that divides
examined data into two i.i.d. samples.
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Fig. 2. The empirical time series from plasma physics that presents increments
of floating potential fluctuations (in volts) of turbulent laboratory plasma for the
small torus radial position r = 9.8 cm (top panel) and squared time series (bottom
panel).

3. Statistical tests for stationarity

In order to make any inferences about the structure of a time series, we
need some regularity over time in the behavior of the underlying series. This
regularity can be formalized using a concept of stationarity, see [19]. We say
that the time series is weakly stationary if the mean of the series is constant
over time and the covariance between observations on time t and s depends
only on their absolute difference |s− t|.

However, stationarity is not a common feature of time series and mostly
we observe nonstationary behavior of the process. There are several types
of nonstationarity. The trend nonstationarity means that the data posses
some deterministic trend (for example, linear trend) but otherwise are sta-
tionary. This can easily be seen based on an autocorrelation function (for
instance, a linear trend can be seen as a linear slow in time decay of au-
tocorrelation function) [19]. The second type of nonstationarity is called
difference nonstationarity, which means the process has to be differenced in
order to become stationary. These two examples of nonstationarity are often
encountered in real-life data. The class of unit-root tests helps to distinguish
difference from trend nonstationarity. Under the null hypothesis that the
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series is difference nonstationary, one can mention here Dickey–Fuller unit
root tests [8–10] and Phillips–Perron unit root tests [11]. Testing in opposite
direction, namely assuming that the time series is trend stationary against
it is the difference nonstationary, one can apply the KPSS test provided by
Kwiatkowski, Phillips, Schmidt and Shin [12].

The aforementioned types of nonstationarity can be successfully tested
and recognized from the data but they are not the only problems which may
be encountered during data analysis. Atypical observations, level shifts or
variance change are common features of many real-life data sets [7, 20, 21].
Neglecting such effects may lead to inaccurate estimation of parameters of
the model and in consequence inaccurate or a completely wrong prediction.
Here, we discuss the effect of variance change in the data sets, thus there is no
trend and differenced data have the same behavior as before differentiation.
Such specific two-regimes time series was also considered in [16], where the
following model for the innovations (independent sample) was considered

ε′i =

{
εi if i < l ,
εi(1 + ωV) if i ≥ l (2)

for some point l, fixed number ωV and under the assumption {εi}ni=1 consti-
tutes i.i.d. random variables from normal distribution. We can thus calculate
the variance ratio of ε′i before and after the structural change

r̂l =
(l − 1)

∑n
i=l ε

′2
i

(n− l + 1)
∑l−1

i=1 ε
′2
i

, (3)

where (l − 1) and (n − l + 1) are greater than zero. The variance ratio is
an estimate of (1 + ωV)

2 and is likelihood ratio test statistics of variance
change under the assumption of normality. The test is the most powerful
for step change in variance when the point l is known. If the critical point is
unknown, one can apply variance ratio statistics to find it. In this case, we
compute the variance ratio statistics for a stochastically independent series
and obtain its minimum r̂min and maximum r̂max values

r̂min = min
h≤l≤n−h

{r̂l} , r̂max = max
h≤l≤n−h

{r̂l} ,

where h is the positive integer denoting the minimum number of observations
used to estimate the variance at the beginning and at the end of the sample.
Then, we calculate

r̂ = max
{
r̂−1min, r̂max

}
.

The critical point l is the one at which r̂ occurs.
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The complete description of the procedure for detecting and adjusting
the time series with two-regimes structure of type (2) is presented in [16].
Because the presented methodology is based on the assumption of normal
distribution, which is a major disadvantage, therefore in the next section, we
introduce the innovative procedure of estimation for the critical point that
does not require any assumption of the distribution. This procedure is based
on the behavior of the empirical second moment of the examined time series
and is compatible with a two visual pre-tests for two-regimes structure.

4. Visual pre-tests for regime variance

In the first part of this section, we present two visual pre-tests that can
confirm if the observed time series X1, X2, . . . , Xn constitutes a sample that
satisfies relation (1). They are based on the behavior of the empirical second
moment of the data. This approach was also proposed in [13] to test regime-
variance behavior. But in contrast to [13], our methodology does not assume
the Gaussian distribution of the underlying time series. In the first method,
we propose to consider the following statistics

Cj =

j∑
i=1

X2
i , j = 1, 2, . . . , n . (4)

If the random variables X and Y given in relation (1) have distributions
with finite second moments σ21 and σ22, respectively, then the statistics Cj
has the following property

E(Cj) =

{
jσ21 for j ≤ l ,

jσ22 + l
(
σ21 − σ22

)
for j > l .

(5)

If σ21 = σ22, then the mean of Cj statistics is equal to σ21j for all j =
1, 2, . . . , n, therefore for i.i.d. sample, the expected value of the statistics
is a linear function with the shift parameter equal to zero. This relation is
not satisfied for distributions with infinite variances, but even in these cases
significant changes in behavior of Cj statistics can be observed. Results of
this pre-test are presented in Fig. 3 for different distributions of random
variables X and Y in relation (1). Two cases, each consisting of three distri-
butions are considered, namely pure Gaussian (N (µ, σ)), pure Lévy-stable
(S(α, β, σ, µ)), and Gaussian–Lévy-stable. In the first scenario, we consider
the case when the parameters of distributions are close to each other and
thus the structure change point is not easily visible (see left panel of Fig. 3).
In the second scenario, we consider distributions with very different param-
eters, thus the critical point is observable in the simulated sample (the right
panel of Fig. 3).
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Fig. 3. The Cj statistics defined in (4) for two considered scenarios. In the left
panel, we demonstrate results for cases when the parameters of distributions are
close to each other (the first scenario). The right panel presents cases of distribu-
tions with very different parameters (the second scenario).

For the first scenario, we consider the following cases:

• the pure Gaussian case with N (0, 4) and N (0, 4.55) distribution for
the first 800 and last 1000 observations, respectively,

• the pure Lévy-stable case with S(1.9, 0, 2, 0) and S(1.9, 0, 2.5, 0) dis-
tribution for the first 800 and last 1000 observations, respectively,

• the Lévy-stable-Gaussian case with S(1.8, 0, 1.2, 0) and N (0, 2.45) dis-
tribution for the first 800 and last 1000 observations, respectively.

In the second scenario, we consider following parameters of distributions:

• the pure Gaussian case with N (0, 2) and N (0, 4) distribution for first
the 800 and last 1000 observations, respectively,
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• the pure Lévy-stable case with S(1.9, 0, 2, 0) and S(1.9, 0, 4, 0) distri-
bution for the first 800 and last 1000 observations, respectively,

• the Gaussian–Lévy-stable case with N (0, 4) and S(1.9, 0, 1, 0) distri-
bution for the first 800 and last 1000 observations, respectively.

In the second visual pre-test, the behavior of the empirical second mo-
ment of the data from windows of width k > 0 was observed. The examined
statistics has the following form

Rj,k =

j+k∑
i=j+1

X2
i , j = 0, 1, . . . n− k , (6)

where k is a given positive number called window width. We assume k < l.
For finite variance distributions of X and Y , we can also calculate the ex-
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Fig. 4. The Rj,100 statistics defined in (6) for two considered scenarios. In the left
panel, we demonstrate results for cases when the parameters of distributions are
close to each other (the first scenario). The right panel presents cases of distribu-
tions with very different parameters (the second scenario).
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pected value of Rj,k statistic, namely E(Rj,k) is equal to
kσ21 , j + k ≤ l ,
j
(
σ22 − σ21

)
+ l
(
σ21 − σ22

)
+ kσ22 , j + 1 ≤ l < j + k ,

kσ22 , j + 1 > l ,
(7)

where σ21 and σ22 are the second moments of the random variables X and Y ,
respectively. As we observe in (7), the mean of Rj,k statistics for the given
window width is constant when j ≤ l − k or j > l − 1. For l − k < j ≤
l − 1, the statistics has a mean that is a linear function with respect to j.
When X and Y have the same distributions, then the expected value of the
statistics defined in (6) is constant for given k. The results of this pre-test are
presented in Fig. 4, for two considered scenarios with different distributions
presented above.

4.1. Estimation procedure for the critical point

In this part, we introduce the innovative method of estimating the crit-
ical point of change of the statistical properties in the sample that fulfills
relation (1). The idea of the estimation procedure comes from the first
visual pre-test described above. More precisely, we use the statistics Cj ,
j = 1, 2, . . . , n defined in (4) and its mean function E(Cj) given in (5). The
proposed method is an extension of that presented in [13], where the au-
thors assume the Gaussian distribution of the examined data set. Moreover,
in [13], the authors examine the asymptotic behavior of the investigated
estimator, therefore, the results can be only useful for a large collection of
data.

Our algorithm starts with dividing for the fixed k = 1, 2, . . . , n the Cj
statistics into two sets {Cj : j=1, 2, . . . , k} and {Cj : j=k+1, k+2, . . . , n}.
Next, we fit the linear regression lines y1j (k) := a1(k)j + b1(k) and y2j (k) :=
a2(k)j + b2(k) to the first and the second set, respectively. From ordinary
regression theory, for such lines, the sums of squared distances∑k

j=1(Cj−y1j (k))2 and
∑n

j=k+1 (Cj − y2j (k))2 are minimized and, therefore,
the line coefficients have the form, see [22]

a1(k) =

∑k
j=1 jCj −

(k+1)
2

∑k
j=1Cj

−1
4k(k + 1)2 + 1

6k(k + 1)(2k + 1)
,

b1(k) =
1
3(2k + 1)

∑k
j=1Cj −

∑k
j=1 jCj

−1
2k(k + 1) + 1

3k(2k + 1)
. (8)

The coefficients a2(k), b2(k) have analogous formulas with summation from
j = k + 1 to n. Our estimator of the point l in relation (1) is defined as the
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number k that minimalizes mentioned sums of squared distances

l̂ = arg min
1≤k≤n

 k∑
j=1

(
Cj − y1j (k)

)2
+

n∑
j=k+1

(
Cj − y2j (k)

)2 . (9)

Let us stress that the proposed estimator l̂ is invariant with respect to the
sample distribution.

We compare the robustness of detecting the critical point of the under-
lying sample satisfying relation (1) with the method proposed in [16] and
based on the variance ratio statistics given in (3). Let us remind that the
variance ratio statistics is intended to detect the change point under the
assumption of normal distribution of the examined series. The procedure is
as follows: we simulate 1000 trajectories of length n = 1800 of stochasti-
cally independent random variables with the variance change point placed
on 800th observation. Similar to the visual pre-tests, we consider two cases
each consisting of three distributions. Details of the examined scenarios are
presented above.

The results for the first scenario, where the critical point is not easily
visible are presented in Fig. 5, where the first boxplot denotes results of
r̂l estimator presented in (3) while the second — is related to l̂ estimator
defined in (9). It can clearly be seen that estimator l̂ is far more accurate
than r̂l, even in the case of Gaussian distribution (see panel (a) in Fig. 5).
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Fig. 5. Comparison of detection procedure for the critical variance change point
for two estimators r̂l and l̂. Panel (a) N (0, 4), N (0, 4.55), panel (b) S(1.9, 0, 2, 0),
S(1.9, 0, 2.5, 0), panel (c) S(1.8, 0, 1.2, 0), N (0, 2.45).
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The results for the second scenario with a clear critical point are pre-
sented in Fig. 6. Also in this case it can be seen that l̂ estimator performs
better than r̂l.
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Fig. 6. Comparison of detection procedure for the critical variance change point
for two estimators r̂l and l̂. Panel (a) N (0, 2), N (0, 4), panel (b) S(1.9, 0, 2, 0),
S(1.9, 0, 4, 0), panel (c) N (0, 4), S(1.9, 0, 1, 0).

5. Statistical test for regime variance

In this section, we introduce the regime variance test that confirms our
assumption of two-regimes behavior given in relation (1). It also confirms
the preliminary results obtained by using the visual pre-tests presented in
the previous section.

The procedure is based on the analysis of the empirical second moment
of a given sample. Let us point out that it can be used for distributions
with a theoretical second moment but also for those with an infinite one.
Even in this case, the theoretical second moment exists. Moreover, the test
is based on the quantiles that without assumption of the distribution we can
determine on the basis of the empirical distribution function, therefore, we
extend the methodology presented in [13].

The H0 hypothesis is defined as follows: observed time series does not
satisfy relation (1), this means the quantiles of the squared series do not
change in time. The hypothesis is satisfied in the case of i.i.d. random
variables but also when the distributions of two parts (divided by point l)
are different but quantiles qα/2 and q1−α/2 of the squared data are at the
same level.
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The H1 hypothesis is formulated as: observed time series has at least the
representation (1), i.e. there are at least two regimes of the data for which
the appropriate quantiles of the squared time series are different. Let us
point out that the H0 hypothesis will be rejected when the squared series
has more than two regimes.

The testing of regime variance is based on the assumption the real data
constitutes a sample of independent variables, therefore, before testing we
have to confirm that the given sample constitutes independent data. We
propose here to use the simple visual method based on the autocorrelation
function (ACF). For an independent sample, the ACF is close to zero for all
lags greater than zero. Basic properties of this methodology can be found
in [23].

The procedure of regime variance testing for given time series X1,
X2, . . . , Xn proceeds as follows:

1. Determine the critical point l according to the procedure presented in
Sec. 4. Let us emphasize that also under H0 hypothesis, the l point
exists and is between 1 and n.

2. Divide the squared time series into two vectors: W 1 = [X2
1 , ..., X

2
l ] and

W 2 = [X2
l+1, ..., X

2
n]. Find empirical standard deviations σ̂1 and σ̂2 of

W 1 and W 2, respectively. For simplicity, let us assume that σ̂1 < σ̂2.
In the case of distribution without theoretical second moment, the
empirical standard deviation exists and can be calculated on the basis
of the observed data.

3. Construct quantiles from the distribution of the squared time series
from the vector W 1 (for that the empirical standard deviation was
smaller), i.e. numbers qα/2 and q1−α/2 that satisfy the relation

P
(
qα/2 < X2

i < q1−α/2
)
= 1− α , for each i = 1, 2, . . . , l ,

where α is a given confidence level. Under the H0 hypothesis without
the assumption of the distribution, the appropriate quantiles can be
determined on the basis of the empirical cumulative distribution func-
tion. Because X2

l+1, X
2
2 , . . . , X

2
n are independent, therefore, the statis-

tics B has a binomial distribution with parameters n− l and p = 1−α.
Therefore, the p-value of the test we calculate as P (Z < B), where Z
has binomial distribution with (n− l, p) parameters.

4. If the calculated p-value is greater than the α parameter, then we ac-
cept the H0 hypothesis. Otherwise, if the calculated p-value is smaller
than the α parameter, then we reject theH0 hypothesis and acceptH1.



1028 J. Gajda, G. Sikora, A. Wyłomańska

The complementary part of this section is an examination of the perfor-
mance of estimator (9) and the variance regime test described above via the
Monte Carlo method. First, the first order error for our test is checked, i.e.
the rejection of a true H0 hypothesis. For this purpose, we generate 1000
trajectories of length 1800 of stochastically independent random variables
for each of three cases:

• the Gaussian case with N (0, 2) distribution,

• the Lévy-stable case with S(1.8, 0, 1, 0) distribution,

• the Gaussian–Lévy-stable case with N (0, 1) and S(1.9, 0, 1, 0) distri-
bution for each half of the sample, randomly permuted.

In our simulations, the significance level α = 0.05 and the unknown dis-
tribution of samples are assumed. Therefore, in the testing procedure the
empirical quantiles are applied. We note that the first two cases (pure Gaus-
sian and Lévy-stable) are the special simplified versions ofH0, i.e. i.i.d. data.
Obviously, the constancy of theoretical quantiles qα/2 and q1−α/2 implies the
closeness between the empirical versions computed in the testing algorithm.
The Gaussian–Lévy-stable case concerns two different distributions of data
changing dynamically (randomly permuted) in the time domain. There-
fore, it is in contrast to the H1 hypothesis, where different distributions are
concentrated in two disjointed time intervals.

The results of the conducted simulations are presented in Table I. For the
testing procedure, we apply the sample mean value of obtained estimators
l̂ from each generated sample. That mean value of l̂ is 881.37, 916.34 and
104.31 for each of the three considered cases, respectively. They are close to
half of the sample length, which is quite intuitive for data satisfying H0. We
see that a large number of times the test correctly does not reject the true
null hypothesis H0 and the error of the first order is strongly rare, see the
H1-column. Moreover, the p-values corresponding to the acceptance of H0

TABLE I

Numbers of correct accepting (with mean p-value) and incorrect rejecting the
true H0.

Distribution of samples H0 p-value H1

N (0, 2) 866 0.5623 134
S(1.8, 0, 1, 0) 865 0.5349 135

N (0, 2), S(1.9, 0, 1, 0) 889 0.5621 111
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are rightly higher than significance level α = 0.05, see Fig. 7. The column
of Table I with p-value contains the mean of such p-values. Moreover, in the
H0-column and H1-column, the numbers of correct accepting and incorrect
rejecting H0 are presented respectively. Our next task is to explore the
statistical power of the examined test. This is equivalent to investigating
the error of the second order, i.e. accepting a false H0 hypothesis. In order
to calculate the error of the second order, 1000 trajectories of length 1800
of stochastically independent random variables are simulated for each of
the three cases from the first scenario described in Sec. 4 satisfying the H1

hypothesis.
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Fig. 7. The boxplots of p-values corresponding to the correct accepting of true H0:
(1) N (0, 2), (2) S(1.8, 0, 1, 0), (3) permuted N (0, 1), S(1.9, 0, 1, 0).
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Fig. 8. The exemplary samples (left panels) and squared samples (right pan-
els) for three considered cases of H1: (1) N (0, 4), N (0, 4.55), (2) S(1.9, 0, 2, 0),
S(1.9, 0, 2.5, 0), (3) S(1.8, 0, 1.2, 0), N (0, 2.45).
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In all three cases, the differences of distribution parameters are quite
small and the H1 hypothesis statement can be invisible from the data or its
squares, see Fig. 8. This means that the efficiency of the proposed test in a
very sophisticated cases is checked.

We apply the estimator (9) and adopt the regime variance test assuming
the unknown data distribution. The results of the conducted simulations
with significant level α = 0.05 are presented in Table II. For the testing pro-
cedure, the sample mean value of obtained estimators l̂ from each generated
sample is applied. The mean value of l̂ is 822.28, 943.72 and 646.42 for each
of the three considered cases from the first scenario, respectively. We see
that more times the test correctly rejects the false null hypothesisH0 and the
error of the second order is rare, see the H0-column. The worst result was
obtained in the third case with different distributions. However, the p-values
corresponding to the rejection of H0 are rightly lower than the significance
level α = 0.05, see Fig. 9. The column of Table II with p-value contains the
mean of such p-values. Moreover, in the H0-column and H1-column the

TABLE II

Numbers of correct rejecting (with mean p-value) and incorrect accepting the
false H0.

Distribution of samples H1 p-value H0

N (0, 4), N (0, 4.55) 759 0.0061 241
S(1.9, 0, 2, 0), S(1.9, 0, 2.5, 0) 758 0.0054 242
S(1.8, 0, 1.2, 0), N (0, 2.45) 652 0.0044 348
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Fig. 9. The boxplots of p-values corresponding to the correct rejecting of false
H0: (1) N (0, 4), N (0, 4.55), (2) S(1.9, 0, 2, 0), S(1.9, 0, 2.5, 0), (3) S(1.8, 0, 1.2, 0),
N (0, 2.45).
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numbers of incorrect accepting H0 and correct accepting H1 (the power of
the test), are presented respectively. We also strongly stress that from the
construction of the studied test, the rejection of H0 hypothesis is equivalent
to the acceptance of H1. In other words, the rejection of H0 is only possible
when H1 is true or in the case of first order error.

6. Plasma data analysis

In this section, the real data sets presented in Figs. 1 and 2 are analyzed
by using the tests for regime variance described in Secs. 4 and 5. In Fig. 10,
we demonstrate the results of the visual pre-tests for increments of floating
potential fluctuations of turbulent laboratory plasma for the small torus
radial position r = 9.7 cm (corresponding to Fig. 1).
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Fig. 10. The visual pre-tests for regimes variance of time series that presents in-
crements of floating potential fluctuations of turbulent laboratory plasma for the
small torus radial position r = 9.7 cm.

As can be observed, the visual pre-tests indicate the behavior formu-
lated in (1). Moreover, the critical point l, that divides the time series into
two independent samples with appropriate statistical properties that do not
change over time can also be determined. The critical point is estimated by
using the procedure described in Sec. 4 and the result is 1055. In the next
step of our analysis, the H0 hypothesis is tested, i.e. the hypothesis that the
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squared time series has quantiles that do not change over time. According to
the procedure presented in Sec. 5, first independence is confirmed by using
ACF function, see Fig. 11.
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Fig. 11. ACF of the time series that presents increments of floating potential fluc-
tuations of turbulent laboratory plasma for the small torus radial position r =

9.7 cm. Such behavior of autocorrelation function suggests that the data can be
considered as independent sample.

The regime variance test confirms that the examined data set has at
least two regimes, i.e. it has representation (1). This is related to the fact
that with a confidence level α = 0.05, the obtained p-value is equal to 0.0425
(we reject H0). Because we have estimated the critical point l, that divides
the analyzed time series into two parts, we can examine if the separate vec-
tors can be considered as independent samples with the same appropriate
quantiles of squared data. In order to do this, we use the regime variance
test once again for samples X1, . . . , X1055 and X1056, . . . , X1900. For the first
time series, the test returns p-value at the level 0.5967, which indicates we
can assume the squared data have appropriate quantiles that do not change
over time. If we test the second part of the data set, namely observations
from 1056 to 1900, we get a p-value equal to 0.9829, therefore, also for this
vector we can conclude that appropriate statistical properties do not change.
Moreover, if we assume the data from two considered parts constitute i.i.d.
samples (that is one of the possibilities when H0 hypothesis is satisfied), we
can test the distributions. By using tests based on the empirical cumulative
distribution function completely described in [14], we conclude the obser-
vations X1, . . . , X1055 come from the Lévy–stable distribution with a stable
parameter equal to 1.76 and σ = 12.14, while the data X1056, . . . , X1900

have the Lévy-stable distribution with parameters α = 1.91 and σ = 4.2.
For both samples, we use McCulloch’s estimation method, [24].

As we have mentioned in Sec. 2, the testing procedure can also be used
for data for which the critical point l is not as visible as in the previous case,
see Fig. 2. In Fig. 12, the results of the visual pre-tests described in Sec. 4 are
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Fig. 12. The visual pre-tests for regimes variance of time series that presents in-
crements of floating potential fluctuations of turbulent laboratory plasma for the
small torus radial position r = 9.8 cm.

presented for data that describes increments of floating potential fluctuations
of turbulent laboratory plasma for the small torus radial position r = 9.8 cm.
As can be observed, on the basis of the behavior of Cj and Rj,k, statistics
defined in (4) and (6), respectively, we cannot conclude that the data set
exhibits the behavior described in (1). But the procedure of estimating the
critical point returns to 1763. According to the scheme of regime variance
testing presented in Sec. 5, in the first step independence of the time series
is confirmed. The plot of ACF is presented in Fig. 13.

Next, we can test if the hypothesis H0 is satisfied for the time series
presented in Fig. 2. The obtained p-value equal to 0.0011 indicates the data
has at least two regimes with different statistical properties. Similarly, as
for the first data set, the time series can be divided into two separate vectors
and tested if we can consider them as samples for which the characteristics
do not change with respect to time. For the first part, namely data from 1
to 1763, we get p-value at the level 0.593, while for the second vector (i.e.
observations form 1764 to 3000) the p-vale is equal to 0.591. These results
indicate that two considered vectors do not satisfy relation (1) and can be
considered as i.i.d. samples. Under this assumption, we test the distributions
and obtain the two considered parts come from the Lévy-stable distribution.
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Fig. 13. ACF of the time series that presents increments of floating potential
fluctuations of turbulent laboratory plasma for the small torus radial position r =
9.8 cm. Such behavior of autocorrelation function suggests that the data can be
considered as independent sample.

For the first vector, the following estimates of the parameters are obtained:
α = 1.9484 and σ = 12.9505, while the estimated values of the parameters
for the vector containing observations X1764, . . . , X3000 are: α = 1.7983 and
σ = 14.1099.

7. Conclusions

In this paper, we have examined time series that exhibit two-regimes
behavior. We have introduced a new estimation procedure for the recog-
nition of the critical point that divides the observed time series into two
regimes with different statistical properties expressed in the language of the
quantiles for squared data (Sec. 4). We have also developed three tests that
can confirm our assumption of two-regimes behavior (Secs. 4 and 5). The
universality of the presented methodology comes from the fact that it does
not assume the distribution of the examined time series, therefore, it can
be applied to a rich class of real data sets. We extend the methodology
presented in the literature, where the assumption of Gaussian distribution
is required. The theoretical results we have illustrated using the simulated
time series and analysis of two real data sets related to turbulent laboratory
plasma.

The J.G. and G.S. would like to acknowledge that their research is co-
financed by the European Union as part of the European Social Fund.
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