List 3 Applied Logic Szymon Żeberski

1. Show that a set of *LTL*-tautologies is closed under substitutions, Modus Ponens rule and generalization rule. Is it closed under the following rules:

a)
$$\frac{\varphi}{\Diamond \varphi}$$
, b) $\frac{\varphi}{\bigcirc \varphi}$, c) $\frac{\varphi}{\varphi U \psi}$?

2. Prove that the following sentences are LTL-tautologies:

a)
$$\bigcirc \Diamond p \leftrightarrow \Diamond \bigcirc p$$
,
b) $(\bigcirc p)U(\bigcirc q) \leftrightarrow \bigcirc (pUq)$,
c) $(pUq) \lor (rUq) \rightarrow (p\lor qUq)$,
d) $\Diamond \Diamond p \leftrightarrow ((q\lor \neg q)U(\Diamond p))$,
e) $(pUq) \land \neg q \rightarrow p$,
f) $(\Diamond p \land \Diamond q) \rightarrow \Diamond ((p\land \Diamond q) \lor (q\land \Diamond p))$.

3. Find and equivalent (shortest) version of a sentence:

a)
$$\perp Up$$
, b) $pU \perp$, c) $\neg(\perp U \neg p)$.

- 4. Decide if the sentence is *LTL*-tautology
 - a) $(pUq) \lor (rUq) \leftrightarrow (p \lor qUq),$
 - b) $\bigcirc (pUq) \rightarrow \Diamond p \land \Diamond q$,
 - c) $(\Diamond p \land \Diamond q) \leftrightarrow \Diamond ((p \land \Diamond q) \lor (q \land \Diamond p)).$

5. Consider a sequence $(\varphi_n)_{n \in \mathbb{N}}$ defined by the formula: $\varphi_0 = p, \ \varphi_{n+1} = \bigcap \varphi_n$ for $n \in \mathbb{N}$.

- a) Show that $\models_{LTL} \varphi_n \leftrightarrow \varphi_m$ if and only if n = m.
- b) Is the above theorem true after replacing \bigcirc by \Diamond ? \Box ?
- 6. Consider Kripke's frame (\mathbb{Z}, \leq) . We can define connectives \bigcirc and U. Let

 $\mathcal{N} = \{ (\mathbb{N}, \leq, \pi) : \pi \text{ is a valuation} \},\$

$$\mathcal{Z} = \{ (\mathbb{Z}, \leq, \pi) : \pi \text{ is a valuation} \},\$$

For a class \mathcal{M} of Kripke's models set

$$Th_{LTL}(\mathcal{M}) = \{ \varphi \in \mathcal{L}_{LTL}(\mathcal{P}) : \ (\forall M \in \mathcal{M})M \models \varphi \}.$$

Is it true that $Th_{LTL}(\mathcal{N}) = Th_{LTL}(\mathcal{Z})$?

- 7. Formulate Principle of Mathematical Induction in *LTL*.
- 8. Write in LTL:
 - a) p will be true exactly twice,
 - b) q will be true but p will be true earlier,
 - c) p and q will not be true at the same time.